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ABSTRACT: An MXene−graphene field-effect transistor (FET)
sensor for both influenza virus and 2019-nCoV sensing was developed
and characterized. The developed sensor combines the high chemical
sensitivity of MXene and the continuity of large-area high-quality
graphene to form an ultra-sensitive virus-sensing transduction material
(VSTM). Through polymer linking, we are able to utilize antibody−
antigen binding to achieve electrochemical signal transduction when
viruses are deposited onto the VSTM surface. The MXene−graphene
VSTM was integrated into a microfluidic channel that can directly
receive viruses in solution. The developed sensor was tested with
various concentrations of antigens from two viruses: inactivated
influenza A (H1N1) HA virus ranging from 125 to 250,000 copies/
mL and a recombinant 2019-nCoV spike protein ranging from 1 fg/mL
to 10 pg/mL. The average response time was about ∼50 ms, which is
significantly faster than the existing real-time reverse transcription-polymerase chain reaction method (>3 h). The low limit of
detection (125 copies/mL for the influenza virus and 1 fg/mL for the recombinant 2019-nCoV spike protein) has demonstrated the
sensitivity of the MXene−graphene VSTM on the FET platform to virus sensing. Especially, the high signal-to-viral load ratio (∼10%
change in source-drain current and gate voltage) also demonstrates the ultra-sensitivity of the developed MXene−graphene FET
sensor. In addition, the specificity of the sensor was also demonstrated by depositing the inactivated influenza A (H1N1) HA virus
and the recombinant 2019-nCoV spike protein onto microfluidic channels with opposite antibodies, producing signal differences that
are about 10 times lower. Thus, we have successfully fabricated a relatively low-cost, ultrasensitive, fast-responding, and specific
inactivated influenza A (H1N1) and 2019-nCoV sensor with the MXene−graphene VSTM.

1. INTRODUCTION

The coronavirus disease recombinant 2019 (COVID-19)
pandemic has encompassed more than 46.6M infected
individuals and over 1.2M deaths worldwide. In October
2020, the total number of confirmed cases surpassed 9M in the
United States alone and is still growing rapidly.1 The U.S.
economy contracted by almost a third (32.9%) during the
second quarter of this year due to the pandemic, according to
the U.S. Bureau of Economic Analysis.2 Long-term side effects
in internal organs, including the lungs and kidneys, are
anticipated for recovered patients.3−5 Point-of-care testing
becomes critical in real-time detection and tracing of severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2).
However, the real-time detection and understandable data
output desire a highly sensitive virus-sensing transduction
material (VSTM) that can selectively sense the virus and
transduce the sensing signal into electronic signals. Based on
above reasons, two-dimensional (2D) materials including
graphene are uniquely positioned as one of the best VSTMs

for biosensing. Still, further improvement of the chemical
reactivity of graphene-like VSTMs is needed to achieve higher
selectivity and sensitivity for rapid and real-time biosensing.
Being one to a few atom-thin, 2D materials, including

graphene, 2D transition-metal dichalcogenides (TMDs), and
2D transition-metal carbides (MXenes), have superior surface
chemical sensitivity and lower sheet resistance than thin metal
films.6−10 This unique feature makes them ideal for electro-
chemical-based biosensors. Our recent work has shown that
2D material-based sensing devices can significantly enhance
the detection limit of changes in chemical environments
including corrosion and gas.11
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Graphene is one of most investigated 2D materials for bio-
sensing.12−21 It can be functionalized with short polymer
chains through non-covalent pi−pi interactions. Antibodies can
then be attached to the polymer chains to immobilize targeted
viral or bacterial antigens with high specificity for sensing.
Naturally, the sensitivity of graphene-sensing materials heavily
relies on van der Waals-type pi−pi interactions with the
polymers. Being non-covalently bonded, this functionalization
typically requires specific chemical groups in the polymer
chains, which can cause low signal-to-noise ratios when the
bonding is insufficient or weak.22

Recent progress has shown that MXenes can significantly
improve the signal-to-noise ratios for electro-chemical sensing
in comparison to graphene.10 MXenes (typically in the form of
Mn+1Xn) are a recently discovered family of 2D materials that
consist of transition-metal elements (Mn+1) and carbon/
nitrogen elements (Xn).

