Skip to main content
. 2021 Mar 9;11:5458. doi: 10.1038/s41598-021-84854-x

Table 2.

Quantitative prediction and uncertainty estimation performance of the various frameworks on the CamVid, CityScapes, and CT-Organ datasets.

Data (Model) Uncertainty
Estimation Method
Prediction Performance (%) Uncertainty metrics AUC (%)
Pixel accuracy Mean accuracy Mean IOU Riu Rcc UA
CamVid (SegNet) None 79.46 65.03 46.31
MC-Dropout 80.99 65.46 47.31 17.23 82.48 80.18
MC-DropConnect 82.92 67.47 49.53 21.63 86.54 82.78
CityScapes (ENet) None 87.50 55.30 44.08
MC-Dropout 87.38 56.35 44.11 6.12 88.67 84.89
MC-DropConnect 88.87 63.83 50.25 9.61 90.33 85.57
CT-Organ (VNet) None 95.19 96.44 65.49
MC-Dropout 94.11 97.73 67.07 10.81 86.41 91.51
MC-DropConnect 97.90 97.71 72.77 6.69 87.03 92.59

Our quantitative analyses support the superior performance of the MC-DropConnect in terms of both segmentation accuracy and uncertainty estimation quality.

The models with the best performances are shown in bold.