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Abstract
Objective
To determine whether the polygenic risk score (PRS) derived from MEGASTROKE is as-
sociated with ischemic stroke (IS) and its subtypes in an independent tertiary health care
system and to identify the PRS derived from gene sets of known biological pathways associated
with IS.

Methods
Controls (n = 19,806/7,484, age ≥69/79 years) and cases (n = 1,184/951 for discovery/
replication) of acute IS with European ancestry and clinical risk factors were identified by
leveraging the Geisinger Electronic Health Record and chart review confirmation. All Geisinger
MyCode patients with age ≥69/79 years and without any stroke-related diagnostic codes were
included as low risk control. Genetic heritability and genetic correlation between Geisinger and
MEGASTROKE (EUR) were calculated using the summary statistics of the genome-wide
association study by linkage disequilibrium score regression. All PRS for any stroke (AS), any
ischemic stroke (AIS), large artery stroke (LAS), cardioembolic stroke (CES), and small vessel
stroke (SVS) were constructed by PRSice-2.

Results
A moderate heritability (10%–20%) for Geisinger sample as well as the genetic correlation
between MEGASTROKE and the Geisinger cohort was identified. Variation of all 5 PRS
significantly explained some of the phenotypic variations of Geisinger IS, and the R2 increased
by raising the cutoff for the age of controls. PRSLAS, PRSCES, and PRSSVS derived from low-
frequency common variants provided the best fit for modeling (R2 = 0.015 for PRSLAS). Gene
sets analyses highlighted the association of PRS with Gene Ontology terms (vascular endo-
thelial growth factor, amyloid precursor protein, and atherosclerosis). The PRSLAS, PRSCES,
and PRSSVS explained the most variance of the corresponding subtypes of Geisinger IS
suggesting shared etiologies and corroborated Geisinger TOAST subtyping.

Conclusions
We provide the first evidence that PRSs derived from MEGASTROKE have value in identi-
fying shared etiologies and determining stroke subtypes.
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Genome-wide association studies (GWAS) on ischemic stroke
(IS) and its etiologic subtypes have been conducted for a de-
cade, and some common variants or genes have been identified.
These genetic variants/genes are mostly subtype specific, and
their biological relevance to the etiology of stroke needs to be
investigated.1 Meta/mega-analyses of GWAS, led by the
MEGASTROKE consortium, have identified more stroke risk
loci, but their effect sizes are quite small.2 In most diseases with
a polygenic etiology, genome-wide significant markers explain a
small proportion of the heritability of complex traits. However,
converging evidence supports that a considerable proportion of
phenotypic variation can be explained by the ensemble of in-
dividual markers not achieving that level of significance. Poly-
genic risk scores (PRSs) have been used to establish a common
genetic basis for related disorders, irrelevant of single markers
with a significant association or not, and to identify high- or
low-risk individuals by a risk stratification for the purpose of
personalized management.3

Pioneer studies have shown that a genetic risk score (GRS)
derived from multiple loci has a limited power to predict IS4,5

or its subtype.6 The PRS from genome-wide loci has shown to
be superior to multilocus GRS in the prediction of IS in a
Japanese population despite a small training and testing
samples.7 Through a risk stratification by PRS derived from
MEGASTROKE summary statistics, a recent study has shown
that the risk of incident stroke from the UK Biobank (UKB)
cohort is 35% higher among those at the top third of PRS, and
this association is independent of lifestyle factors.8 Genetic
overlaps between stroke risk, early neurologic changes, and
some of the cardiovascular risk factors (diabetes and hyper-
tension) have been identified.9 Because IS is a multifactorial
complex disease and the overall risk is determined by an in-
terplay between genetic and environmental factors, a met-
aGRS has been developed through a machine learning (ML)
approach to integrate multiple sets of GWAS summary sta-
tistics on stroke or its modifiable clinical risk factors such as
hypertension, type 2 diabetes (T2D), dyslipidemia, body
mass index (BMI), and coronary artery disease (CAD).10

Although the hazard ratio of this metaGRS for IS doubles that
of previous GRS in the UKB cohort, for individuals with high
metaGRS achieving currently recommended risk factor levels,
this metaGRS approach remains insufficient to manage risk.10

PRS derived from stroke subtypes may augment the pre-
dictive power for patients with a similar etiology. The con-
ventional classification methods stratify stroke subtypes into 5
major categories.11,12 PRS for atrial fibrillation (AFib) can
significantly explain cardioembolic stroke (CES) risk, in-
dependent of other clinical risk factors.13

The purpose of this study is to estimate the heritability and
genetic correlation between Geisinger andMEGASTROKE data
sets and to determine the association of this MEGASTROKE-
based PRS with IS and its subtypes in the Geisinger sample,
which has similar inclusion criteria and the same subtype classified
by MEGASTROKE. PRS derived from gene sets of known bi-
ological pathways will be evaluated to determine their association
with a known or novel etiology of IS through a 2-step design
using discovery and replication data sets. The shared etiology
between MEGASTROKE and Geisinger TOAST subtypes
through polygenic risk modeling will be explored.

Method
Standard Protocol Approvals, Registrations,
and Patient Consents
This study was approved by the Geisinger institutional review
board. As an independent European cohort, Geisinger IS cases
were obtained from the local Get With The Guidelines stroke
registry and characterized by manual chart review,14 whereas
controls were identified by leveraging the Geisinger electronic
health record (EHR). The strategy of data analysis and sample
sizes was illustrated (figure e-1, links.lww.com/NXG/A383).