23,24 They are typically produced by
chemical etching from their MAX phase precursors to remove
the A element (typically either aluminum or silicon). As a
result, MXenes typically have termination groups (oxygen,
hydroxyl, fluorine, etc.) making them easier to be stably
functionalized through covalent bonding.25,26 In addition, their
much higher conductivity in comparison with graphene gives
them much higher signal-to-noise ratio in electro-chemical
sensing.27,28 In recent years, MXene has been actively
investigated as a new electro-chemical sensing material for
bio-sensing.10 However, MXenes are typically in the form of
overlapping flakes having a lateral size around 3 μm due to the
chemical etching process.29 This discontinuity may cause noisy
signals in terms of sensing. In addition, a relatively thick film is
normally formed to achieve sufficient overlapping for
continuity, which greatly weakens its sensitivity. MXenes are
highly conductive and have different functional groups (−H,
−OH, −F) on the surface, which could form covalent bonding
with polymers. However, with graphene, there are only pi−pi
interactions. In addition, the small MXene flakes could be
discontinuous and introduce a large initial resistance. The
large-area continuous chemical vapor deposition (CVD)-
grown graphene could solve these issues. In this work, we

proposed utilizing an MXene on the graphene structure to
combine the high chemical reactivity of MXene and the
continuity of graphene to create an ultrasensitive VSTM. It
should be noted that the average thickness of MXene on
graphene has been kept below 10 nm to preserve its high
chemical sensitivity.
Influenza viruses and coronaviruses are among the most

common causes of infectious viral respiratory diseases. Real-
time sensing of these viruses has attracted a significant amount
of research interest, and various sensing mechanisms have been
explored.30−42 Among them, electro-chemical immunosensing
has the fastest response time and the easiest signal transduction
pathway for data interpretation. There are two critical
processes for immunosensing platforms: the antibody−antigen
binding and the chemical binding-induced electronic signals.
For the antibody−antigen binding, antibodies specific to the
virus alter the surface charge distribution of the VSTM after
virus binding. The changed surface charge signal can then
propagate to various electro-chemical signals. The electro-
chemical signal transduction is commonly achieved using
impedance and field-effect transistor (FET) approaches. The
FET approach is ideally suited for virus sensing as it can easily
accommodate the 2D VSTM film and produce an electronic
output. Recent studies have also shown success using graphene
FET sensing for influenza and SARS-CoV-2 virus.43 However,
due to the relatively low signal-to-noise ratio of the graphene-
sensing material, the device lacks robustness and requires pre-
processing of the virus sample. Therefore, a VSTM that has
higher sensitivity and signal-to-noise ratio is needed to improve
the robustness and allows minimum sample preparation, which
will enable the automatic and real-time sensing of influenza
and SARS-CoV-2 viruses. Here, we investigate a 2D MXene−
graphene VSTM for FET immunosensing of influenza and
SARS-CoV-2 viruses.

2. RESULTS AND DISCUSSION

2.1. Sensor Fabrication. The fabricated MXene−
graphene FET sensor is shown in Figure 1A. The MXene−
graphene sensing material was deposited onto a polydime-

Figure 1. (A) Fabricated MXene−graphene FET sensor. (B) MXene−graphene VSTM deposition process, (C) illustration of antibody−antigen
sensing mechanism, (D) FET circuit, and (E) change in drain-source current. Photograph: courtesy of “Yanxiao Li”. Copyright 2020 and the image
is of free domain.
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thylsiloxane (PDMS) microfluidic channel with a length of 1
mm and a width of 10 mm (L × W). The source and drain
electrodes were fabricated using a liquid metal (Galinstan)
deposited onto laser-cut PDMS channels next to the main
microfluidic channel. The main microfluidic channel was
prepared using e-beam lithography and shadow-masked into
the PDMS plate. A liquid gate was formed between the
solution injected from the top opening of the microfluidic
channel and the Ag/AgCl electrode. It should be noted that
four sensors are integrated within one acrylic block for multi-
virus sensing. The sensor fabrication details are explained in
the Experimental Section.
The MXene−graphene VSTM was deposited in the

following sequence. The CVD-grown, large-area, and mono-
layered graphene was first deposited onto the bottom surface
of the microfluidic channel using the wet-transfer method.44

MXene (Ti2C) was subsequently deposited onto graphene
using the interfacial deposition approach.45 The MXene−
graphene deposition process is illustrated in Figure 1B.
The antibody−antigen sensing mechanism is illustrated in

