
Characterizing the arrhythmogenic substrate

in personalized models of atrial fibrillation:

sensitivity to mesh resolution and pacing

protocol in AF models

Patrick M. Boyle 1,2,3*, Alexander R. Ochs 1, Rheeda L. Ali 4,

Nikhil Paliwal 4, and Natalia A. Trayanova 4,5*

1Department of Bioengineering, University of Washington, Seattle, Foege N310H UW Mailbox 355061, WA 98195, USA; 2Institute for Stem Cell and Regenerative Medicine,
University of Washington, Seattle, WA 98195, USA; 3Center for Cardiovascular Biology, University of Washington, Seattle, WA 98195, USA; 4Alliance for Cardiovascular
Diagnostic and Treatment Innovation, Johns Hopkins University, Hackerman 216, 3400 N Charles St, Baltimore, MD 21218, USA; and 5Department of Biomedical Engineering,
Johns Hopkins University, Baltimore, MD 21218, USA

Received 19 November 2020; editorial decision 2 December 2020; accepted after revision 3 December 2020

Aims Computationally guided persistent atrial fibrillation (PsAF) ablation has emerged as an alternative to conventional
treatment planning. To make this approach scalable, computational cost and the time required to conduct simula-
tions must be minimized while maintaining predictive accuracy. Here, we assess the sensitivity of the process to
finite-element mesh resolution. We also compare methods for pacing site distribution used to evaluate inducibility
arrhythmia sustained by re-entrant drivers (RDs).

...................................................................................................................................................................................................
Methods
and results

Simulations were conducted in low- and high-resolution models (average edge lengths: 400/350mm) reconstructed
from PsAF patients’ late gadolinium enhancement magnetic resonance imaging scans. Pacing was simulated from 80
sites to assess RD inducibility. When pacing from the same site led to different outcomes in low-/high-resolution mod-
els, we characterized divergence dynamics by analysing dissimilarity index over time. Pacing site selection schemes pri-
oritizing even spatial distribution and proximity to fibrotic tissue were evaluated. There were no RD sites observed in
low-resolution models but not high-resolution models, or vice versa. Dissimilarity index analysis suggested that differ-
ences in simulation outcome arising from differences in discretization were the result of isolated conduction block
incidents in one model but not the other; this never led to RD sites unique to one mesh resolution. Pacing site selec-
tion based on fibrosis proximity led to the best observed trade-off between number of stimulation locations and pre-
dictive accuracy.

...................................................................................................................................................................................................
Conclusion Simulations conducted in meshes with 400mm average edge length and �40 pacing sites proximal to fibrosis are

sufficient to reveal the most comprehensive possible list of RD sites, given feasibility constraints.
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

Keywords Atrial fibrillation • Fibrosis • Patient-specific computational modelling • Reentry • Convergence analysis

Introduction

Atrial fibrillation (AF) is the most prevalent sustained cardiac arrhyth-
mia, and its management contributes significantly to global health
care costs.1 For patients in whom AF cannot be treated by drugs, the
recommended therapy is catheter-based ablation, where AF are

eliminated by electrically isolating arrhythmia triggers in the pulmo-
nary veins (PVs), in a procedure termed PV isolation (PVI). However,
in patients with persistent AF (PsAF) in whom significant fibrotic
remodelling is present,2,3 outcomes of the procedure are poor
(�50% success rate). The regions of fibrosis, which establish a sub-
strate for AF, typically extend beyond the reach of wide-area PVI,
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causing PVI ineffectiveness in these PsAF patients. All attempts to tar-
get the beyond-PVI fibrotic substrate, such as execution of linear ab-
lation lesions across the left atrial roof and mitral valve isthmus, and
ablations of complex fractionated atrial electrograms, have failed to
deliver reasonable outcomes,4 as these approaches do not incorpo-
rate strategies for finding the appropriate ablation targets in the
fibrotic substrate.

