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Abstract

Background—Imitation deficits are prevalent in autism spectrum conditions (ASC) and are 

associated with core autistic traits. Imitating others’ actions is central to the development of social 

skills in typically-developing (TD) populations, as it facilitates social learning and bond formation. 

We present a Computerised Assessment of Motor Imitation (CAMI) using a brief (one-minute), 

highly-engaging videogame task.

Methods—Using Kinect Xbox motion tracking technology, we recorded 48 children (27 ASC, 21 

TD) as they imitated a model’s dance movements. We implemented an algorithm based on metric 
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learning and dynamic time warping (DTW) that automatically detects and evaluates the important 

joints and returns a score considering spatial position and timing differences between the child and 

the model. To establish construct validity and reliability, we compared imitation performance 

measured by the CAMI method to more traditional human observation coding (HOC) method 

across repeated trials and two different movement sequences.

Results—Results revealed poorer imitation in ASC than TD children (ps < .005), with poorer 

imitation being associated with increased core autism symptoms. While strong correlations 

between the CAMI and HOC methods (rs = .69–.87) confirmed CAMI’s construct validity, CAMI 

scores classified the children into diagnostic groups better than the HOC scores (accuracyCAMI = 

87.2%, accuracyHOC = 74.4%). Finally, by comparing repeated movement trials, we demonstrated 

high test-retest reliability of CAMI (rs = .73–.86).

Conclusions—Findings support CAMI as an objective, highly scalable, directly interpretable 

method for assessing motor imitation differences, providing a promising biomarker for defining 

biologically meaningful ASC subtypes and guiding intervention.
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Introduction

Imitating others’ actions is crucial for social bond formation and learning [1,2,3], with 

atypical imitation indicating social-communicative impairments in autism spectrum 

conditions (ASC) [4,5,6,7,8]. The current standard in imitation assessment is manual human 

observation coding (HOC), which is subjective, time-consuming and requires intensive 

coder training. These drawbacks render HOC impractical for use in clinics and home 

settings. Automatic assessment of imitation is challenging because human motion data are 

highly heterogeneous (e.g., range of movements is virtually unlimited), high-dimensional 

(involves spatial and temporal aspects), and human supervision (e.g., expert knowledge) is 

limited and error-prone. Addressing these issues, this paper presents a Computerised 

Assessment of Motor Imitation (CAMI) that can improve diagnosis and treatment efforts by 

providing an objective, continuous and scalable score of imitation performance.

Examining imitation performance with HOC methods requires identifying individual steps 

involved in an action, the action’s style, order of occurrence, repetitions and end-goal if it 

exists [9,10,11,12]. Participants receive an ordinal score depending on the correct actions 

and errors made. Thus, the accuracy and precision (i.e., sampling frequency) of HOC is 

restricted by human subjectivity. Firstly, what constitutes a ‘good enough resemblance’ to 

the target action is at the human observers’ discretion. Moreover, the defined action 

categories may likely miss preliminary forms of that action (e.g., flexing the fingers wide 

open without moving the hand when assessing the action of waving). Finally, assessments 

are subjective even within agreed-upon standards, an issue often circumvented by seeking 

high inter-rater reliability from multiple coders. Although this work-around alleviates 

subjectivity, it adds to coder training and assessment time. As such, the HOC method is 

Tunçgenç et al. Page 2

Biol Psychiatry Cogn Neurosci Neuroimaging. Author manuscript; available in PMC 2022 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



largely confined to research settings and is not conducive for practical use as a diagnostic or 

treatment tool.

Prior attempts to develop automated methods for assessing imitation performance have 

focused on determining the match between a participant’s movements and those of a 

template. Two most commonly-used methods are rule-based algorithms [13,14] and 

algorithms based on dynamic time warping (DTW) [15,16]. Similar to HOC, rule-based 

algorithms require the researchers to manually define a set of rules. How well the 

participants meet these rules is automatically assessed by the algorithm. Despite its 

demonstrated utility in robot-mediated therapy settings with children with ASC [13,14], 

rule-based methods have very limited generalisability as they require a priori human input 

for selecting the rules specific to the gestures under study.