Figure 1C. The surface of MXene−graphene VSTM was
functionalized using (3-aminopropyl) triethoxysilane
(APTES). The corresponding influenza A (H1N1) hemag-
glutinin (HA) polyclonal antibody and the SARS-CoV-2 spike
antibody were then linked to APTES. When the inactivated
influenza A (H1N1) virus and the recombinant 2019-nCoV
spike protein bind with their corresponding antibodies, the
associated change in surface charge was measured with the
circuit shown in Figure 1D and reflected from the drain-source
current−voltage response, as illustrated in Figure 1E.
2.2. Characterization of MXene−Graphene. The

MXene−graphene VSTM was characterized using Raman
spectrometry, Fourier-transform infrared (FTIR) spectroscopy,
X-ray diffraction (XRD), and atomic force microscopy (AFM)
after each step in the synthesis process. A comparison of

characteristic Raman peaks of MXene (Ti2C) at 200, 300, 400,
and 600 cm−1 with those of the MAX precursor (Ti2AlC) at
400 and 600 cm−1, as shown in Figure 2A indicates the
successful removal of Al from Ti2AlC. In addition, the d-
spacing change from 0.68 to 1.15 nm, according to the XRD
results of Ti2C and Ti2AlC (Figure 2B), also signifies the
successful synthesis of Ti2C MXene. To confirm that the Ti2C
surface was chemically functionalized with APTES, we
conducted scans using FTIR spectroscopy, XRD, and AFM.
The FTIR spectrum of APTES−MXene (Figure 2C) showed
several new vibration peaks in comparison with those of
MXene. For instance, new peaks at 1500 and 3350 cm−1 (the
stretching vibration mode of the free amine from APTES)46

appeared in the FTIR spectrum of Ti2C/APTES. This
indicates the successful covalent coupling of APTES to Ti2C
MXene. Since MXene has a 2D structure, the change in the
interlayer distance after modification of silanes was also
examined. The shift of the 002 peak of Ti2C/APTES in the
XRD pattern toward a smaller angle compared with that of
Ti2C MXene (from 7.70 to 6.56°, Figure 2B) resulted in an
increase of d-spacing to 1.35 nm. This could be attributed to
the intercalation effect of APTES.47 APTES could also be
observed from AFM images (bright spots in Figure 2D). After
APTES modification, the surface roughness (RMS) of MXene
increased from 0.521 to 4.454 nm. In these contexts, APTES
was successfully functionalized on the surface of MXene, which
acted as a protein linker to immobilize antibodies onto the
MXene surface. The grafting density of APTES on MXene is
∼5% surface area ratio. The value is obtained by processing
AFM images of APTES on MXene. At first, the AFM images
were transferred to gray images and the gray values of different
pixels were read out, then the amount of pixels at 255 gray
value was calculated and divided using the total amount of
pixels.

Figure 2. (A) Representative Raman spectra of the Ti2AlC MAX phase and Ti2C MXene. (B) XRD results for the Ti2AlC MAX phase, Ti2C
MXene, and APTES-functionalized Ti2C MXene. (C) FTIR results for Ti2C MXene and APTES-functionalized Ti2C MXene. (D) AFM images of
Ti2C MXene on graphene and APTES-functionalized Ti2C MXene on graphene. Scale bars in the image denote 2 μm.
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2.3. Verification of FET and Virus Sensing. To
investigate the possibility of transducing an electrical signal
with the FET sensor, we prepared a liquid-gated FET. The
FET sensor was designed using a MXene−graphene surface
conjugated to the influenza A (H1N1) HA polyclonal antibody
or SARS-CoV-2 spike antibody inside the microfluidic channel
and then covered with the phosphate-buffered saline (PBS; pH
7.4) that acted as the electrolyte to maintain an efficient gating
effect. As illustrated in Figures 3A and 4A, the aqueous
solution-gated FET system could detect the inactivated
influenza A (H1N1) virus or recombinant 2019-nCoV spike
protein based on changes in the channel surface potential and
the corresponding effects on the electrical response.
We measured the transfer curves of the FET after each

modification process (APTES functionalization and antibody
immobilization), as shown in Figure 1B. Figures 3B and 4B
show the drain-source current−voltage (IDS−VDS) output
curves of the FET sensor as a function of gate voltage (VG)
over the range 0 to −4 V in steps of −1 V. IDS positively
increased as VG negatively increased, corresponding to the