We recently developed a technology for targeted ablation of
patients with PsAF and atrial fibrosis, where optimal ablation targets
were determined non-invasively via personalized pre-procedure
computational modelling. In a proof-of-concept study of 10 patients,
the technology, termed optimal target identification via modelling of
arrhythmogenesis (OPTIMA), was used prospectively to guide
patient treatment,5 custom-tailored to each individual patient. The
personalized computational models of the atria were reconstructed
pre-procedurally from each patient’s late gadolinium enhancement
magnetic resonance imaging (LGE-MRI) scans and incorporated elec-
trophysiological functions from the cellular to the whole organ. In the
models, AF substrate inducibility was tested by delivering rapid pacing
from a number of bi-atrial locations, and the locations of re-entrant
drivers (RDs) sustaining AF in the substrate were determined. The
study demonstrated unequivocally the feasibility of simulation-driven
ablation in PsAF patients with atrial fibrosis.

Adoption of such a radically different approach to PsAF ablation in
larger clinical studies requires careful assessment of all aspects of the
technology, including parameter sensitivity analysis, and ensuring re-
producibility as well as speedy execution of the pre-procedure com-
putational studies based on the patient’s pre-procedure scans. We
have already conducted sensitivity analysis in terms of the electro-
physiological representations used by the OPTIMA technology.6,7

Accordingly, the present study has two goals: (i) to conduct compre-
hensive assessment of the role of finite-element mesh spatial resolu-
tion in modulating the re-entrant activity in patient-specific atrial
models and (ii) to compare different strategies for distribution of pac-
ing sites used to evaluate AF inducibility and RDs in the fibrotic

substrate. Notably, our interest is to study consequence of modest
changes in mesh resolution (�50mm) as opposed to order-of-
magnitude differences in discretization,8 which were already exam-
ined in tissue slab models in preparation for previous work.9 Thus,
the study is expected to contribute not only to the advancement of
simulation technologies that can be implemented in the clinic to guide
PsAF ablation, but also to enhancing atrial simulation efforts, widely
pursued by the cardiac modelling community lately,5,10–22 as it pro-
vides answers to modelling issues that are universal among the vari-
ous atrial simulation applications.

Methods

Modelling approach
For this study, we used biophysically realistic patient-specific models de-
rived from LGE-MRI scans (voxel size: 1.25� 1.25� 2.5 mm3) acquired
for four individuals with PsAF and fibrotic remodelling, as visualized on
pre-procedure LGE-MRI. Persistent atrial fibrillation is defined as uninter-
rupted AF lasting longer than seven days.23 The LGE-MRI scans used here
to create geometrical models of the patients’ atria with fibrosis were not
obtained specifically for the present study; they have been used in our
previous work.5,9 An important departure in this study compared to pre-
vious work is a new approach for finite-element mesh generation, as de-
scribed in detail in the relevant subsection; a summary of other aspects of
the methodology is provided here. In each set of clinical scans, after semi-
automatic segmentation of the left and right atrial (LA/RA) walls, hyper-
enhanced LGE-MRI voxels corresponding to fibrotic myocardium were
distinguished from non-fibrotic atria tissue via the image intensity ratio
method, which has been validated via intracardiac mapping.24 Details re-
garding the approach used to realistically represent the fibrotic atria can
be found in our previous publications5–7,9,16,22,25,26; see Supplementary
material online, Methods for more information.

Characterizing re-entrant driver localization

dynamics
For each patient-specific bi-atrial geometry with segmented from LGE-
MRI, we used commercial finite-element meshing software (Mimics
Innovation Suite; Materialise NV, Leuven, Belgium) to generate low- and
high-resolution models, comprising�10 to�30 million linear tetrahedral
elements per model. The target average edge lengths (Dx) were 400mm
for the former and 350mm for the latter; however, due to the complex
nature of finite-element meshing, simply specifying these as input parame-
ters for the commercial software was not an option. Our process for reli-
ably converting stacks of segmented atrial LGE-MRI scans into high-
quality volumetric meshes is described in Supplementary material online,
Methods. To facilitate high-level comparison of spatiotemporal excitation
patterns between simulations in low- and high-resolution models with
otherwise identical parameter configurations, we calculated a metric, dis-
similarity index (DI) based on comparison of the total proportion of acti-
vated tissue in the two models over time; see Supplementary material
online, Methods for more information.