The Geisinger MyCode Community Health Initiative cohort
(n = 92,455) is a health system–based population,15 and it is also a
geographically defined cohort that represents the patients who
visit Geisinger clinics from the East andCentral Pennsylvania. The
study cohort was based on participants from the Geisinger’s
MyCode Community Health Initiative phase I and phase II16,17

consisting of 1,184 acute IS patients as the cases for discovery with
validated European ancestry (EUR) and MRI data for the con-
firmation of diagnosis. These participants have consented to re-
search using the deidentified genetic data and the corresponding
EHRs.16,17 We also identified additional 941 IS patients through
EHR with validated European ancestry and the corresponding

Glossary
AFib = atrial fibrillation; APP = amyloid precursor protein; ASL = a synthesized TOAST subtype that represents a combination
of Acute SVS (n = 79) and LAS (n = 124); AUC-ROC = area under the curve for receiver operating characteristics; BMI = body
mass index; CAD = coronary artery disease; CES = cardioembolic stroke; CI = confidence interval; DETERMINED = strokes
of other determined etiology; EHR = electronic health record; EUR = European ancestry; GO = Gene Ontology; GWAS =
genome-wide association study; HWE = Hardy-Weinberg equilibrium; ICD = International Classification of Diseases; IS =
ischemic stroke; LAS = large artery stroke; LDSC = linkage disequilibrium score regression; MAF = minor allele frequency;
ML = machine learning; OR = odds ratio; PCA = principal component analysis; PRS = polygenic risk score; SNP = single
nucleotide polymorphism; SVS = small vessel stroke; T2D = type 2 diabetes; TOAST = trial of ORG 10172 in acute stroke
treatment; UNDETERMINED = strokes of undetermined etiology.
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genetic data as the cases for replication. Both discovery and rep-
lication cases were part of the stroke registry and had a primary
hospital discharge diagnosis of IS and a brainMRI during the same
encounter to confirm the diagnosis. Therefore, the positive pre-
dictive value for IS through this EHR process was 100%, and no
coding bias was observed. Unlike the cases for discovery, the
TOAST subtypes for replication cases were not determined.

Data were collected from January 1, 2007, through December
31, 2018, and analyzed from September 13, 2019, to January
31, 2020. Control subjects had no diagnosis codes, indicating IS
from the International Classification of Diseases (ICD), Ninth or
Tenth Revision. The diagnostic codes used for the identification
of the study cohort are: (ICD-9) 431.X, 432.9, 433.X, and
434.X; and (ICD-10) 161.X, 162.9, and 163.X. As none of
controls identified were overlapped with cases included in the
stroke registry, the negative predictive value for IS by the EHR
process was 100%.Themean (SD) age of controls having index
age≥79 (n = 7,484) or ≥69 (n = 19,806) years was 84.67 (3.21)
or 77.98 (6.01) years. The age cutoffs of 69 and 79 for controls
were based on mean age at onset for cases which is 59 for our
cohort. As this design follows younger cases vs older controls,
we expect to have 50% of controls having index age of 10 years
or 20 years older than the onset age of cases. Covariates, in-
cluding age and sex, were extracted from the EHR. Age was
ascertained at the time of the index hospital admission.

Definition of Ischemic Stroke Subtypes and
Extraction of Clinical Variables
Patient demographics, clinical information, and outcome
measures were collected based on the neurologic examination

and corresponding neuroimaging.14 ISs (age at onset >18
years) were classified according to the published TOAST
criteria18 by individual chart review. For the subtype analyses,
we excluded patients with a recurrent stroke of different
TOAST subtypes and piHAT <0.2 to avoid the relatedness
within each TOAST subtype. In the end, 218 patients with
CES, 33 strokes of other determined etiology (DE-
TERMINED), 277 large artery strokes (LAS), 200 small
vessel strokes (SVS), and 225 strokes of undetermined eti-
ology (UNDETERMINED) were included in the study. ASL
was a synthesized TOAST subtype that represents a combi-
nation of Acute SVS (n = 79) and LAS (n = 124).

The diagnosis of clinical risk factors was based on structured
data captured in the EHR. CAD ascertainment was based on a
composite of myocardial infarction or coronary re-
vascularization. The ICD-9 codes for myocardial infarction
include 410.X, 411.X, 412.X, 413.X, or 414.X or ICD-10 codes
of I20.X, I21.X, I22.X, I23.X, I24.X, or I25.X in hospitalization
records. Coronary revascularization was assessed based on an
OPCS-4 coded procedure for coronary artery bypass grafting
(K40.1-40.4, K41.1-41.4, or K45.1-45.5) or coronary angio-
plasty with or without stenting (K49.1-49.2, K49.8-49.9,
K50.2, K75.1-75.4, or K75.8-75.9). AFib ascertainment was
based on the self-report of AFib, atrial flutter, or cardioversion
in an interview with a trained nurse. The ICD-9 code of 427.3
or ICD-10 code of I48.X in hospitalization records or a history
of a percutaneous ablation or cardioversion based on the
OPCS-4 coded procedure (K57.1, K62.1, K62.2, K62.3, or
K62.4). Type 2 diabetes ascertainment was based on self-
report in an interview with a trained nurse or ICD-10 codes of

Table 1 Characteristics of Ischemic Stroke Patients and Controls in the Geisinger Cohort

Variables
Case for discovery (n = 1,184)

Control Case for replication

≥69 (n = 19,806) ≥79 (n = 7,484) (n = 951)

Mean (SD) or N (%) Mean (SD) or N (%) Mean (SD) or N (%) Mean (SD) or N (%)

Index age 69.24 (13.2) 77.98 (6.0)** 84.67 (3.2)** 72.73 (12.6)

Male (%) 599 (50.6) 8,932 (45.1)* 3,281 (43.8)** 471 (49.5)

BMI 31.31 (7.4) 30.34 (6.6)* 28.49 (5.7)** 30.57 (6.7)

Alcohol 262 (28.9) 6,686 (37.6)** 2056 (30.9) 257 (29.5)

