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Abstract

Inverse Ising inference is a method for inferring the coupling parameters of a Potts/Ising model 

based on observed site-covariation, which has found important applications in protein physics for 

detecting interactions between residues in protein families. We introduce Mi3-GPU (“mee-three”, 

for MCMC Inverse Ising Inference) software for solving the inverse Ising problem for protein-

sequence datasets with few analytic approximations, by parallel Markov-Chain Monte-Carlo 

sampling on GPUs. We also provide tools for analysis and preparation of protein-family Multiple 

Sequence Alignments (MSAs) to account for finite-sampling issues, which are a major source of 

error or bias in inverse Ising inference. Our method is “generative” in the sense that the inferred 

model can be used to generate synthetic MSAs whose mutational statistics (marginals) can be 

verified to match the dataset MSA statistics up to the limits imposed by the effects of finite 

sampling. Our GPU implementation enables the construction of models which reproduce the 

covariation patterns of the observed MSA with a precision that is not possible with more 

approximate methods. The main components of our method are a GPU-optimized algorithm to 

greatly accelerate MCMC sampling, combined with a multi-step Quasi-Newton parameter-update 

scheme using a “Zwanzig reweighting” technique. We demonstrate the ability of this software to 

produce generative models on typical protein family datasets for sequence lengths L ~ 300 with 21 

residue types with tens of millions of inferred parameters in short running times.

1. Introduction

The inverse Ising problem consists of finding the set of “coupling” parameters of an Ising or 

Potts model which reproduce observed site-covariation of the Potts system in 

thermodynamic equilibrium. It has many practical applications in computer vision, machine 
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learning and biophysics to detect interaction networks among large collections of covarying 

components, each of which can take on a set of discrete values, and the Potts or Ising models 

parameterized by this method are also known by the names of Markov Random Fields and 

graphical models. An important application of inverse Ising inference is for “protein 

covariation analysis”, by which one detects interactions between residues within proteins 

based on observed mutational covariations in multiple sequence alignments (MSAs) of 

proteins from a common protein family, which arise during the course of evolution through 

compensatory effects [1, 2, 3, 4, 5, 6, 7]. These predicted interactions have been found to 

correspond well to physical contacts within the 3D structure of proteins, and models inferred 

from protein sequence data have shown great promise for elucidating the relationship 

between protein sequence, structure and function [8, 9, 10, 11, 12].

The inverse Ising problem is a difficult computational challenge. A Potts model describes 

the likelihood of configurations S = s1, s2…sL of L “sites” or positions, each of which can 

take one of q states. Solving the inverse problem exactly by naive means involves sums over 

all qL possible configurations, which quickly becomes computationally infeasible for 

increasing values of L. This has motivated a variety of approximate solution methods 

including message passing [13], mean-field approximations [14], pseudolikelihood 

approximations [10], and adaptive cluster expansion [15, 16]. However, these 

approximations often introduce biases into the inferred model parameters which can cause 

the site-covariances of sequences or MSAs generated by the model to differ from those 

obtained using inference approaches that employ fewer approximations, meaning the model 

is not “generative” and cannot be used in certain applications involving evaluation of 

sequence-by-sequence statistical predictions [17, 16]. The inverse Ising problem can be 

solved with fewer analytic approximations using Markov-Chain Monte-Carlo (MCMC) 

sampling methods [2, 18, 19], but these are limited by the requirement of Markov-Chain 

convergence and by the effects of finite sampling error due to limited configuration sample 

size, and this approach is typically much more computationally demanding.

