Table 3.
Validation results of various classification models before and after data fusion.
Validation Metrics | Before Fusion |
After Fusion |
||||||||
---|---|---|---|---|---|---|---|---|---|---|
LR | SVC | DT | eRF | GN | LR | SVC | DT | eRF | GN | |
Training Accuracy | 0.5629 | 0.5931 | 0.6252 | 0.7641 | 0.6056 | 0.6486 | 0.6225 | 0.8642 | 0.9513 | 0.7631 |
Test Accuracy | 0.5933 | 0.6381 | 0.6473 | 0.6986 | 0.6267 | 0.7102 | 0.6814 | 0.7928 | 0.9168 | 0.8025 |
Precision | 0.6267 | 0.6179 | 0.7019 | 0.7327 | 0.6539 | 0.6963 | 0.7015 | 0.8239 | 0.8821 | 0.8323 |
Recall | 0.5898 | 0.7073 | 0.7263 | 0.7705 | 0.6822 | 0.6687 | 0.7432 | 0.8512 | 0.8975 | 0.7516 |
RMSE | 0.4912 | 0.4536 | 0.5498 | 0.4132 | 0.4226 | 0.4372 | 0.3643 | 0.4758 | 0.3481 | 0.3529 |
MAE | 0.3425 | 0.3503 | 0.2978 | 0.2315 | 0.2931 | 0.2763 | 0.2307 | 0.2582 | 0.2096 | 0.2459 |