predicted behavior of a p-type semiconductor.43 Moreover, the
linear IDS−VDS curves exhibited highly stable Ohmic contact,
indicating that the FET sensor provided a reliable electrical
signal. For FET verification, we have tested two batches of
sensors. For every batch of sensors, we tested four sensors for
every pair of virus and antibody. All sensors showed consistent
results.
To evaluate the presence of influenza A (H1N1) HA

polyclonal antibody or SARS-CoV-2 spike antibody on the
MXene surface, we carried out electrical measurements.
Figures 3C and 4C show IDS−VDS curves of the FET device
after APTES functionalization and immobilization of the
antibody onto the MXene channel. Over the range of −1.5 to
+1.5 V of VDS before and after attachment of APTES and the
antibody, the slopes (dIDS/dVDS) decreased. These differences
in slopes indicate the successful introduction of APTES,
influenza A (H1N1) HA polyclonal antibody, or SARS-CoV-2
spike antibody. In addition, as shown in Figures 3D and 4D,
after APTES functionalization, an obvious negative shift was
observed in IDS−VG curves due to the n-doping effect of the

Figure 3. Electrical characterization of pristine, APTES-functionalized, and influenza A (H1N1) HA polyclonal antibody-immobilized MXene. (A)
Diagram of the VSTM. (B) IDS−VDS output curves of the antibody-conjugated FET with various gating voltages. (C) IDS−VDS characteristics of the
FET device of each modification process. (D) Measurement of transfer curves of the FET sensor in steps of antibody conjugation (VDS = 2 V). (E)
IDS−VG curves for different concentrations of inactivated influenza A (H1N1) virus. (F) Normalized gate-voltage shift and drain-source current
change vs concentration of inactivated influenza A (H1N1) virus. The unit for voltage change is V and the unit for current change is μA. Errors bars
for the eight tested sensors are given in terms of STDs ranging from ±0.007 to ±0.016 for the normalized neutral gate-voltage shift and from
±0.009 to ±0.014 for the normalized drain-source current change.
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amine group.48 However, we noticed that the transfer curve
shifted positively after immobilization of the antibody. We
suspected that this was due to the negative charge of the
antibody, which exerted a p-doping effect on MXene.
To investigate the performance of the MXene−graphene

FET sensor, we evaluated the response of the sensor to
different concentrations of inactivated influenza A (H1N1)
virus or recombinant 2019-nCoV spike protein. First, we
measured the sensor’s limit of detection (LOD) for each
antigen. The lowest concentrations the sensor responded to
were 125 copies/mL inactivated influenza A (H1N1) virus or 1
fg/mL recombinant 2019-nCoV spike protein in PBS. Figures
3E and 4E show decreased IDS and a right shift of the lowest
point in IDS−VG curves (VDS = 2 V) with increased
concentration of inactivated influenza A (H1N1) virus (from
125 to 250,000 copies/mL) or recombinant 2019-nCoV spike
protein (from 1 fg/mL to 10 pg/mL). To investigate the
sensitivity of the FET sensor, the detected electrical response

signals were normalized as =Δ −V
V

V V
V0

0

0
and =Δ −I

I
I I

I0

0

0
, where

V and I are the detected real-time gate voltage and drain-
source current at the lowest point of IDS−VG curves (i.e.,
neutral point); V0 and I0 are the gate voltage and drain-source
current at the lowest point of IDS−VG curves without
inactivated influenza A (H1N1) virus or recombinant 2019-
nCoV spike protein. The normalized neutral gate-voltage shift
and drain-source current change versus concentration curves
for the inactivated influenza A (H1N1) virus and the
recombinant 2019-nCoV spike protein FET sensing process
are shown in Figures 3F and 4F, respectively. The normalized
neutral gate-voltage shift and the drain-source current change
increased with the increase of inactivated influenza A (H1N1)
virus or recombinant 2019-nCoV spike protein concentration.
For voltage shift, the signal changes were 0.1 and 0.12 for the
inactivated influenza A (H1N1) virus with a concentration of
125 copies/mL and the recombinant 2019-nCoV spike protein
with a concentration of 1 fg/mL, respectively. The maximum
concentrations tested for H1N1 and recombinant 2019-nCoV
are 250,000 copies/mL and 10 pg/mL, with the corresponding
shifts in the voltage of 0.24 and 0.25, respectively. For current