The software presented here provides a GPU-accelerated MCMC inverse Ising inference 

strategy (“Mi3”, for MCMC Inverse Ising Inference), focusing on the application of protein 

covariation analysis with high statistical accuracy, and is implemented in the Python and 

OpenCL programming languages. It uses large Monte-Carlo sample sizes to limit finite-

sampling error and bias. The main components of this method are a GPU-optimized 

algorithm for MCMC sampling, combined with a multi-step Quasi-Newton parameter-

update scheme [20] using a “Zwanzig reweighting” strategy [21, 22, 23, 24] which allows 

many parameter update steps to be performed after each MCMC sample. With this method 

we can obtain statistically accurate and generative models for large Potts systems, allowing 

detailed analysis of sequence and MSA statistics which is otherwise difficult [25, 24, 26, 

27]. We demonstrate its performance by fitting a protein family with sequences of length L = 

232 and q = 21 residue types (20 amino acids plus gap), to parameterize a Potts model with 

12 million parameters in a reasonable running time. This problem size is typical of protein 

family datasets for covariation analysis from the Pfam database, which are commonly L ~ 

200 and q = 21.

Haldane and Levy Page 2

Comput Phys Commun. Author manuscript; available in PMC 2022 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The statistically accurate model and marginals produced by this method are particularly 

suited for studying sequence variation on a sequence-by-sequence basis and detailed MSA 

statistics related to higher order marginals, but can also be used in other common 

applications of covariation analysis. We illustrate some applications in Fig. 1. We have 

previously used initial versions of the Mi3-GPU software to perform analysis difficult using 

more approximate methods. For instance, we have used this method to test whether pairwise 

terms are necessary and sufficient to model sequence higher-order marginals, by showing 

that sequences generated by the model have similar higher-order marginals as those of the 

dataset [25] using our accurate marginal estimates, as in Fig. 1B, bottom. We have also used 

it to show how mutations leading to drug resistance in HIV can become highly favored (or 

entrenched) by the complex mutation patterns arising in response to drug therapy despite 

being disfavored in the wild-type sequence background [26], and we used these statistically 

accurate models to predict which mutations a particular background will support and how 

conducive that background is towards that mutation [29], as illustrated in Fig. 1D. This 

fitting procedure was also key to an analysis on the effects of overfitting and the statistical 

power of Potts models [27], in which we demonstrated the resilience of the inference 

procedure to the statistical error caused by finite-sampling effects due to the limited size of 

the dataset MSA, and estimated how many sequences are necessary to accurately construct a 

model, as illustrated in figure 1C. The statistical accuracy of the method allowed estimation 

of the statistical error of various model predictions, such as prediction the effects of point 

mutations and double mutant effects.

We also address the sources of error and bias in the inference procedure and describe MSA 

preprocessing tools we provide to account for them. Finite sampling error caused by limited 

dataset size is a fundamental source of error in protein covariation analysis and more 

generally for inverse Ising inference on real datasets, and causes various problems including 

overfitting [27]. A careful understanding of the effects of finite sampling error is particularly 

important when using MCMC methods and Zwanzig reweighting as these explicitly use 

finite samples of synthetic sequences [15, 27, 30, 31].

2. Background: Inverse Ising Inference

A Potts model describes configurations of sets of L elements {si} taking q possible values. 

In models representing ferromagnets, q = 2 and the elements represent “spins”, while in 

protein covariation analysis each configuration represents a protein sequence S of length L 
where each character is one of q = 21 amino acid or gap characters. The Potts system is 

described by the Hamiltonian

E S = ∑
i

ℎsi
i + ∑

i < j
Jsisj

ij
(1)

with “coupling” parameters Jαβ
ij  between all pairs of positions i, j for all characters α, β and 

“field” parameters ℎα
i  for all positions. The probability of observing the sequence S in 

equilibrium is P S = 1
Z e−E S  with normalization constant Z = ∑S e−E S . This model is in 
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principle “infinite range”, meaning all pairs of elements may be coupled, and each of the 

coupling and field values may be different.