Smoking ever 566 (62.3) 9,037 (50.8)** 3,072 (46.2)** 512 (58.7)

AFib 411 (34.7) 4,211 (21.3)** 2,167 (29.0)** 483 (50.8)

CAD 481 (40.6) 5,292 (26.7)** 2,396 (32.0)** 434 (45.6)

Diabetes mellitus 355 (29.9) 4,111 (20.8)** 1,496 (20.0)** 333 (35.0)

Dyslipidemia 409 (34.5) 4,142 (20.9)** 1,621 (21.7)** 630 (66.2)

Hypertension 939 (79.2) 4,332 (21.9)** 1706 (22.8)** 663 (69.7)

Abbreviations: AFib = atrial fibrillation; ANOVA = analysis of variance; BMI = body mass index; CAD = coronary artery disease.
Data were presented as mean (SD) or number of subjects with frequency in parentheses.
* or ** represents p < 0.001 or <0.0001 from the χ2 test or ANOVA to determine whether there was a significant difference between case (significance in both
discovery and replication) and control.
%missingness in cases of discovery and replication was 23% and 8% for both alcohol and smoking ever, respectively; %missingness in controls of ≥69 and ≥79
was 10% and 11%, respectively. No missing value for other variables.
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E11.X and E13.X and ICD-9 codes of 249.5 and 250.X in
hospitalization records. Smoking status and alcohol use were
based on self-report in an interview with a trained nurse.
Based on the summary statistics in table 1, the demographic
and the frequency of clinical risk factors were comparable with
some previously reported cohorts.19–22 This is a quality
control (QC) step to avoid significant coding bias for
comorbidities.

Genotyping, Imputation, and QC
Samples were genotyped using Infinium OmniExpress
Exome array (Illumina) and GSA-24v1-0 array (Illumina) for
phase I and II, respectively. Genotypes for both cohorts were
imputed to HRC.r1-1 (Haplotype Reference Consortium
reference panel, version r1.1) EUR reference genome
(GRCh37 build) separately using Michigan Imputation
Server, which used Eagle v2.3 and Minimac4 as the phasing
and imputation algorithm, respectively.

Samples with the genotyping rate below 95% were excluded.
Single nucleotide polymorphisms (SNPs) with an imputation
info score of <0.7, minor allele frequency (MAF) <1%,
and significant deviation (p < 10−4) from Hardy-Weinberg
equilibrium (HWE) were removed. A pruned set of SNPs
(608,437) was generated from high-quality genotyped SNPs
(MAF >0.05, HWE p > 0.0001, LD pruned with r2 between

SNPs <0.2) to calculate the kinship relatedness matrix by
SAIGE.23 A total of 6,213,823 SNPs from the merged phase I
and II sample were included in the analysis. Those SNPs with
a significant difference in MAF between phase I (n = 57,118)
and II (n = 28,462) samples (p < 5 × 10−5) were removed
from the summary statistics. Principal component analysis
(PCA) by a fast PCA approximation embedded in PLINK2
(cog-genomics.org/plink/2.0/) using 1000GENOME phase
III (2014 version) as the reference genome indicated that all
the selected cases and controls were of EUR (figure e-2, links.
lww.com/NXG/A383).

Individual SNP Association Tests for IS
SAIGE,23 a linear mix model, which built a kinship matrix to
account for the cryptic relatedness, was adopted to test ge-
netic association and used saddle point approximation to
calibrate the distribution of score test statistics while ac-
counting for the imbalance of the case-control ratio. Because
of the negative selection against effect alleles associated with
stroke, the enrichment of noneffect alleles or protective alleles
would be expected in older and nonstroke individuals. In a
sensitivity analysis of subgroups of controls, the GWAS was
conducted in a case-control design by considering all Gei-
singer MyCode patients with age >69 years or >79 years and
without any stroke-related ICD-9 or ICD-10 codes as low-risk
control, for a purpose of improving the discovery power of

Figure 1 Estimated Heritability of Geisinger Ischemic Stroke and the Genetic Correlation Between Geisinger Sample and
MEGASTROKE Sample

The chip-based heritability (h2g, A) and genetic correlation (rg, B) were calculated by LDSC using genotypedHapMap 3 SNPs (hm3). Both the observed scale and
the liability scale h2, later of which was adjusted by the sample prevalence and population prevalence, were presented in the y-axis, including error bars for
the estimates. We assumed a trait prevalence of 1% for all phenotypes and tested the robustness of heritability (h2g) under 2 levels of controls. AIS = any
ischemic stroke; AS = any stroke; CES = cardioembolic stroke; LAS = large artery stroke; LDSC= linkage disequilibriumscore regression; SNP= single nucleotide
polymorphism; SVS = small vessel stroke.
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GWAS in late-onset diseases.24 The covariates such as sex and
5 major PCs were included in all the primary and secondary
analyses. Index age was not included as a covariate because it
led to a genome-wide deflation of the test statistics.

Functional Annotation
Open Targets Genetics (OpenTargets.org) and GWAS cat-
alog (ebi.ac.uk/gwas/) were queried for top-associated SNPs
to evaluate their functional impact and pleiotropy if any. The
pathway-specific gene network was illustrated by string-db
(string-db.org/).

Heritability (h2) and Genetic Correlation
(r2g) Calculations
We used the summary statistics from the GWAS to calculate
adjust wide spacing disequilibrium score regression (LDSC25).