In contrast, DTW-based methods assess the spatial similarity between two time-series after 

correcting for discrepancies in the temporal dimension [17] without requiring human input. 

DTW-based approaches have been widely used in gesture recognition tasks, where a 

decision about which gesture the participant performed is outputted based on the similarity 

between the participant and the template [18,19,20,21]. Existing DTW-based imitation 

assessment approaches define a metric that is either dichotomous [15] (imitated vs not) or 

categorical [16] (good vs bad performance), thereby not utilising the continuous distance 

metric obtained from DTW. These approaches can only capture relatively large variations in 

imitation performance due to having categorical outputs, an issue that becomes even more 

prominent in clinical populations such as ASC that display high behavioural variability. 

Moreover, given the importance of timing in social coordination [22] and in characterising 

autism-specific imitation impairments [23,24], a valid imitation assessment system must also 

consider temporal differences.

Machine learning techniques that learn motor patterns and classify individuals into 

diagnostic groups is another popular approach [25,26,27]. Yet, prior studies did not directly 

assess imitation ability even when some tasks involved imitation [25,26]. Therefore, it is 

unclear if the observed differences represent general motor abnormalities or specific 

imitation impairments. This lack of specificity restricts the use of these methods for 

intervention purposes.

Characterising and addressing imitation impairments is crucial because imitation plays an 

important role in social bond formation and learning [1,2,3], joint attention [12], children’s 

play initiation [28], social affiliation and prosocial behaviours [29,30]. Extant research 

shows that as compared to their typically-developing (TD) peers, imitation in ASC is less 

frequent, less precise and more delayed [9,10,31,32]. These imitation deficits are more 

pronounced when the actions appear meaningless or lack an obvious end-goal [5,6,9,11,24]. 

Impaired imitation is associated with poorer social-communicative functioning in ASC as 

demonstrated in social responsiveness, social attention, engagement in joint play and social 

reciprocity [33,34,35].

An automated method that (a) specifically measures imitation performance, (b) does not 

require manual feature selection, (c) generalises to a range of movement types, (d) provides 
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continuous scores, and (e) integrates spatial and timing differences would significantly 

improve diagnosis efforts and robot-mediated and other social-communication interventions 

for autism.

The CAMI method that we developed uses 3D motion data obtained from sensorless Kinect 

Xbox cameras. Using DTW and metric learning techniques, CAMI considers differences in 

both motion trajectories and timing differences. We applied CAMI to a data set comprised of 

48 children (27 ASC, 21 TD) as they imitated the dance-like movements of a video model. 

In this paper, we report on the construct validity of the CAMI method, assessed by 

comparing the children’s CAMI scores to their imitation scores obtained by the HOC 

method. We also established the test-retest reliability of CAMI by comparing the children’s 

scores across repeated imitation trials. We demonstrate how well imitation scores from the 

CAMI vs HOC methods classify the children into diagnostic categories. Finally, we present 

CAMI’s clinical significance by examining imitation performance in the ASC and TD 

groups and its association with core autism symptoms.

We hypothesised that while CAMI scores would highly correlate with HOC scores and show 

high test-retest reliability, CAMI would outperform HOC when used for distinguishing the 

diagnostic groups. Further, we expected that CAMI scores would yield clinically meaningful 

results by revealing poorer imitation in children with ASC as compared to TD children and 

showing strong associations with core autism symptoms.

Methods and Materials

Participants

The data reported here were collected as part of a wider-scale study examining imitation 

skills in autism. Our participants were 48 children (27 ASC, 21 TD) aged 8 to 12 years.

Autism diagnosis was based on DSM-5 criteria and was confirmed on site by research-

reliable assessors using the Autism Diagnostic Observation Schedule, Second Edition 

(ADOS-2), the Autism Diagnostic Interview-Revised (ADI-R) and parent-report of Social 

Responsiveness Scale (SRS-2) was obtained. To be included in the study, children needed a 

Full-Scale IQ score ≥ 80 or at least one index score ≥ 80 (Verbal Comprehension, Visual, 

Spatial or Fluid Reasoning Index) on the Wechsler Intelligence Scale for Children, Fifth 

Edition (WISC-V). For all participants, ADOS-2 module-3 was used. In addition, to account 

for autism-associated differences in general motor abilities, we used the Movement 

Assessment Battery for Children, 2nd edition (mABC-2). Descriptive statistics of participant 

characteristics can be found in Table 1. See the Supplementary Information (SI) for full 

inclusion/exclusion criteria.