Figure 4. Electrical characterization of pristine, APTES-functionalized, and SARS-CoV-2 spike antibody-immobilized MXene. (A) Diagram of the
VSTM. (B) IDS−VDS output curves of the antibody-conjugated FET with various gating voltages. (C) IDS−VDS characteristics of the FET device of
each modification process. (D) Measurement of transfer curves of the FET sensor in steps of antibody conjugation (VDS = 2 V). (E) IDS−VG curves
for different concentrations of recombinant 2019-nCoV spike protein. (F) Normalized gate-voltage shift and drain-source current change vs
concentration of recombinant 2019-nCoV spike protein. The unit for voltage change is V and the unit for current change is μA. Errors bars for the
eight tested sensors are given in terms of standard deviation (STD) ranging from ±0.012 to ±0.02 for the normalized neutral gate-voltage shift and
from ±0.01 to ±0.018 for the normalized drain-source current change.
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change, the signal changes were 0.12 and 0.11 for the
inactivated influenza A (H1N1) virus with a concentration of
125 copies/mL and the recombinant 2019-nCoV spike protein
with a concentration of 1 fg/mL, respectively. The maximum
concentrations tested for H1N1 and recombinant 2019-nCoV
are 250,000 copies/mL and 10 pg/mL, with the corresponding

changes in current of 0.22 and 0.24, respectively. It should be
noted that the normalized neutral gate-voltage shift and
current change versus concentration plots shown in Figures 3f
and 4f showed nonlinear proportional relationships, indicating
a sound detection range of the developed sensor. The sensing
response was determined by observing the time it took for the

Figure 5. (A) Depiction of specific binding study inside PBS sample. IDS−VG curves for (B) influenza A (H1N1) HA polyclonal antibody-
immobilized FET sensor and (C) SARS-CoV-2 spike antibody-immobilized FET sensor. (D) Normalized gate-voltage shift and drain-source
current changes with STDs in the specific binding study. The unit for voltage change is V and the unit for current change is μA.

Figure 6. (A) Depiction of specific binding study inside artificial saliva sample. IDS−VG curves for (B) influenza A (H1N1) HA polyclonal antibody-
immobilized FET sensor and (C) SARS-CoV-2 spike antibody-immobilized FET sensor. (D) Normalized gate-voltage shift and drain-source
current changes with STDs in specific binding study. The unit for voltage change is V and the unit for current change is μA.
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signal change, which was recorded from the sweeping data
scanning at a rate of 1 ns−1. The average response time for
both viruses was about ∼50 ms.
2.4. Specificity of Virus Sensing. We investigated the

specific binding of inactivated influenza A (H1N1) virus to the
influenza A (H1N1) HA polyclonal antibody and the
recombinant 2019-nCoV spike protein to the SARS-CoV-2
spike antibody, and thus, the specificity of our sensor, as shown
in Figures 5A (inside PBS buffer) and 6A (inside artificial
saliva). The FET sensor was functionalized with influenza A
(H1N1) HA polyclonal antibody, and a recombinant 2019-
nCoV spike protein sample was applied. As shown in Figure
5B, when using PBS buffer as the electrolyte, the FET sensor
immobilized with influenza A (H1N1) HA polyclonal antibody
showed very small response (0.018 ± 0.01 and 0.014 ± 0.009
for the neutral gate-voltage shift and drain-source current
change, respectively, Figure 5D) to the recombinant 2019-
nCoV spike protein, even with the largest concentration tested
in our previous experiments (10 pg/mL). Likewise, as shown
in Figure 5C the FET sensor functionalized with SARS-CoV-2
spike antibody showed very small response (0.013 ± 0.005 and
0.012 ± 0.001 for the gate-voltage shift and current change,
respectively, Figure 5D) to inactivated influenza A (H1N1)
virus (250,000 copies/mL), as shown in Figure 5C. The results
obtained using artificial saliva as the electrolyte are also similar,
as shown in Figure 5B,C,D. Small responses were observed
when using unpaired antibody and virus.
However, there were significant signal changes when using