The LD scores were estimated from an external reference
sample, 1000GENOME with EUR. Only well-genotyped
and imputed HapMap 3 SNPs (“w_hm3.snplist”) with
the number of SNPs (877960/879085/878219/876828/
878222 for any ischemic stroke (AIS)/any stroke (AS)/
CES/LAS/SVS) were considered for the calculation of the
genetic variance and covariance. To test for evidence of
shared etiology between the base and target trait, we applied
LDSC25,26 to quantify the extent of shared genetic contri-
butions to IS between MEGASTROKE2 and Geisinger data
sets at a genome-wide level. This shared etiology could be
due to so-called horizontal pleiotropy (separate direct ef-
fects) or vertical pleiotropy (downstream effect).27 Effect
allele for the Consortium GWAS2 was downloaded from
MEGASTROKE.org for EUR. Based on an assumption of
the expected chi-square statistic of a variant linearly

Figure 2 Sensitivity Analysis to Show the Predictive Power of PRS

We conducted a sensitivity analysis to determine whether this predictive power (R2 and significance for the nonzero regression coefficient for PRS) can be
improved by raising the cutoff for the age of controls. (A) We simulate the same number of controls as to the corresponding controls ≥69 or ≥79 by a random
selection from controls ≥59 to determine this augmented predictive power, if any, was largely due to natural selection in aged nonstroke individuals but not
due to the change in the case:control ratio. This improved predictive power was independent of the prevalence of the disease or case:control ratio as shown
by this dot plot. (B) The association between PRSz-score derived from 5 summary statistics of MEGASTROKE and ischemic stroke was tested by logistic
regression (phenotype ; PRSz-score + sex + PC1-5.). The PRS was calculated by PRSice-2 using the average score (avg) equation (default) from the best-fit
modeling. The raw PRSavg was z score transformed into PRSz-score to compare the odds ratios across the analyses. Odds ratios (ORs) (y-axis) and significant
levels (dot size) were calculated by the R glm. (C) The association of PRSz-score derived from the summary statistics of MEGASTROKE AIS with ischemic stroke
and itsmajor clinical risk factors were tested by the same logistic regression and visualized by the forest plot. AIS = any ischemic stroke; AS = any stroke; CES =
cardioembolic stroke; LAS = large artery stroke; PRS = polygenic risk score; SVS = small vessel stroke.
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correlated with LD score bin under a polygenic model,25 the
stronger correlation could only be achieved when both data
sets shared the same ancestry and when the LD score esti-
mated for both data sets was obtained from the reference
with the same ancestry. This procedure would help prevent
bias of the estimates and decrease the standard error of
LDSC estimate for genetic correlation.26

PRS Construction by PRSice-2 and Predictive
Power for IS or TOAST Subtypes
We followed a tutorial28 when we constructed PRS, power
analysis,29 and interpret the result. PRSice-227 is a p-value selec-
tion threshold approach. Removing SNPs with a low genotyping
rate (geno >0.95), MAF <0.01; imputation “info score” >0.7; and
individuals with a low genotyping rate (mind >0.9). PLINK2 was
used for QC; effect allele for the Consortium GWAS2 was
downloaded from MEGASTROKE.org for the European an-
cestry, and the genomic coordinates (hg19 version) of dbSNP
were collected from UCSC Genome Browser (genome.ucsc.
edu/). Shared markers with the same genomic coordinate and
variant type between MEGASTROKE and Geisinger data were

extracted. This is an autosomal-only analysis. No sample was
overlapped between Geisinger and MEGASTROKE. Therefore,
we assumed no substantial inflation of the association between
the PRS and trait tested in the target data.

We initially set p-value thresholds at 0.001, 0.05, 0.01, 0.1, 0.2,
0.3, 0.4, 0.5, and 1. Because of the criticism of clumping by
selecting an arbitrarily chosen correlation threshold for the
removal of SNPs in LD, we tested the predictive power under
the threshold ranging from 0.05 to 0.8. An informed LD
clumping using the following PLINK command:—clump-p1
1, –clump-kb 1,000, —clump-r2 0.05 to 0.8 was conducted.
After an evaluation of the trade-off by including less or more
SNPs in the polygenic modeling by tuning the correlation
threshold, we chose r2 = 0.1 because this level for LD pruning
showed no systematic overestimation or underestimation of
the PRS modeling. A total of 196,995 (AIS), 197,033 (AS),
197,529 (CES), 197,532 (LAS), and 197,549 (SVS) variants
were retained for the 5 MEGASTROKE summary statistics.
On average, around 25% of variants were kept with MAF <
0.025. PRSs were derived from MEGASTROKE by PRSice-2

Figure 3 PRS Derived From Lower MAF Variants Provided the Best-Fit Modeling for the Ischemic Stroke

Nonrelated individuals (piHAT ≤0.20) from the discovery and replication data sets with a random split of control samples were included in the association
analysis. PRS derived from genetic variants with relatively lower MAF provided the best-fit modeling for the ischemic stroke (red dots) when PRS was
constructed based on the summary statistics of TOAST subtypes such as LAS, SVS, and CES as compared to PRS constructed based on the summary statistics
of AS or AIS. Both discovery data set and replication data set showed the same profile. The size of the dots represents the R2, a measure of the proportion of
the variance explained by the model. The y-axis represents the significance of the model fit. The total number of variants included in the analysis under two
MAF thresholds was also listed on the top. AIS = any ischemic stroke; AS = any stroke; CES = cardioembolic stroke; LAS = large artery stroke; MAF =minor allele
frequency; PRS = polygenic risk score; SNP = single nucleotide polymorphism; SVS = small vessel stroke.
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Figure 4 Gene Sets Analyses Illustrated the Top Five Pathways Enriched for Ischemic Stroke (Controls With Index Age ≥69
years) After Meta-analysis of Discovery Data Set (n = 1,076/10,107) and Replication Data set (n = 941/8,145) When
the PRS Was Constructed Based on Each of the Five Summary Statistics of MEGASTROKE