Pacing site distribution strategies
The approach used to initiate arrhythmia and identify RDs has been de-
scribed in previous studies5–7,9,16,22,25,26; a summary is provided in
Supplementary material online, Methods, along with details about stimu-
lus timing and arrhythmia classification. This approach was extended here
for experiments that probed sensitivity to the number of stimuli, part of
which required a reordering scheme that preserved even spacing of

What’s new?

• The simulations presented here are our most comprehensive
effort to date to ensure our approach for image-based atrial
modelling reveals a list of patient-specific re-entrant driver
(RD) locations that are truly exhaustive.

• For this simulation methodology, an average finite-element
edge length of 400mm is sufficient to ensure with a high degree
of confidence that predicted RD locations are as comprehen-
sive as possible and do not include any false positives that are
the result of incidental conduction block.

• In terms of the trade-off between number of pacing sites and
predictive accuracy, electrical stimulation sites near (but not
embedded within) regions of fibrotic remodelling are prefera-
ble to pacing sites that are distributed evenly throughout the
atria.

• Lessons learned from this study regarding mesh resolution and
pacing site distribution both have major implications for the to-
tal computational cost of simulation-guided ablation of persis-
tent atrial fibrillation.
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pacing locations. After choosing a random pacing site from the 80 origi-
nally generated locations as the starting point, each subsequent site was
chosen by performing an exhaustive search to identify the least possible
increase to total energy of the system.

Results

Re-entrant driver locations predicted by
our approach are insensitive to the mesh
resolution variability examined
The mesh generation process was successful for low/high-resolution
versions of all models. Comprehensive data on mesh attributes and
compute times are provided in Table 1. Average edge length (Dx)
was within ±10mm of the target values (low: 405.4± 1.240mm and
high: 345.8 ± 0.4690mm).

In all models, rapid pacing induced arrhythmia maintained by stable
RDs. As in previous work,5–7,9,16,22,25,26 each model had a finite num-
ber of distinct RD localization sites (four to seven locations). Across
all patients, there were no examples of RD sites that were observed
in the low-resolution model but not the high-resolution model, or
vice versa. Comprehensive RD site data are provided in Table 2.
There was no statistically significant difference in the number of sites
that induced each RD between low- and high-resolution models [me-
dian (inter-quartile range, IQR) = 3.5 (2–6.75) vs. 2 (1–3.75);
P = 0.065]. Nevertheless, there was a trend towards higher npace val-
ues (site-by-site and in aggregate) for low- vs. high-resolution models.
This indicates that RD initiation and perpetuation are more likely in
coarser meshes.

Comprehensive RD data are provided in Supplementary material
online, Tables S1–S4. Across all models, for many pacing sites, stimula-
tion did not induce arrhythmia in models of either discretization (i.e.
there was a ‘negative’ match between different mesh resolutions).
This was the most common outcome for all four models (34–59/80
pacing sites). In several other cases, pacing from the same site in the
two meshes initiated arrhythmia sustained by an RDs in the same lo-
cation (4–18/80 pacing sites). Activation maps for examples of match-
ing RD sites in the low- and high-resolution versions of each model
are presented in Figure 1. For two cases highlighted here (Figure 1C
and H), RDs are in the same atrial region, but trajectories are slightly
different and/or wavefront chirality is reversed due to high dynamic
instability; this can be more easily appreciated in Supplementary

material online, Video S1, which shows spatiotemporal Vm evolution
for all cases.

Across all models, the same unique RD sites were observed in
low- and high-resolution versions of the mesh. There were some
cases where discretization led to variation in exact outcomes, but
this was relatively uncommon (1–13/80 pacing sites). Nevertheless,
to understand dynamics of RD behaviour divergence, we analysed all
such simulations via calculation of DI over time. We observed that
the excitation sequence was nearly identical between the two
meshes until a critical conduction block event in one model or the
other, at which point the two simulations diverged and RDs an-
chored at different sites. This implies that differences between simula-
tions were not caused by gradual accumulation of numerical error.
Two examples of this effect are shown in Figure 2. In the first
(Figure 2A), a wavefront heading towards the MV annulus inferior to
the LIPV blocked in the low-resolution model but propagated in the
high-resolution model. This event corresponded to an increase in
jDIj around the same time (t = 3180 ms). As shown in Supplementary
material online, Video S2, the evolution of Vm between the two
meshes was indistinguishable up until this point. For the second ex-
ample (Figure 2B), divergence took place at t = 3880 ms; a wavefront
propagating from anterior to posterior LA blocked in the low-
resolution model only, giving rise to a different outcome than what
was observed in the high-resolution model.