The Potts model can be motivated by the fact that it is the maximum-entropy model for the 

probability distribution P(S) of sequences in a protein-family with the constraint that the 

pairwise (bivariate) amino acid probabilities fαβ
ij = ∑S δsi

α δsj
β P S  predicted by the model are 

equal to frequencies fαβ
ij = 1

N ∑S | ∈ MSAδsi
α δsj

β  measured from a dataset MSA of N 

sequences. By capturing the bivariate marginals, we also capture the pairwise residue 

covariances Cαβ
ij = fαβ

ij − fα
i fβ

j. The fact that there are no third or higher-order terms in the 

Hamiltonian of Eq. 1 is a consequence of the choice to only constrain up to the bivariate 

amino-acid probabilities, and this effectively assumes there are no interaction terms higher 

than second order. There is evidence this assumption is both necessary sufficient to model 

some protein-sequence data [25]. Given an MSA of sequence length L and alphabet of q 

letters, there are 
L
2 q2 bivariate frequencies used as model constraints, although because the 

univariate frequencies fα
i = ∑β fαβ

ij  must be consistent across all pairs and sum to 1 the 

constraints are not independent, and can be reduced to 
L
2 q − 1 2 bivariate plus L(q − 1) 

univariate independent constraints. Maximizing the entropy with these constraints leads to 

an exponential model with the Hamiltonian of Eq. 1. We refer to Refs. [32, 2, 8, 10] for 

additional development and motivation for this maximum entropy derivation.

There is a convenient simplification of Eq. 1, which is motivated through the maximum 

entropy derivation of the Potts model. The number of independent constraints on the 

marginals, θ = L
2 q − 1 2 + L q − 1 , must equal the resulting number of free parameters of 

the model, yet in the formulation of Eq. 1 we defined 
L
2 q2 + Lq model parameters Jαβ

ij , ℎα
i

which means that 
L
2 2q − 1 + L of these must be superfluous. Indeed one can apply “gauge 

transformations” ℎα
i , Jαβ

ij ℎα
i + ai + dα

i , Jαβ
ij + bi + cj − dα

i  for arbitrary constants ai, bi, cj, dα
i

and this only results in a constant energy shift of all sequences and does not change the 

probabilities P(S). The model can be fully specified using the same number of parameters θ 
as there are independent marginal constraints by fixing the “gauge” and eliminating certain 

coupling and field parameters. In particular it is possible to apply gauge transformations 

which set all fields ℎα
i  to 0 by the gauge transformations with dα

i = − ℎα
i . This simplifies the 

mathematical formalism of the Potts model and allows simpler and shorter implementation 

of the MCMC inference algorithm, and from this point we will drop the field terms from all 

equations, and compute the statistical energy as E S = ∑i < jJsisj
ij , and we avoid having to 

store and handle the field parameters in our implementation. This “fieldless” gauge 

transformation only eliminates Lq of the superfluous parameters and further elimination is 

possible, however in practice we find the remainder are difficult to eliminate in such a 
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convenient way. The Mi3-GPU software includes a helper script to transform model 

parameters between a number of commonly used gauges.

The “inverse” problem of solving for the Potts parameters Jαβ
ij  which satisfy the constraints 

fαβ
ij = fαβ

ij
 with given fαβ

ij
 is challenging because of the notoriously difficult problem of 

calculating the partition function Z or of performing the “forward” computation of 

fαβ
ij = 1

Z ∑S δsi
α δsj

β e−E S = ∂logZ
∂Jαβ

ij , since these both involve a sum over qL sequences S 

(unique configurations). This has motivated the various approximate inference strategies 

noted above, for instance in the pseudolikelihood method the partition function is replaced 

by an approximate partition function which is analytically tractable. Monte-Carlo methods 

are another popular approach to estimating partition functions and average values such as 

fαβ
ij , and there is a long history and a wealth of literature on using MCMC for this purpose 

for Ising/Potts systems [33]. MCMC has the advantage noted above that it does not involve 

analytic approximations, but it is computationally costly. A goal of our inference software is 

to optimize inverse Ising inference by MCMC.