antigens paired with sensors functionalized with the correct
antibody. Using the lowest concentrations of antigens (125
copies/mL and 1 fg/mL for inactivated influenza A (H1N1)
virus and recombinant 2019-nCoV spike protein, respectively)
inside PBS buffer, the inactivated influenza A (H1N1) virus on
the influenza A (H1N1) HA polyclonal antibody-immobilized
FET sensor showed a 10-fold higher response (0.096 ± 0.009
and 0.12 ± 0.01 for the gate-voltage shift and drain-source
current change, respectively, Figure 5D) than the highest
concentration of recombinant 2019-nCoV spike protein with
the same antibody. Similarly, using the recombinant 2019-
nCoV spike protein on the SARS-CoV-2 spike antibody-
immobilized FET sensor also produced an approximate 10-fold
increase (0.122 ± 0.012 and 0.111 ± 0.01 for the gate-voltage
shift and drain-source current change, respectively, Figure 5D)
compared to that using the highest concentration of
inactivated influenza A (H1N1) virus. The responses are a
little smaller (0.074 ± 0.010 and 0.077 ± 0.009 for the gate-
voltage shift and drain-source current change, respectively,
Figure 6D) when using the lowest concentrations of
inactivated influenza A (H1N1) virus inside artificial saliva.
Smaller responses (0.09 ± 0.013 and 0.087 ± 0.010 for the
gate-voltage shift and drain-source current change, respectively,
Figure 6D) were also observed when using the lowest
concentrations of recombinant 2019-nCoV spike protein
inside artificial saliva. The difference is due to the less
conductivity property of artificial saliva than that of PBS buffer.
However, both groups of results demonstrate that our FET
sensor is both highly sensitive and specific.
In the review of various sensing methods,39,42,43,49−54 the

FET approach has a lower LOD for SARS-CoV-2 in
comparison with other approaches. In terms of VSTMs, both
graphene and MXene−graphene have shown the lowest LOD
for SARS-CoV-2 sensing (1 fg mL−1). In addition, the
MXene−graphene FET sensor reported in this paper has

shown relatively high signal changes corresponding to the
LOD. These results collectively demonstrated the promising
virus-sensing performance of MXene−graphene VSTM,
especially for H1N1 and SARS-CoV-2.

3. CONCLUSIONS

To conclude, we reported a novel MXene−graphene FET
sensor for sensing both inactivated influenza A (H1N1) virus
and SARS-CoV-2. The developed sensor is relatively easy to
fabricate and of low-cost. We tested the sensing performance
of the developed sensor with both H1N1 virus and
recombinant 2019-nCoV spike protein. The results have
shown a low LOD (125 copies/mL−1 for H1N1 virus and 1
fg mL−1 for recombinant 2019-nCoV spike protein) and a wide
range of detection (up to 250,000 copies/mL−1 for H1N1 virus
and 10 pg mL−1 for recombinant 2019-nCoV spike protein), as
well as high specificity. It should be noted that the response
time is about 50 ms, which is much faster than the existing
detection approaches. The excellent performance of the
developed sensor is attributed to the large number of
surface-terminating groups of MXene, which offers a relatively
large number of binding sites for APTES. Therefore, a
relatively high number of viruses or protein linkers can be
formed on MXene in comparison with VSTM that has non-
covalently bonded probe linkers. It should be noted that the
high signal-to-viral load (∼10% of current change at LODs for
both H1N1 and SARS-CoV-2) demonstrates the ultra-high
sensitivity of MXene−graphene FET for virus sensing.
Potential applications include environmental virus sensing
when a low viral load is present and wearable sensing when
direct sample collection is not feasible.

4. EXPERIMENTAL SECTION

4.1. Experimental Method. The Raman spectrum was
acquired using a Horiba LabRAM ARAMIS spectrometer with
a 632.8 nm laser. AFM images were acquired on a Digital
Instruments Nanoscope IIIA under tapping mode. The AFM
tip was 6 nm in diameter and the cantilever was 2 N/m. The
XRD (PANalytical, Philips MPD) results were acquired with
Cu K<α> radiation (λ = 1.5406 Å) at U = 45 kV and I = 40
mA. FTIR data were obtained using a Nicolet 4700 FT-IR
spectrometer. A 3D printer (Mega S) was used to print the
clamping base using the fused deposition method with poly
lactic acid material.