We performed further DI analysis to establish if the trends ob-
served in these examples bore out across the entire data set. We sur-
mised that jDIj values would be low (i.e. similar activation patterns
between meshes) for all cases except in the post-divergence parts of
simulation pairs like those highlighted in Figure 2. Indeed, as shown in
Figure 3A, the highest jDIj values seen were associated with those
examples (dark pink). Pre-divergence jDIj values for the same simula-
tion pairs (light pink) were significantly lower; the same was true for
cases in which the same outcome (same RDs or both non-inducible)
was observed in both meshes (dark/light green). Notably, jDIj values
for RD(þ) match were higher than other groups, since there was a
trend towards differences in RD meander between low- and high-
resolution models in these simulations (see examples in Figure 1C
or H).

The fourth set of simulation pairs considered was for cases where
pacing induced an RD in one mesh but led to spontaneous termina-
tion (ST) in the other (yellow); this was relatively uncommon (10–
16/80 pacing sites). �70% of the time, the RD was observed in the
low-resolution model (all models: 38 vs. 16). Single-mesh ST times

........................................................................................... ............................................................................................

....................................................................................................................................................................................................................

Table 1 Details regarding low- and high-resolution finite-element meshes

ID Low resolution (target Dx 5 400 mm) High resolution (target Dx 5 350 mm)

npts nelem Dx (mm) WT (s) npts nelem Dx (mm) WT (s)

1 1.8M 10.6M 406.5 ± 79.12 0:37:24 3.0M 16.8M 345.3 ± 65.48 0:59:32

2 3.4M 20.4M 403.6 ± 77.94 1:03:12 6.0M 34.6M 346.4 ± 65.47 2:05:56

3 1.9M 11.4M 405.8 ± 79.04 0:39:24 3.1M 18.0M 345.6 ± 65.62 0:55:26

4 3.0M 17.7M 405.5 ± 78.84 1:02:50 4.8M 27.8M 345.9 ± 65.47 1:37:24

Columns indicate number of nodes (npts) and elements (nelem) in each mesh; average ± standard deviation for element edge length (Dx); and wall time (WT) in hh:mm:ss
required to simulate 1 s of activity when executed on a single node of the high-performance computing system (24 cores per node).
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(tST) for each of these cases are shown in Supplementary material on-
line, Tables S1–S4. ST generally occurred within <2 s of pacing [me-
dian (IQR) across all models = 1 (0.7125–1.2) s]. This explains why
these cases had low jDIj values, since excitation proceeded similarly
between meshes until pacing ended, then conduction block occurred
in one mesh and led to ST. We examined two sub-groups: (i) low-
resolution RD, high-resolution ST and (ii) vice versa. We examined
DI for both groups during paced and non-paced intervals (Figure 3B);
here, the use of non-normalized DI is essential, since negative values in-
dicate more activations in the high-resolution mesh and positive val-
ues imply the converse. This quantitatively substantiates our
observation that the onset of divergent behaviour in such cases
nearly always coincided with conduction block leading to ST one
meshes.

Pacing site proximity to fibrosis should
be prioritized over even spacing to
minimize compute time
Here, we examined two schemes for reordering the 80 pacing sites
used to stimulate the differently discretized versions of the four models.
No new simulations were run; rather, our approach was to probe
whether it may have been possible to arrive at the same list of RD
locations in fewer steps (with less computational cost) if the points

had been chosen in a different order. It is thus useful to recall that
our point selection method is fine-tuned to avoid placing pacing
sites within fibrotic tissue, since such sites lead to intermittent stimu-
lus capture.9