Ethics approval was received from [masked for blind peer-review] prior to study 

commencement. Written informed consent were obtained from all participants’ legal 

guardians as well as verbal assent from all children. All recruitment took place through 

contacts with local schools and community events.
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Procedure

Children took part in an imitation task comprised of 14 trials presented at varying movement 

speeds. To avoid any confound of changing movement speeds, in this study, we report only 

on four trials presented at 100% speed: the first two trials (Trial 1a and Trial 2a) and the last 

two trials (Trial 1b and Trial 2b). The last two trials were repetitions of the first two trials. 

These trials were of two separate movement sequences (sequence 1 = Trial 1a and Trial 1b, 

sequence 2 = Trial 2a and Trial 2b). The sequences comprised of 14–18 individual 

movement types, which were relatively unfamiliar (e.g., moving arms up and down like a 

puppeteer), did not have an end-goal and required moving multiple limbs simultaneously. 

The choice of these movement sequences was based on prior research showing particular 

difficulties in ASC with these types of movements [5,6,8,9,11].

The stimulus video was displayed on a large TV screen and depicted dance-like whole-body 

movements of a young woman without any background music/sound. The children’s 

movements were recorded using two Kinect Xbox cameras at 30 frames per second, one 

located in front of the child and one at the back. Since Kinect Xbox records depth data, no 

sensors or special clothing was needed for this data collection. For more information about 

the study set-up, see SI.

The session began with a brief training phase, familiarising the participants to the kinds of 

movements they would perform and how much to move their bodies. All participants were 

instructed to perform whole-body movements and to try their best to copy the model.

Data coding

Calculation of CAMI scores—The x-y-z coordinates of 20 joints were extracted from 

the children’s depth recordings using iPi Motion Capture Software. Children’s motion data 

were compared to the “gold standard”, defined here as the motion data of the video model 

imitating herself. Imitation scores for each child were obtained following the steps outlined 

below. The details of the CAMI method and equations used can be found in the SI, CAMI 

Algorithm section.

1. Pre-processing: The child’s and the gold standard’s motion data are translated by 

locating their hips’ positions at the origin. The child’s limb lengths are normalised to the 

gold standard’s skeleton, and the child’s spatial orientation in the first frame is adjusted to 

match the gold standard.

2. Automatic joint importance estimation: Using the gold standard data, the relative 

contributions of each joint for each movement type are computed based on the amount of 

displacement observed. Joints that were displaced more in the gold standard data for a given 

movement type are considered to contribute more to the movement and hence affected the 

imitation score more than joints that stayed static.

3. Computation of the distance feature: Using DTW [17], the child’s time-course is 

aligned to the model’s time-course for the entirety of the sequence by finding a time warp 

that minimises the Euclidean distance between them. The DTW distances of each movement 
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type are calculated considering the relative importance of each joint as computed in step-2. 

The distances for the movement types are then averaged to make up the child’s total DTW 

distance (dist), which is then transformed into a distance score (sdist).

4. Computation of the time features: Using the DTW warping path information, time 

asynchrony features are computed for the entire sequence [36]: the duration that children 

were delayed with respect to the model (tdelay) and the duration that children performed the 

movements in advance of the model (tadv).

5. Computation of the CAMI score: Using metric learning techniques, the three variables 

(sdist, tdelay, tadv) are linearly combined to make up the child’s imitation score. The weights 

used for this linear combination are determined in a data-driven manner using 3-fold cross-

validation technique. In this technique, firstly, the data set is split into 3 non-overlapping 

groups with equal proportions of ASC to TD children in each group. Then, two of these 

groups (i.e., training set) are used to learn the weights in a way that maximises the average 

correlation between CAMI and HOC across the trials of the training set. Using the learnt 

parameters, the CAMI scores of the third group (i.e., the test set) are calculated. Using cross-

validation ensures that children’s CAMI scores are calculated completely independently 

from and without reference to their HOC scores. The same procedure is repeated by 

assigning a new group as the test set until the CAMI scores are obtained for all three groups. 