4.2. Materials. The inactivated influenza A (H1N1) virus
was purchased from Microbiologics (St. Cloud, MN). The
influenza A (H1N1) HA polyclonal antibody was purchased
from Thermo Fisher Scientific (Waltham, MA). The
recombinant 2019-nCoV spike protein S1 (His Tag) and
SARS-CoV-2 spike antibody (Chimeric monoclonal antibody)
were purchased from SinoBiological (Wayne, PA). Artificial
saliva (ASTM E2720-16) with pH = 7 and 80 U/mL a-
Amylase from Aspergillus oryzae were purchased from Pickering
Laboratories (Mountain View, CA). The copper foil was
purchased from Alfa Aesar (CAS: 7440-50-8, LOT no.
P17D009). The Ti2AlC MAX phase (−325 mesh, particle
size ≤ 45 μm) was purchased from Luoyang Tongrun Info
Technology Co., Ltd. APTES was purchased from Sigma-
Aldrich (Saint Louis, MO). Galinstan alloy (68.5% Ga, 21.5%
In, 10% Sn) was purchased from Rotometals (San Leandro,
CA).
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4.3. Graphene on Glass Sample Preparation. Large-
area monolayer graphene was grown by CVD on 2 × 10 cm
copper foils. During this process, gas species were fed into the
reactor flow over a 25 μm thick piece of copper foil, where
hydrocarbon precursors decomposed to carbon radicals at the
copper surface and then formed monolayer graphene. To
prepare graphene on a glass substrate (25 mm × 25 mm), a
copper foil with graphene on top was spin-coated with a layer
of polymethyl methacrylate (PMMA) (4000 rpm for 30 s).
The foil was then etched away in 0.2 mol L−1 FeCl3 and 0.2
mol L−1 (NH4)2S2O8 for 2 h. The remaining graphene/PMMA
was cleaned with deionized (DI) water, transferred onto a glass
substrate cleaned with acetone and baked at 120 °C for 15 min
to get higher bonding. Finally, PMMA was removed by soaking
in acetone solution, yielding a sample of graphene on the glass
substrate. The residue of PMMA was removed by annealing at
400 °C in N2. The Raman spectrum of monolayer graphene on
Cu is shown in Figure S1 in Supporting Information.
4.4. UV-Light Treatment on Prepared Graphene.

Ultraviolet (UV) light was applied to graphene to achieve
partial oxidation and better bonding with MXene. The details
are as follows. A high-pressure mercury lamp (total power,
240; radiant flux, 24 W for 240−320 nm; operating current, 4
A) was used as the UV-light source. The lamp was placed over
the samples at a distance of 15−20 mm, resulting in the power
density of light flux around 100 mW/cm2. 5 min of UV
treatment time was used. During the experiments, humidity in
the chamber was maintained at 70−80%. After UV-light
treatment, the resistance of graphene increased by 5%.
4.5. MXene/Graphene on Glass Sample Preparation.

To remove Al from Ti2AlC, chemical etching was conducted
by slowly mixing 0.5 g of Ti2AlC into the etchant, prepared by
dissolving 0.8 g of LiF in 10 mL of 6 M HCl. The mixture was
stirred for 24 h at 35 °C, followed by repeated washing with DI
water and centrifugation until the pH of supernatant reached
5.5−6.0. The Ti2CTx aqueous colloidal solution was obtained
via 5 min vortex shaking, followed by 1 h centrifugation at
3500 rpm. The obtained Ti2C colloidal solution (20 mg/mL)
was coated onto graphene on glass using the interfacial film
deposition method.45 Briefly, about 50 mL of DI water was
poured into a 100 mL glass beaker with a Teflon-coated
magnetic stir bar. While vigorously stirring the DI water, 1 mL
of Ti2C aqueous colloid was added into the glass vial. Under
continued stirring, 6 mL of toluene was added into the vial and
stirred vigorously for 20 min. Graphene on glass was placed
near the bottom of another 600 mL glass beaker filled with 400
mL water. The stirred Ti2C MXene−toluene−water dispersion
was quickly poured into the 600 mL glass beaker. The beaker
was left still for 20 min to allow layering out of the emulsion
and the formation of the interfacial film. After the formation of
Ti2C thin film at the interface between water and toluene,
graphene on glass was slowly lifted toward the top of the
beaker while keeping its surface oriented parallel to the
interface to obtain MXene/graphene on glass. Then, N2 carrier
gas blow over was applied for 5 min to remove toxic toluene.
4.6. Fabrication of FET Devices and Experimental