First, we tested an even spacing criterion as described in Methods
section (Figure 4A); note that early and late sites are uniformly distrib-
uted. Secondly, we sorted the 80 pacing sites by proximity to fibrotic
tissue from closest to farthest (i.e. distance to nearest fibrotic ele-
ment; Figure 4B), this resulted in early sites clustered around fibrotic
regions and late sites in relatively fibrosis-free areas. Supplementary
material online, Video S3 contrasts the reordering schemes. While
the sample sizes here are too small to be analysed statistically, we ob-
served a trend towards fibrosis proximity out-performing even spac-
ing as a reordering scheme (Figure 3C). In the high-resolution version
of the model for Patient 4, 76/80 pacing sites would be needed to re-
veal all RD sites; in contrast, only 31 fibrosis-proximal sites would be
needed. Although there were some exceptions (e.g. high-resolution
version of Patient 3 model), pacing sites closer to (but not embedded
within) regions of fibrotic remodelling were generally more likely to
reveal RDs. If the aim is to elicit more RD locations with fewer pacing
sites, fibrosis proximity should thus be prioritized over even spacing.
For low-resolution models in this study, our findings suggest that the
use of 40 pacing sites near fibrosis cluster boundaries leads to an

.................................... ....................................

....................................................................................................................................................................................................................

Table 2 Summary of RD analysis in low- and high-resolution versions of four patient-specific models

ID RD# Description of re-entrant driver location Low resolution High resolution

Observed? npace Observed? npace

1 RD1 Inferior to LIPV � 6 � 2

RD2 Anterior LA, along roof line between LSPV and RSPV � 1 � 2

RD3 LA roof, near anterior base of LAA � 3 � 2

RD4 Septal RA, 75% of the way from IVC to SVC � 2 � 7

RD5 Figure-of-eight, inferior to LIPV � 3 � 1

2 RD1 Anterior LA, behind RSPV � 2 � 1

RD2 Anterior/superior septum, SVC � 9 � 2

RD3 Figure-of-eight, inferior RA near TCV � 4 � 2

RD4 Lateral RA, near TCV annulus � 5 � 4

3 RD1 Anterior LA, behind RSPV � 5 � 3

RD2 Posterior LA, inferior to midpoint between LIPV and RIPV � 8 � 3

RD3 Right next to RIPV � 5 � 1

RD4 Septal side of SVC � 20 � 25

4 RD1 Anterior LA � 7 � 8

RD2 Cavotricuspid isthmus � 1 � 1

RD3 Inferior LA, parallel to MV annulus � 16 � 10

RD4 Lateral RA, between RAA base and TCV annulus � 3 � 2

RD5 Posterior LA, inferior to LIPV–RIPV axis midpoint � 1 � 1

RD6 Posterior RA, halfway between SVC and IVC � 2 � 1

RD7 Posterior RA, near IVC � 2 � 3

Summary Median (inter-quartile range) of npace values 3.5 (2–6.75) 2 (1–3.75)

Each row represents a unique RD localization site. Check marks under columns labelled “Observed?” indicate whether that particular site was observed in the corresponding
model; values under columns labelled npace indicate the number of pacing sites within the atrial model for which that RD particular morphology was induced.
IVC, inferior vena cava; LIPV, left inferior pulmonary vein; LSPV, left superior pulmonary vein; LA, left atrium; LAA, LA appendage; RA, right atrium; RD, re-entrant driver; RIPV,
right inferior pulmonary vein; RSPV, right superior pulmonary vein; SVC, superior vena cava; TCV, tricuspid valve.
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extensive analysis of potential RD locations while minimizing compu-
tational complexity from additional simulations.

Discussion

In this study, we conducted simulation studies of arrhythmogenesis in
personalized atrial models constructed from pre-procedure LGE-
MRI scans to better characterize the contributions of various clini-
cally relevant aspects of the modelling process to RD dynamics.
These studies are geared towards establishing a robust methodology

for simulation-driven guidance of ablation procedures. The present
study focused on two aspects, assessing the role of finite-element
mesh spatial resolution in modulating the re-entrant activity and iden-
tifying a preferred approach for distribution of pacing sites used to
evaluate AF inducibility and RDs in the fibrotic substrate.