The formula used for learning the weights, and the parameter values can be found in SI, 

Parameter Learning section.

Regarding the number of cross-validation folds, studies have shown that too few folds can 

lead to biased estimators, and too many folds generate high variance in the estimations [37]. 

Hence, we repeated the analyses using 10 folds, which replicated the same findings (see SI, 

Results section). Since variability was considerably larger in the 10-fold scheme (12.2%) as 

compared to the 3-fold scheme (3.6%), we are reporting the findings from the 3-fold scheme 

in the main text.

Calculation of HOC scores

To establish construct validity of the CAMI method, we analysed three trials (Trials 1a, 1b 

and 2a) using the more traditional HOC method. At least 40% of the videos within each 

trial, evenly split across diagnostic groups, were reliability-coded by two diagnosis-blind 

coders (all K> .92, ps< .001). No HOC was done for Trial 2b videos purposely to use this 

trial as the replication data set.

Our HOC scheme identified the components of all movement types within a sequence (e.g., 

bring right arm to the right), the style of the movements (e.g., twirl arm, right/left side) and 

the number of repetitions. Children’s total HOC score was the sum of positive items (spos) 

and negative items (sneg) for each movement type, divided by the maximum possible score 

for that movement type. (spos) comprised of scores given to components successfully 

completed (score of +1). (sneg) comprised of scores given to movements performed on the 

reverse side (score of −0.5) and repeated more times than demonstrated by the model (score 

of −1). Consequently, the children could receive a score within the range of 0–166 for 

sequence 1, which had 176 components and 0–202 for sequence 2, which had 216 
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components. These scores were then normalised to a range of 0–1, where 1 indicates perfect 

imitation and 0 indicates worst imitation (see SI, HOC Scheme section).

Results

To enable replications and use by future research, we provide the learnt parameters of CAMI 

in SI, Results. While developing the CAMI method, we proposed that it would have three 

main advantages to alternative methods: (1) considering temporal, in addition to spatial, 

differences in imitation performance, (2) assessing imitation ability with high sensitivity by 

yielding continuous, rather than discrete, scores, and (3) automatically detecting which 

joints are important for different movement types without human input. Beyond theoretical 

plausibility of these arguments, we conducted rigorous experiments, which empirically 

confirmed that these properties did indeed improve CAMI’s performance (see SI, Results).

Construct validity and test-retest reliability of CAMI

To establish CAMI’s construct validity, we examined its correlation with the scores obtained 

from HOC in three trials of movement data. The results revealed strong positive correlations 

between the two methods for all three trials (Figure 1a; Trial 1a: r(43)= .82, p< .0001; Trial 

1b: r(40)= .87, p< .0001; Trial 2a: r(46)= .69, p< .0001). Notably, the correlation between 

the two methods was lowest for Trial 2a. It is worth highlighting here that the CAMI scores 

are calculated using a 3-fold cross-validation method, which means that children’s CAMI 

scores were calculated independently from their HOC scores. Further supporting this point, 

when the same correlation tests are run between HOC scores and the distance output of 

DTW, which is completely unsupervised by HOC, we still observed strong correlations 

between the two variables (Trial 1a: r(43)=− .78, p< .0001; Trial 1b: r(40)= −.82, p< .0001; 

Trial 2a: r(46)= −.70, p< .0001), such that increased spatial difference between the child and 

the model was correlated with worse HOC scores.

We assessed CAMI’s test–retest reliability by comparing performance scores between 

repetitions trials, comparing Trial 1a to 1b, and Trial 2a to 2b with Pearson’s correlation 

tests. The results revealed excellent test–retest reliability (Trial 1a-1b: r(37)= .86, p< .0001; 

Trial 2a-2b: r(36) = .73, p< .0001).