The sex and 5 major PCs were included as covariates in the logistic regression model for each data set. The meta-analysis was conducted by metal with
weighted effect size (coefficient) estimates using the inverse of the corresponding standard errors. Sample overlap correction was not performed because of
no overlapping samples between discovery and replication samples. The global genes were selected as a universal background for gene sets analyses, and
the mapping file was “Homo_sapiens.GRCh37.87.gtf.” PRSs derived from gene sets defined by the Gene Ontology Biological Process were calculated to test
their association with an ischemic stroke under 2 MAF thresholds (MAF < 0.025 or < 1), which represents low-frequency common variants or all variants
accordingly. Seven thousand three hundred forty-nine pathways and their related gene sets were defined by Molecular Signatures Database (“msigdb_v7.0_
GMTs/c5.bp.v7.0.symbols.gmt”). Exploration of the top 5 pathways enriched from PRS gene sets analyses after themeta-analysis of discovery and replication
data sets using each summary statistics fromMEGASTROKE to construct PRS under 2 levels of MAF thresholding (y-axis). The red or blue bar represents the
ischemic stroke has a negative or positive association with the corresponding biological process according to the direction of the coefficient, respectively. All
the p values in the x-axis were raw but survivedmultiple testing for Bonferroni correction as −log10(p) ≥ 5.17 (−log10(0.05/7,349)). AIS = any ischemic stroke; AS
= any stroke; CES = cardioembolic stroke; LAS = large artery stroke; MAF = minor allele frequency; SVS = small vessel stroke; VEGF = vascular endothelial
growth factor.
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with 10,000 permutation tests. The results were derived from
testing over a range of p-value thresholds for base SNPs and
also included the thresholding that gave the best predictive
performance (best fit).

We also removed related individuals in the Geisinger sample
with paired PI_HAT ≥0.2 and maintained the maximum num-
ber of cases. We ended up with 1,167 cases and 17,271 controls.

We selected the default mode of the PRS algorithm, PRSavg,
which was calculated by the number of observed effective allele
for each variant multiplied by the corresponding effect size
derived from the MEGASTROKE, divided by the number of
alleles included in the PRS from that individual, and finally sum
of all from that individual. This approach would help prevent
biased PRS towardmore or less genetic markers included in the
calculation for that individual. Nagelkerke pseudo-R2 (R2) and
significance for the nonzero regression coefficient for PRS were
calculated by PRSice-2 with clumping and thresholding (“P +
T”). The IS was regressed on the PRSavg, including sex and first
5 PCs as covariates, to calculate the variance explained by
PRSice-2. In line with previous PRS studies8,10,13 on STROKE,
we also performed a z-score transformation, “PRSz-score =
(PRSavg−mean(PRSavg))/SD(PRSavg),” of this raw PRSavg, and
the logistic regression of TOAST subtypes was conducted. The
odds ratios (ORs) with 95% confidence interval (95%CI) were
calculated by R ‘glm’ with a nature log transformation.

We conducted a sensitivity analysis to determine whether this
predictive power (R2 and significance for the nonzero re-
gression coefficient for PRS) can be improved by raising the
cutoff for the age of controls. The same number of controls as
to the corresponding controls ≤69 or ≤79 by a random se-
lection from controls ≤59 was simulated to determine
whether this augmented predictive power, if any, was largely
due to natural selection in aged nonstroke individuals but not
due to the changed case:control ratio (table e-1, links.lww.
com/NXG/A383).30

Gene Set–Based PRS Analyses
A two-step design was considered by randomly splitting 19,806
controls (age ≥ 69 years) into discovery (n = 1,184/10,983 for
case/control) and replication (n = 951/8,823 for case/control)
data sets to maintain the same case-control ratio (0.108).
Those 951 IS cases were identified by Geisinger EHR but not
included in the initial GWAS. We further removed related
individuals (piHAT ≥0.20) from the discovery and replication
data sets and ended up with 1,076/10,107 for case/control in
discovery data set and 941/8,145 for case/control in replication
data set. By comparing the result originated from all samples
with the result derived from nonrelated individuals, any inflated
R2 and p value would be determined.

The global genes were selected as a universal background for
gene sets analyses, and the mapping file, “Homo_sapi-
ens.GRCh37.87.gtf”, was downloaded from ftp://ftp.ensem-
bl.org/pub/grch37/release-90/gtf/ho…

PRSavg derived from gene sets defined by the Gene Ontology
Biological Process was calculated to test their association with IS
under 2MAF thresholds (MAF <0.025 or <1), which represents
low-frequency common variants or all variants accordingly. A
total of 7,350GeneOntology pathways of Biological Process and
their related genes were defined by Molecular Signatures Data-
base (“msigdb_v7.0_GMTs/c5.bp.v7.0.symbols.gmt” from
gsea-msigdb.org/gsea/msigdb/index.jsp). The sex and 5 major
PCs were included as covariates in the logistic regression model
for each data set. A raw competitive p value, which indicated the
level of enrichment, was calculated. The meta-analysis of sum-
mary statistics of discovery and replication data sets was con-
ducted by metal with weighted effect size (coefficient) estimates
using the inverse of the corresponding standard errors. Sample
overlap correction was not performed because of no overlapping
samples between discovery and replication samples. We repor-
ted the top 5 pathways that were significantly enriched from the
gene-set analysis for PRS derived from each summary statistics
stratified by 2 levels of MAF after the meta-analysis. All the p
values presented as raw and only p value with −log10(p) ≥ 5.17
(−log10(0.05/7,350)) survived multiple testing for Bonferroni
correction.

Data Availability
The summary statistics of our GWAS may be shared with
third party on execution of data sharing agreement for rea-
sonable requests.