We used low- and high-resolution LGE-MRI based models of the
fibrotic atria of individuals with PsAF to specifically explore whether
spatial discretization of the finite-element meshes could affect the
locations of arrhythmia-sustaining RDs induced by rapid electric pac-
ing; these are important as they constitute targets for AF ablation.
We also explored pacing-related factors (number/location of sites)

Figure 1 Activation maps showing RDs induced in the same atrial location in low- and high-resolution versions of each patient-specific model
(left and right frames within each panel, respectively). For all eight cases shown, the pacing sites used to induce reentry in the two models were also
identical. Spacing between isochrone lines is 20 ms. (A) Patient 1, RD1: left lateral wall of posterior LA, inferior to LIPV. (B) Patient 1, RD4: lateral
side of SVC. (C) Patient 2, RD2: upper part of SVC, opposite anterior wall of LA. (D) Patient 2, RD3: inferior RA along cusp of TCV, figure-of-eight
morphology. (E) Patient 3, RD2: posterior LA, directly between common left PV trunk and RIPV. (F) Patient 3, RD3: adjacent to RIPV on posterior
side. (G) Patient 4, RD1: anterior wall of LA, near septal connection to RA. (H) Patient 4, RD6: lateral RA on lower part of IVC. See Supplementary
material online, Video S1 for dynamic illustrations of Vm over time for all eight cases shown here. IVC, inferior vena cava; LA, left atrial; LIPV, left infe-
rior PV; PV, pulmonary vein; RA, right atrial; RD, re-entrant driver; RIPV, right inferior PV; SVC, superior vena cava; TCV, tricuspid valve.
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Figure 2 Analysis of the instants at which electrophysiological behaviour diverges during simulated pacing of low- and high-resolution models. Top
rows show maps of Vm in low- and high-resolution models (left and right, respectively) at relevant time points before, during, and after conduction
block events leading to divergence. Time intervals before and after the peak positive djDIj(t)/dt are shown. (A) In Patient 1, pacing from Site #7 led to
initiation of RD1 in low-resolution model and RD4 in high-resolution model. Following the delivery of the final stimulus (at t = 2950 ms), critical con-
duction block occurred in the low-resolution model leading to divergence at t = 3180 ms. See Supplementary material online, Video S2 for a dynamic
illustration of Vm over time for this case. (B) In Patient 4, pacing from Site #3 led to initiation of RD3 in low-resolution model and RD1 in high-resolu-
tion model. The instant of relevant conduction block in the low-resolution model was at t = 3880 ms. See main text for anatomical descriptions of ro-
tor locations. RD, re-entrant driver.

i8 P.M. Boyle et al.
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that can be modulated to ensure rigorous characterization of each
individual’s atrial fibrotic substrate. Our key findings are as follows:
(i) our new approach for model generation reliably produced high
quality finite-element meshes with very little inter-patient variability
in the average or standard deviation of tetrahedral edge lengths;
(ii) for all cases considered here, the 400mm target mesh resolution
was sufficient to ensure that list of predicted RD locations was compre-
hensive; and (iii) with all other factors held equal, the best approach we
identified for pacing site selection was to choose�40 locations that are
near (but not embedded within) regions of fibrotic remodelling, with
our analysis suggesting that this is a more favourable strategy compared
to previous standards of even distribution in the atria.

Compared to prior work in this lineage (i.e. PsAF modelling based
on representation of LGE regions as fibrotic myocardium),5–

7,9,16,22,25,1,26 this is the most rigorous effort to date to ensure that
the list of RDs revealed by the ‘virtual substrate stress test’ in each
model is as comprehensive as possible. We delivered electric simula-
tion from at least twice as many locations (80) compared to prior
studies (e.g., 30 sites,940 sites5). Moreover, even the low-resolution
meshes used here were superior in quality to those used in our origi-
nal work9 (466.90± 102.02mm, compared with the values in Table 1).
Thus, the current study reinforces our confidence in the established

protocol to reveal potential RD anchoring sites within the fibrotic
substrate. We have thus established a baseline mesh quality standard
for future use of simulation guidance for atrial ablation, as in the
OPTIMA approach.5