Diagnostic classification ability of CAMI

We assessed how well imitation scores obtained from CAMI and HOC methods would 

classify children into diagnostic groups in two ways: (1) by training a standard machine 

learning algorithm (linear support vector machines, or SVM) to classify the subjects into 

diagnostic groups using their imitation scores as the sole features, and (2) by computing the 

receiver operating characteristic (ROC) curve of each trial, with larger areas under the curve 

(AUC) indicating better discriminative ability. Notably, the features used in SVM carry no 

prior information about the children’s diagnosis status; the only feature used for 

classification was the diagnosis-blind imitation scores.

For all three trials that had both CAMI and HOC scores, the discriminative ability of CAMI 

was either comparable to or better than the discriminative ability of HOC. The SVM method 

showed that when the participants are characterised by their imitation performance across 
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the trials, the diagnostic groups (ASC vs TD) are more vividly separated by CAMI scores as 

compared to HOC scores (Figure 1b). This visible trend is supported by the higher average 

classification accuracy obtained by a linear SVM classifier trained in a 3-fold cross 

validation scheme (accuracyCAMI= 87.2%, accuracyHOC= 74.4%).

The AUC was comparable between the CAMI and HOC methods for Trials 1a and 1b, while 

it was considerably higher for CAMI scores in Trial 2a (Figure 1c). Considered together 

with the lower correlation between CAMI and HOC in Trial 2a (Figure 1a), this finding 

attests to CAMI’s validity and superior diagnostic classification ability.

Finally, we replicated these findings in a single, one-minute imitation trial (Trial 2b), which 

only has CAMI scores and no HOC scores. Figure 1d shows the classification accuracy 

(84.6%) and AUC of CAMI based only on Trial 2b scores. Overall, these findings show that 

CAMI outperforms HOC in distinguishing children into diagnostic groups.

Clinical relevance of CAMI

To confirm that the imitation ability assessed by CAMI is relevant for a clinical autism 

sample, we examined the hypotheses that poorer imitation would be observed in ASC than 

in TD children, and that imitation deficits would be associated with increased autism 

symptoms.

We conducted a mixed-ANOVA test with diagnosis (ASC vs TD), assessment method 

(CAMI vs HOC), age, IQ and motor abilities (scores from the Movement Assessment 

Battery for Children, version 2) as the independent variables, and imitation score as the 

dependent variable. One TD and 2 ASC children were dropped from analysis due to 

violating normality assumptions (±2 SDs from the mean); including these children did not 

change the findings. These statistical analyses were done using open-source R software [38].

The results revealed significant main effects of diagnosis (F(1,23)= 13.41, p= .001) and 

assessment method (F(1,25)= 221.69, p< .0001) as well as significant interaction effects of 

diagnosis*trial (F(2.92)= 3.56, p= .03), diagnosis*method (F(1,25)= 14.80, p= .0007), and 

trial*method (F(1,92)= 10.55, p= .0001). No other variable had a significant effect on 

imitation scores. Due to its relevance for our hypothesis, we further examined the 

diagnosis*trial interaction with Bonferroni-corrected pairwise tests. We found that within 

each trial and for both CAMI and HOC scores, children with ASC imitated more poorly than 

TD children (all ps< .0001; Figure 2). That no ceiling effects were observed in either group, 

indicates that, as reported in the literature before [5,6,8,9,11], the types of movements 

included in these sequences were challenging for both ASC and TD groups.

To examine the associations between imitation performance and core autism symptoms, we 

created composite scores by averaging the children’s scores in three trials(Trials 1a, 1b, 2a). 

Core autism symptoms were measured by (i) parental reports of Social Responsiveness 

Scale (SRS-2), and (ii) the Autism Diagnostic Observation Schedule (ADOS-2) 

administered to children with ASC. Better imitation ability, as measured by both the CAMI 

and the HOC methods, was moderately and statistically significantly correlated with lower 

scores on the subscales of SRS-2 and the total SRS-2 scores (Table 1). Correlations between 

Tunçgenç et al. Page 8

Biol Psychiatry Cogn Neurosci Neuroimaging. Author manuscript; available in PMC 2022 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the imitation scores and ADOS-2 scores were less strong, with the total scores reaching or 

approaching significance. The decreased association of CAMI scores with ADOS-2 likely 

stemmed from insufficient power since the ADOS-2 was administered only to the ASC 

group, while the SRS-2 was administered to all participants. These findings support the 

clinical relevance of CAMI by revealing significant links between the CAMI-assessed 

imitation deficits and core autism symptoms.