Results
Characterization of Geisinger Ischemic Stroke
and Controls
Demographics and clinical characteristics of IS cohorts (cases
for discovery and replication) and controls were summarized
in table 1 stratified by age for controls. There was a significant
increase in the proportion of subjects having clinical risk
factors for stroke in the case group vs control group (p <
0.01). These risk factors included smoking ever, CAD, AFib,
diabetes mellitus, dyslipidemia, and history of hypertension.
Other anthropometric factors such as BMI showed significant
differences between cases and controls (p < 0.01).

No Genome-Wide Significant Association
Identified by the GWAS
We first performed the GWAS using a linear mixed model.
Manhattan andQQ plots for the GWAS results of control ≥69
years and ≥79 years were shown in figure e-3B, links.lww.
com/NXG/A383, as mirrored toward each other. The top
SNPs with p < 5 × 10−5 were listed in table e-2. No variants
passed the genome-wide significant threshold (p < 5 × 10−8)
of association for IS. Among the top variants with p < 5 × 10−5

(suggestive significance) in GWAS79yrs, all had decreased
frequency of risk alleles for IS (p = 1.90 × 10−5, paired t test,
increased effect size (β), and improved significance in asso-
ciation with IS than those in GWAS69yrs). The top loci were
also associated with increased risk for various stroke-related
(sub)phenotypes.
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Heritability (h2) and Genetic Correlation (rg)
We present observed and liability scale h2, assuming that sample
and population prevalence of Geisinger IS were 0.01 and 0.01
for control ≥69 years and 0.05 and 0.01 for control ≥79 years. A
moderate heritability (;10%) for Geisinger samples was
identified (figure 1A). The estimates of explained heritability
were increased for both observed and liability scale h2 when the
cutoff for the index age of controls was raised to 79 years.

The estimated genetic correlations of IS between each of the
pairs of cohorts were shown in figure 1B. A significant genetic
correlation between MEGASTROKE and Geisinger summary
statistics (≥69 or ≥79) was observed with the most significant
correlation for AS with rg = 0.586 or 0.545 and p = 2 × 10

−4 or 2
× 10−8. Although there was no significant improvement of rg
when the cutoff for the index age of controls was raised from 69
to 79 years, the significance of the correlation was improved
with a smaller variance of rg across all pairs. Although there
were similar numbers of well-characterized LAS, SVS, and CES
in this Geisinger cohort, the highest rg was observed in LAS
subtype with rg = 0.452 or 0.403 and p = 2 × 10−3 or 4.88 ×
10−5, whereas the lowest rg observed in CES subtype (rg =
0.257 or 0.193 and p = 0.021 or 0.019).

Predictive Power of PRS for IS
The sample size and index age (mean and SD) stratified by sex
were summarized in table e-1, links.lww.com/NXG/A383.
The increased predictive power (R2 and p) of PRS by raising

the cutoff for controls from 59 to 79 years old was in-
dependent of the case:control ratio and across all levels of
thresholding p values observed, indicating that older low-risk
control was, at least partially, driving the PRS’s association
with IS. The augmented predictive power was observed in all
but the PRS derived from MEGASTROKE CES (red dots
compared with pink dots or blue dots compared with light
blue dots in figure 2A).

Variation of all 5 PRSavg could significantly explain some of
the phenotypic variations of Geisinger IS with the PRSLAS
explainedmost of the phenotypic variance (R2 = 0.006, p = 7.2
× 10−12) for the best-fit model as compared to the PRS de-
rived from other summary statistics (R2 = 0.003, p = 1.12 ×
10−6 for PRSSVS; R

2 = 0.004, p = 1.46 × 10−7 for PRSCES; R
2 =

0.004, p = 3.04 × 10−8 for PRSAS; and R
2 = 0.004, p = 1.87 ×

10−7 for PRSAIS) (figure e-4A, links.lww.com/NXG/A383).
We also conducted a restricted analysis by including samples
with paired HAT score (piHAT) <0.2. As shown in figure
e-4B, we still obtained a similar level of R2 (0.007 for PRSLAS;
0.003 for PRSSVS; 0.004 for PRSCES; 0.005 for PRSAS; and
0.004 for PRSAIS) and p value (1.69 × 10−11 for PRSLAS; 2.00
× 10−6 for PRSSVS; 2.22 × 10−7 for PRSCES; 1.31 × 10−8 for
PRSAS; and 1.77 × 10−7 for PRSAIS) for the best-fit model.

The PRSz-score derived from MEGASTROKE LAS showed
the strongest association with Geisinger IS phenotype (OR =
1.244, per 1−SD increase in the PRS, p = 1.57 × 10−11, 95%CI

Figure 5 The PRS Derived FromMEGASTROKE Subtypes Was Mostly Associated With the Corresponding Geisinger TOAST
Subtypes

The dot plot demonstrated the association of PRS derived from MEGASTROKE on Geisinger TOAST subtypes when using base p < 0.1 as an example. The
association between PRS and stroke subphenotypeswas tested by logistic regression (phenotype; PRSavg + sex + PC1–5). PRS derived from theMEGASTROKE
consortium (y-axis) was calculated by PRSice-2 to determine their association with the TOAST subtypes of Geisinger ischemic stroke patients (x-axis).
Nagelkerke pseudo-R2 (color of dots) and significant levels (size of dots) were calculated by PRSice-2 with clumping and thresholding (here using SNPs with
base p < 0.1 as an example). *The significance of the association survived Bonferroni correction given 30 paralleled testing (punadjusted < 0.0017). We excluded
any cases with a recurrent stroke of different TOAST subtypes. AIS = any ischemic stroke; AS = any stroke; CES = cardioembolic stroke (TOAST); DETERMINED =
stroke of other determined etiology (TOAST); LAS = large artery stroke (TOAST); SNP = single nucleotide polymorphism; SVS = small vessel stroke (TOAST);
UNDETERMINED = stroke of undetermined etiology (TOAST); ASL was a synthesized TOAST subtype that represents a combination of Acute SVS (n = 79) and
LAS (n = 124).
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[1.168–1.326]) for controls ≥69, when compared with the
PRSz-score derived from other MEGASTROKE summary
statistics (figure 2B for the best-fit modeling). The association
between PRS (i.e., PRSAIS) and other risk factors in the full
model was accessed. This PRSAIS was significantly associated
with hypertension, diabetes, CAD, and other comorbidities,
but not with lifestyle changes captured in EHR such as
drinking and smoking cigarettes (figure 2C).