The most consequential finding of the present study in terms of fu-
ture application of our computational approach is the identification
of an acceptable threshold for spatial discretization (target resolution
of 400mm). Notably, this lies between safe (200mm) and risky
(500mm) values from prior numerical convergence benchmark stud-
ies in cardiac electrophysiology modelling.8 Our analysis across four
pairs of patient-specific atrial models suggests that when simulations
are conducted in meshes with this spatial discretization, there are no
RD sites observed that are distinct from those seen in higher resolu-
tion meshes (350mm target). Although models with different discreti-
zation do not always behave identically (see further discussion
below), there is no evidence that any of the observed RD sites in the
lower-resolution model are the consequence of spurious conduction
slowing, the primary consequence of sub-par mesh resolution.8 In
other words, mesh-dependent differences in behaviour cause some
variability in which precise pacing sites lead to which particular out-
comes, but the output of the overall process (i.e. the most compre-
hensive possible list of RD sites) is unchanged. This has implications

Figure 3 Analysis of aggregated jDIj values across all simulations in low- and high-resolution versions of all patient-specific models. (A) jDIj values
are presented for several different groups of results; data shown are medians, lower/upper quartiles, and 10th/90th percentiles. RD(6) match
(Column 1) includes jDIj values [median (inter-quartile range) = 0.0292 (0.0114–0.0718)] for all simulation pairs (n = 43 cases, from 0 to 7500 ms) in
which rapid pacing from a particular site led to the initiation of the same RD in both meshes. RD(–) match (Column 2) shows jDIj values [0.0140
(0.00650–0.0279)] for cases where pacing did not induce any reentry in either the low- or high-resolution model (n = 197, from 0 to time of first ST).
Inducibility mismatch (Column 3) shows jDIj values [0.0173 (0.00801–0.0361)] for cases where pacing led to RD initiation in one mesh and ST in the
other (n = 61; from 0 to ST time in the non-inducible model). Finally, RD mismatch (pre/post) (Columns 4/5) show jDIj values from the intervals preceding
[0.0170 (0.00824–0.0328)] and following [0.0973 (0.0403–0.193)] the instant of largest increase (i.e., peak positive djDIj/dt) in simulations where
pacing from the same site led to initiation of RDs in different locations (n = 61); Pre-/post-intervals correspond to the same-coloured areas in
jDIj(t) plots from Figure 2. As indicated by asterisks, data sets in the first four columns all differ significantly from the 5th column (P < 0.0001,
Dunn’s multiple comparisons test). (B) Summary plots (same box-and-whisker settings as A) of non-normalized DI(t) during and after rapid pacing.
Data are subdivided into cases where an RD only occurred in the low-resolution model (top rows; n = 43) or the high-resolution model (bottom
rows; n = 18). RD, re-entrant driver; ST, spontaneous termination.
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from a computational resource standpoint. Even though the differ-
ence in spatial discretization between our low- and high-resolution
models is rather modest (�50mm difference in average edge length),
this resulted in an enormous increase in the number of nodes and
finite-elements in each mesh. Consequently, the CPU time used to
run simulations in high-resolution meshes in this study was up to 2�
the requirement for low-resolution models. When computational
atrial modelling is incorporated into the clinical workflow to guide ab-
lation, simulations must be run in a narrow time frame (sometimes as
short as 2–3 days) between MRI acquisition and the clinical proce-
dure.5,27 As such, computational savings associated with this type of
speedup provide assurance that this goal can be achieved.

Interestingly, in cases when dynamic behaviour in low- and high-
resolution models differed, the transition from matching to divergent
patterns was always abrupt. Thus, differences arising from spatial dis-
cretization in this type of models are not the consequence of a grad-
ual accumulation of numerical error, likely due to the non-linear
nature of the propagation. On the contrary, for the examples we ob-
served, the trend was that activation patterns were remarkably simi-
lar until a critical instant at which conduction block occurred at a
single location in one of the models but not the other (e.g. infero-
lateral LA in Figure 2A, anterior LA in Figure 2B), causing the two simu-
lations to evolve towards different end-states. Our analysis of DI
over time trends across the entire set of simulations in all four pairs
of models and indicates that this pattern was universal. The overall
implication is that the differences we observed between low- and