Setup of FET Characterization. The fabrication of the
microfluidic sensor in PDMS was accomplished through the
use of the soft-lithography technique.55 Lithographic pattern-
ing was implemented to fabricate master molds in a photoresist
dry film (MM540, DuPont), which usually has a thickness
equal to 35 μm.56 At first, a layer of photoresist dry film was
laminated onto a copper plate where a thermal laminator

served the function for lamination purposes. Then, the copper
plate along with a transparent photo mask (10,000 dpi, CAD/
Art Services Inc.) was exposed to UV rays, and this process
ultimately resulted in the development of the photo mask onto
the copper plate, which was then rinsed in an aqueous solution
of sodium carbonate and dried to obtain the master mold.
Next, a PDMS mixture was prepared using a base and an
initiator, degassed, and then cast on the master mold. Finally,
the PDMS replica was peeled off from the master mold. To
fabricate the microfluidic channel and electrode channels
inside the PDMS chamber, PDMS chambers were laser-cut
with 1.7 kW CO2 laser using a Convergent Energy Arrow
Ultimate model operating in a continuous wave mode at a
wavelength of 10.6 μm. Several laser powers (100 W and 275
W), scanning speeds (from 2000 to140,000 mm/min), and
modes (continuous mode and pulsed mode) were tried to cut
channels with smooth edges and enough depth. Cross-section
profiles of electrode channels cut with different parameters are
shown in Figure S2. Finally, the liquid metal electrode channels
were cut in one pass with a laser spot size of 1 mm, a laser
power of 275 W, and a scanning speed of 6000 mm/min.
Using the same laser parameters and spot size, the middle
microfluidic channel was cut through in 16 passes. Between
each pass, the laser was shut off for 30 s to minimize heat
buildup and prevent damage to the PDMS. Then, the laser-cut
PDMS chamber was bonded to the prepared sample. The
details of the bonding process are shown in Figure S3. In short,
first, the surface of the PDMS chamber was cleaned with tape
and treated using corona (air plasma) for 5 min to remove
contamination and increase the surface activity. Then, the
PDMS chamber was punched onto the sample surface,
followed by inserting the liquid metal (Galinstan, with 0 Ω
resistance and 11 °C melting point) into the electrode channel
using a syringe. To avoid solution leakage during FET testing
and increase the efficiency, four samples were clamped
between the acrylic plate and the 3D-printed clamping base
plate.
A Keithley 4200 semiconductor characterization system was

used to apply the gate and drain-source voltages and to
measure the drain-source current. The FET was characterized
using a two-electrode electrochemical cell. An Ag/AgCl
electrode was used as the reference electrode to apply liquid-
gating, while MXene−graphene was used as the working
electrode. A 1× PBS buffer was used as an electrolyte while
applying liquid-gating. The 1× PBS buffer contained 10 mM
phosphate and 137 mM NaCl at pH 7.4. The source-drain
voltage (VDS) was kept at 2 V during all experiments.

4.7. Immobilization of Antibody on Ti2C Surface.
APTES, which dissolves in ethanol (vol ratio, 1:50) was
inserted into the solution channel and left for 4 h at room
temperature to form an amide (OH−NH) bond between the
amino terminals of APTES and hydroxyl terminal groups of
MXene. Then, the solution channel was rinsed several times
with ethanol and DI water to remove extra APTES. After that,
the functionalized device was exposed to 10 μg mL−1 influenza
A (H1N1) HA polyclonal antibody or 250 μg mL−1 SARS-
CoV-2 spike antibody, which were prepared in PBS (1×, pH
7.4). 10 μL of the antibody solution was uniformly spread on
the surface and incubated at 37 °C for 4 h, followed by
washing with PBS containing Tween 20, water, and drying
with N2. After this process, a strong amide (NH−NH) bond
was expected to form between the amino-terminating groups
of APTES and antibody. Finally, BSA solution (1 mg mL−1)
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was spread on the surface and incubated at 37 °C for 2 h, to be
used as a blocking agent to prevent non-specific binding of the
antigen to the VSTM. The sample surface was then washed
with PBS and water and used for inactivated influenza A
(H1N1) or recombinant 2019-nCoV spike protein [prepared
in PBS (1×, pH 7.4)] capture.
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