Discussion

In this study, we developed a method called Computerised Assessment of Motor Imitation 

(CAMI), which uses an automated, DTW-based algorithm, and presented its successful 

application to a clinical autism population to examine imitation deficits. Strong 

correspondence of CAMI with the standard HOC method confirmed our method’s construct 

validity. Applying CAMI on two sets of repeated imitation trials involving two different 

movement sequences, we established CAMI’s test-retest reliability. Further, the findings 

revealed that imitation ability as assessed by CAMI scores can distinguish children’s clinical 

diagnosis (ASC vs TD) better than HOC scores. Clinical relevance of CAMI has been 

further confirmed with findings of CAMI-assessed poorer imitation in ASC than in TD, and 

a strong link between imitation deficits and core autism symptom severity.

CAMI addresses the outstanding issues with automatic assessment of human motion and 

imitation. The issues of heterogeneity (i.e., range of movements being virtually unlimited) 

and requirement for high sensitivity to detect nuances are addressed by using a continuous 

instead of a discrete output. The issues of high-dimensionality (i.e., involving spatial and 

temporal aspects of movements) and limited human supervision (i.e., lacking expert 

knowledge on importance of movement elements) are addressed by imposing a structure in 

the model that reduces the number of learnable parameters based on guidance from expert-

based observations (i.e., HOC scores). Using expert knowledge to guide the features (i.e., 

distance, t_adv and t_delay) improved CAMI’s interpretability, while deviance from HOC as 

a result of automatized learning processes improved CAMI’s diagnostic discriminative 

ability. Finally, automatic detection of important joints enables combining high-dimensional 

data in a meaningful way for other movements, improving CAMI’s scalability.

One advantage of CAMI is that unlike other automated methods that classify children into 

diagnostic groups based on broad differences in movement patterns [25,26,27], CAMI 

specifically measures imitation ability and provides an interpretable score indicating how 

well the children performed with respect to a model. Assessing imitation ability with a 

sensitive, automatic and objective method is important because there is robust evidence that 

imitation crucially impacts social bonding, learning, communication and interaction 

throughout development [1,2,3,30]. Since our method targets imitation ability in particular, it 

can be used to detect deficiencies from at least school ages onwards, and track performance 

during interventions designed to improve social-communicative function through imitation 

training.

Contrary to previous methods providing only dichotomous or categorical scores for imitation 

performance [15,16], CAMI produces a fine-grained, continuous score within a range of 0 
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(worst imitation) to 1 (best imitation). Continuous scores allow for capturing minute 

differences in imitation ability, which is especially important for populations with high 

variability such as ASC. Moreover, CAMI considers timing differences in addition to spatial 

differences. Given known deficits in coordinating the timing of actions in ASC [24,31], 

timing measures may importantly improve the assessment of autism-specific imitation 

impairments.

Using an SVM approach with 3-fold cross-validation, we demonstrated that CAMI scores 

distinguished children into diagnostic groups better than HOC scores. The CAMI method 

outperformed the HOC method in Trial 2a, which was the trial with lowest correlation 

between the two methods. Further, applied to another trial without HOC scores (Trial 2b), 

CAMI scores from a single, one-minute trial distinguished the children into diagnostic 

groups with 84.6% success. Altogether, our findings show that as compared to HOC, CAMI 

is more sensitive in detecting autism-associated differences in imitation performance.

Given the heterogeneity of the behavioural phenotypes in the autism spectrum, the sample 

size of 27 ASC and 21 TD children can be considered relatively small. While such inherent 

limitations of a small sample size should be born in mind while interpreting the findings, it 

is important to clarify that the CAMI machine learning approach does not suffer from a 

sample size problem in either the calculation of the CAMI scores or SVM classification. 