high-resolution meshes are the result of point bifurcations in spatio-
temporal voltage evolution, meaning that the specific patterns of sta-
ble AF-sustaining RD behaviour that are inducible for each patient do
not depend on discretization for the values tested here. We specu-
late that when the bifurcation events discussed above occur in low-
resolution meshes, they are likely examples of spurious conduction
block arising not from physiological phenomena but rather from the
simulated tissue being pushed to limits of its numerical discretization.
However, it is vital to reiterate that we never observed any examples
of these spurious events changing macroscopic RD locations, which
are the critical readout from our simulations.

Finally, results from our analysis of pacing site sequence have im-
portant practical implications. If the aim is to predict all possible RD
localization regions with the least number of pacing sites, fibrosis
proximity should thus be prioritized over even spacing throughout
both atria. This suggests that a rational approach is to initially over-
sample (i.e. choose >_80 pacing locations via the standard approach
described in Methods section) then pare down the list to the 40 of
those sites that are closest to fibrotic tissue. For the most relevant
data set explored in this paper (i.e. low-resolution models for all four
atrial geometries), our analysis shows that this approach would be
sufficient to reveal at least as many RD sites as the alternative point
selection strategy with twice as many sites. This is especially remark-
able in the context of Patient 3, in which pacing from 40 sites chosen
thusly was able to reveal all seven distinct RD sites. As with our find-
ings on mesh resolution, this has important implications for the

Figure 4 Analysis of pacing sites reordering to reduce computational burden while retaining predictive accuracy of simulation-based substrate
characterization. (A) Schematic illustrating reordering Scheme #1, which prioritized ES of pacing sites. In this example, three different views of the
same model (Patient 1) are shown: postero-anterior (left), right-lateral (middle), and antero-posterior (right). For visual clarity, each pacing site is
shown as a golden yellow sphere and its sequence in the reordered ranking is indicated by the colour of surrounding atrial tissue. Fibrotic tissue
regions are also shown in silhouette. (B) Same as (A) but for Scheme #2, which prioritized pacing site FP. Earlier sites are clustered near fibrotic
regions (lateral parts of the posterior and anterior LA in the example shown); later sites are distributed in relatively fibrosis-free areas (here, the lat-
eral RA). (C) Minimum number of pacing sites required to reveal all known RD locations (i.e., results of simulated pacing from all 80 locations) for ES
vs. FP reordering in low- and high-resolution versions of all four patient-specific models. ES, even spacing; FP, fibrosis proximity; LA, left atrial; RA,
right atrial; RD, re-entrant driver.
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computational resource requirements in projects that use this meth-
odology; the CPU savings derived by simulating pacing from half as
many sites are comparable to the benefit of using models with a nom-
inally coarser spatial discretization. This finding suggests a ceiling for
the amount of time and the number of CPU cycles needed to incor-
porate this type of patient-specific computational modelling in the
clinical workflow. Nevertheless, the number of cases examined here
is too small to state definitively that this strategy for pacing site selec-
tion is truly optimal; more work is required to reach a truly definitive
conclusion in this regard.

Conclusions

This study provides a systematic exploration of two important
aspects of the computational modelling process for predicting per-
sonalized PsAF ablation targets in patients with fibrosis on LGE-MRI.
Insights provided here are intended to ease the integration of simula-
tions into clinical workflows by identifying guidelines for choosing an
acceptable mesh resolution of personalized atrial models for use in
our AF induction protocol. Simulations of atrial arrhythmia con-
ducted in finite-element meshes with an average edge length of
�400mm can reliably predict all potential RD sites associated with
each individual’s fibrotic substrate. Based on comparisons to simula-
tions conducted in refined meshes (�350mm discretization) at much
higher computational cost, there is no apparent risk of spurious RD
sites from discretization-related conduction slowing. In terms of
pacing protocol, choosing 40 pacing sites proximal to (but not within)
fibrotic tissue leads to a favourable trade-off between computational
cost and the comprehensive possible assessment of the PsAF sub-
strate for RD perpetuation.

Supplementary material

Supplementary material is available at Europace online.
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