Low-Frequency Variants Contributed More to
the Association Between PRS and IS
Because the loci for cardiovascular diseases were significantly
enriched for lifetime reproductive success by natural selection31

and identified that IS subtype-specific loci were more likely to be
low MAF,32 we proposed that the genetic variants with lower
MAF may contribute more to the phenotypic variation. When
we partitioned the variants byMAF ≤0.01, 0.05, 0.1, 0.2, or to all,
PRSLAS, PRSCES, and PRSSVS derived from low-frequency
common variants (0.01 < MAF < 0.05) provided the best-fit
modeling for Geisinger IS (see figure e-5A, links.lww.com/
NXG/A383), suggesting that low-frequency common variants
when taken together could havemore contribution to the risk for
IS subtypes. This result was confirmed by using the replication
cases (n = 951) vs the same controls (n = 19,806) (figure e-5B,
links.lww.com/NXG/A383). R2 for PRSLAS in discovery and
replication data sets was 0.015 and 0.016 for MAF < 0.025 as
compared to 0.006 and 0.007 for MAF < 1, respectively; R2 for
PRSSVS was 0.011 and 0.012 for MAF < 0.025 as compared to
0.004 and 0.005 forMAF< 1, respectively.We selected p< 0.025
as 1 of 2 bar levels in the gene-set analysis to identify the enriched
pathways associated with the potentially shared etiology.

PRS Derived From the Subsets of SNPs
Associated With IS
We explored the top 5 pathways for the gene sets analyses
stratified by 2 bar levels (MAF < 0.025 or < 1) (figure 3) after
the meta-analysis of the summary statistics from discovery and
replication data sets (figure 4). The summary statistics of the
entire analysis were available in table e-3, links.lww.com/NXG/
A384, and e-4, links.lww.com/NXG/A385. By comparing the
results from nonrelated individuals (figure 4) with the result
from the original data sets without removing related individuals
(figure e-6A, links.lww.com/NXG/A383), we only observed a
slightly inflated p value for the top gene sets when selecting all
SNPs (MAF < 1) but not selecting SNPs with MAF < 0.025 in
both discovery and replication data sets (figure e-7). This
suggested that those pathway-related low-frequency common
variants were not shared by related individuals with IS.

For all SNPs with various MAF, gene sets related to GO
negative regulation of (RNA) biosynthetic process, the
downstream terms of the metabolic process, were ranked to
the top using PRSLAS and PRSCES. Top gene set related to
apoptosis was enriched with a positive correlation (blue bar)
with stroke using PRSLAS; gene sets related to embryonic
heart tube development was one of the top pathways with a
positive correlation with stroke using PRSSVS.

For genetic variants with MAF < 0.025, we observed the top
pathways with a negative association (red bar) of stroke in-
cluding the vascular endothelial growth factor signaling
pathway and APP signaling pathway when using PRSAIS and
PRSAS for all Geisinger IS. Genes related to the regulation of
macrophage-derived foam cell differentiation and lipid com-
plex assembly enriched in IS patients using PRSSVS, suggest-
ing atherosclerosis in the pathogenesis of IS. Gene sets related
to ion/transmembrane transport were the top pathways with
a positive association with IS using PRSCES.

PRS Derived From the MEGASTROKE Subtypes
Was Associated More With the Corresponding
TOAST Subtypes of Geisinger Patients
Only cases from the discovery data set were subtyped by the
TOAST criteria. As expected, PRSLAS (R

2 = 0.004; p = 7.31 ×
10−4), PRSCES (R

2 = 0.005; p = 4.47 × 10−4), and PRSSVS (R
2

= 0.003; p = 0.003) explained the most variance of the cor-
responding subtypes of Geisinger IS than PRS derived from
other MEGASTROKE data sets (larger and warmer dots for
the significant level and Nagelkerke pseudo-R2, respectively,
see the arrow in figure 5 using base p < 0.1). For the syn-
thesized group, ASL, with much more LAS cases (n = 124)
than SVS cases (n = 79), the predictive power was the highest
by PRSsvs (R

2 = 0.007; p = 8.23 × 10−5). PRSCES could dif-
ferentiate LAS from CES or SVS from CES (yellow arrows).
TOAST Determined subtypes of Geisinger can be equally
explained by PRSLAS and PRSSVS despite not reaching a sig-
nificant level due to the small sample size (n = 33). Fur-
thermore, none of the PRS could significantly explain the
phenotypic variation of Geisinger Undetermined subtype.

Discussion
Among the top variants with p < 5 × 10−5 (suggestive sig-
nificance) from GWAS79yrs, all had decreased frequency of
risk alleles for IS, increased effect size (β or OR), and im-
proved significance in association with IS than those from
GWAS69yrs, suggesting that the protective alleles were
enriched in the older nonstroke population. If a genetic var-
iant was associated with fitness, selection would drive 1 allele
to low frequency.33 The latter was the case even for traits
without any obvious connection to fitness. Through an in-
quiry into the PheWAS summary statistics of stroke-related
phenotypes obtained from UKB, we were able to identify that
the risk alleles from the top loci were also associated with
increased risk for various stroke-related (sub)phenotypes
(i.e., atherosclerosis) or risk factors (i.e., hypertension, high
cholesterol level, and cardiac arrhythmia), suggesting the
potential pleiotropy of these variants.