Firstly, since estimating the minimum sample size needed by canonical correlation analysis 

(a general case of the method we used to learn the CAMI scores) is non-trivial, studies 

suggest the “one-in-ten rule”, which states that 10 samples per variable is enough to estimate 

the parameters [39, 40]. In our case, when we maximise the correlation, we are working with 

3 variables, thus 30 samples should suffice. In the 3-fold cross-validation scheme, we are 

using approximately 90 samples (2/3 of subjects, 3 trials) to estimate 3 variables. Secondly, 

for binary max-margin linear classifiers such as the SVMs we used, Raudys (1997) [41] 

provides a formula to estimate the mean expected classification error in terms of the number 

of parameters, distance between classes, and sample size. Applying equation 12 from 

Raudys (1997) to our problem, in which p = 3 (number of parameters), delta = 3.83 (the 

distance between normalised class centres), and N = 13 (the approximate number of samples 

per class for training in the 3-fold cross-validation scheme), we obtain a mean expected 

classification error of 5.9%. Given that the minimum possible mean expected classification 

error for this problem (i.e., if we had infinite samples) would be 2.8%, our error rate can be 

considered sufficiently good. Notably, the parameter-to-sample-size ratio used here is higher 

than previous applications of machine learning to distinguish motor patterns in autism. For 

example, Li and colleagues (2017) trained a model with 40 parameters using data from 30 

subjects [26], and Crippa and colleagues (2015) trained a model with 7 parameters using 

data from 30 subjects [27].

Future research is needed to improve the scalability of CAMI. At present, this method uses 

data obtained from Kinect Xbox depth cameras, which, due to imperfections of the motion 

tracking technology, require some manual processing that can be time consuming. Future 

research should explore the use of this method on 2D data obtained from high-resolution 

cameras. Moreover, in order for CAMI to be used widely as a clinical assessment tool, we 

need to establish norm-standardisation with larger data sets, including younger age groups 
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and varied demographics. Relatedly, given the relatively small sample size of this study for 

the highly heterogeneous autism population, it is crucial that the current findings be 

replicated in future research; administering ADOS-2 to the entire population would be 

informative in future replication attempts.

The CAMI method presented here is a major step forward in examining motor imitation 

automatically without requiring extensive human input or coder training. This method 

provides an objective, continuous, highly scalable and directly interpretable score. As such, 

CAMI can be used in clinics and home settings to assess imitation ability, to help inform 

diagnostic decision-making based on the children’s imitation performance (e.g., autism vs 

non-ASC) and to advance biomarkers-based interventions for improving social-

communicative functioning through imitation-based strategies.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Comparisons between the CAMI and HOC methods using motion data of four 
imitation trials from a sample of 48 children (27 ASC, 21 TD).
(a) Correlations between the CAMI scores and HOC scores in three trials, showing strong 

correspondence between the two methods. An r = 1 indicates perfect positive association, r = 

0 indicates no association and r = −1 indicates perfect negative association (ps< .0001).

(b) 3D plots of the CAMI scores and HOC scores in which Trial 1a, Trial 1b, and Trial 2a 

scores correspond to the respective axes. Each marker represents one subject, and the 

reported accuracy (Acc) corresponds to average classification accuracy in 3-fold cross-

validation of a linear SVM classifier (best possible Acc is 100%, meaning all participants 

categorised to diagnostic groups accurately).

(c) Receiving Operating Characteristic (ROC) curves: true positive rate versus false positive 

rate as classification threshold is varied. The Area Under the Curve (AUC) indicates the 

diagnostic ability of the method (left panel for CAMI, right panel for HOC) in each of the 

three trials (best possible AUC is 1, meaning zero false positives and 100% true positives).

(d) ROC curve (left panel) and CAMI scores (right panel) of Trial 2b only. Since this trial 

does not have any HOC scores, its CAMI scores are computed based on parameters learnt 

from the other three trials, complying with the splits used for 3-fold cross-validation. The 

AUC of the ROC curve (0.937) and SVM accuracy value (84.6%) demonstrate the 

diagnostic classification ability of CAMI scores with this single trial.
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Figure 2. 
Imitation performance per diagnostic group (blue = ASC, grey = TD) per trial according to 

CAMI scores (left) and HOC scores (right) with box plots embedded within violin plots. In 

the box plots, horizontal lines indicate medians, boxes indicate data within the 25th to 75th 

percentiles, and whiskers indicate data within the 5th to 95th percentiles.
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