Although there was no significant improvement of rg when the
cutoff for the index age of controls was raised from 69 to 79
years, the significance of the correlation was improved with a
smaller variance of rg across all pairs, suggesting that this case:
control design could yield a more homogenous control
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population with enriched protective alleles. The lowest rg was
observed using the summary statistics from MEGASTROKE
CES subtype (rg = 0.257 or 0.193, p = 0.021 or 0.019), and no
improvement in the prediction power for PRS derived from
this CES summary statistics in the sensitivity analysis sug-
gested that these low-frequency common variants may not
show enrichment for the protective allele in aged controls.
The similar findings were also reported for rare variants pre-
viously implicated in alone or familial forms of Afib. Those
rare variants were detected at low frequencies in a general
population but were not associated with Afib through an age
stratification of the control population.34

PRSs derived from MEGASTROKE GWAS data sets can
explain only a small fraction of the variance in the target
phenotypes, and this proportion can be improved by using
common variants with lower MAF. The lack of predictive
power of PRS could be due to the genetic and environmental
heterogenicity of IS with various causal mechanisms. It is
possible that the predictive power of PRS can be improved by
using a subset of SNPs derived from disease-relevant path-
ways or functional annotated subset of SNPs.35 The predictive
power (R2) was improved when using a subset of low MAF
variants, many of which were eQTL for the annotated genes
nearby (data not shown). This lack of predictive power could
also be due to the polygenic modeling algorithms, and how to
improve the signal-to-noise ratio by ML approaches is an
ongoing topic. The performance of PRSs over the life course
in several cardiometabolic diseases and neoplasms has been
evaluated in a prospective setting, and their value when in-
tegrated with the known clinical risk factors and biomarkers
has been revealed.36 The cumulative risk for CAD, T2D, and
AFib was disproportionally increased after 40 years old when
patients were stratified by categorical PRS from higher
(>97.5%) to lower (<2.5%) scores. Because of the pleiotropy
of genetic risk factors for both IS and chronic diseases in-
cluded in this study, we expect IS will show a similar pattern.
The cumulative disease rate for IS will be disproportionally
higher in the top PRS category. The polygenic contribution to
early onset was much higher than that to late onset in the
same disease.36 Our retrospective study from the sensitivity
analysis alternatively confirmed this disproportional increased
PRS burden for IS using younger cases vs 3 tiers of older
controls (from 59, 69, to 79).

PRS alone cannot replace the need to investigate the sources
of emboli or thrombosis and make a personalized treatment
accordingly. Whether patients having high PRS value for
specific pathways may indicate the potential causal mecha-
nism of IS is still unknown and requires further investigation
to validate. It is unclear to what extent PRS contributes to
early-onset vs late-onset IS. Although PRS alone has a small
but significant improvement in the prediction of IS (area
under the curve for receiver operating characteristics [AUC-
ROC] = 0.596 with 95% CI [0.577–0.616] as compared to
AUC-ROC = 0.554 with 95% CI [0.534–0.573] for the base
model, p = 4.26 × 10−6) (Supplementary figure e8, links.lww.

com/NXG/A383), the combination of PRS and clinical risk
factors has not been extensively evaluated using different ML
algorithms and PRS construction models. Whether PRS
contributed to the outcome prediction of IS cases is to be
determined. IS is a multifactorial complex disease. The pre-
diction of IS and its subtypes always follows the multivariate
regression/classification model. This study confirmed the
value of PRS derived from MEGASTROKE as one of the
features in ML-based prediction modeling.

Furthermore, our study suffered from limited power to test for
gene set analyses in Geisinger subcohort with the same
TOAST subtypes because of the small sample size of well-
characterized subtype cohorts.

Finally, our study was based on EUR subjects, limiting its
generalizability to larger and more diverse cohorts. Recent re-
search has focused on the generalizability of polygenic scores to
non-EUR populations. Because of differences in variant fre-
quencies and LD patterns between populations with different
ancestries, reduced predictive power in non-EUR samples is
anticipated, particularly in Africans.37 How to improve the
treatment of LD and variant frequencies when applying poly-
genic scoring derived from Europeans to cohorts of non-EUR
is an emerging field. On the other hand, data resources for non-
EUR are currently inadequate, resulting in the rationale for
large-scale GWAS in diverse human populations. Having re-
alized the full and equitable potential of PRS, we should pro-
mote genetic studies on underserved populations.38

As a part of a multiple-level genetic association study, PRS
constructed based on multiple loci from genes of curated
biological pathways does not confer the biological in-
formation at the single-gene level. Thus, this PRS-based as-
sociation study cannot directly convey the message of
functional impact of genes on the definitive phenotype. Given
all hypothesis (biological pathways) being considered, this
study is trying to prioritize the top pathways from which the
PRS could stratify IS cases into categorical high or low score
for certain pathways based on different causal mechanisms
through a biotyping approach. Clinically, we are often un-
certain of the underlying stroke etiology. If nonroutine fea-
tures such as PRS are able to aid in subtyping, the number of
cryptogenic strokes could be potentially reduced. Thus, PRS,
complemented with other clinical features of the patients,
could facilitate more targeted secondary stroke prevention.

The future studywill focus on (1) how individual genetic risk or
polygenic risk extracted from curated biological pathways af-
fects stroke outcome, such as recurrence and mortality and (2)
how these identified subsets of genetic variants are correlated
with some clinical subtypes of IS, particularly when the natural
selection (negative or positive) may have more impact on the
fitness in early-onset stroke rather than in late-onset stroke.

We provide the first evidence that PRSs derived from
MEGASTROKE have value in identifying shared etiologies
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and determining the etiologic subtypes beyond TOAST in an
independent cohort.
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