3. Algorithm Overview

The goal of the Mi3-GPU software is to identify the coupling parameters Jαβ
ij  which satisfy 

the constraint equations Δf ≡ fαβ
ij − fαβ

ij = 0. where fαβ
ij = ∑S P S δsi

α δsj
β  are the model 

bivariate marginals and fαβ
ij

 are the fixed bivariate marginals computed from the dataset 

MSA. Using a quasi-Newton method we solve for the root of the constraint equations, which 

we show below leads to a coupling-update relation

Jαβ
ij ′ = Jαβ

ij − γ
Δfαβ

ij

fαβ
ij (2)

in the fieldless gauge, where γ is a parameter controlling the step size and Jαβ
ij ′ are the 

updated coupling parameters, and Jαβ
ij  are the trial coupling parameters. Iterating this 

coupling-update equation leads to values of the coupling parameters which satisfy the 

constraint once the algorithm converges. The model bivariate marginals fαβj
ij  are needed to 

evaluate the coupling-update, which we estimate by Monte-Carlo sampling given the trial 

couplings. The Mi3-GPU software performs these computations in two phases as outlined in 

Fig. 2: First, a sequence generation phase in which a “synthetic” MSA is generated by 

MCMC given a set of trial couplings, from which we calculate fαβ
ij . Second, a parameter 

update phase in which the trial couplings are updated using Eq. 2. The algorithm is 

initialized with an initial guess for the trial couplings J0 based on the dataset MSA and the 

two phases are iterated until parameter convergence, which is detected using diagnostics we 

describe below. We will give a high level overview of these two phases here, and we will 

elaborate with details in subsequent sections.
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In the MCMC phase of the inference we aim to efficiently generate a set of N sample 

sequences from the distribution P(S|J) given trial model parameters J. The MCMC phase is 

the main bottleneck of the overall algorithm, and the typical number of samples N is large, 

on the order of N = 104 to 107, for statistical accuracy of the estimated bivariate marginals. 

The underlying MCMC methodology is a straightforward application of the Metropolis-

Hastings algorithm using attempted point-mutations (single-character changes), but 

accelerated for GPUs. A GPU is able to run a large number of “threads” in parallel, and we 

arrange for each thread to carry out a Markov chain walk for a single sequence, so that the 

number of generated sequences equals the number of threads. In each MC step each GPU 

walker attempts a random single-character change causing a change in Potts statistical 

energy ΔE between the initial sequence and the modified sequence, which is used to 

calculate the Metropolis-Hastings acceptance probability, min(1, e−ΔE). All threads on the 

GPU perform an equal number of Markov steps until we have detected that the Markov 

chains have converged to the equilibrium distribution, using a convergence diagnostic 

described below which tests for mixing of the chain energies E(S) relative to each other at 

two time-points. The output of this phase is a set of N statistically independent sequences 

drawn from the distribution P(S|J), from which we estimate fαβ
ij = 1

N ∑S ∈ MSA
N δsi

α δsj
β .

In the second phase we update the trial coupling parameters J based on the discrepancy 

between the dataset MSA bivariate marginals and those of the synthetic MSA, using Eq. 2. 

After updating the couplings we could use these in the next phase of MCMC sequence 

generation, but this would be computationally prohibitive because of the computational cost 

of the MCMC sequence generation. Instead we use a “Zwanzig reweighting” method to 

repeatedly compute updated bivariate marginals based on the new couplings without 

generating a new synthetic MSA. In this method the updated couplings Jαβ
ij ′ are used to 

assign weights wn to each sequence in the synthetic MSA based on the energy of that 

sequence under the new Hamiltonian, chosen so that weighted averages approximate 

thermodynamic averages under the updated Potts Hamiltonian. This allows us to estimate 

the marginals under the new Hamiltonian. This allows many coupling-update steps to be 

computed per MCMC sequence generation run, in practice for hundreds or thousands of 

iterations. This reweighting technique becomes less accurate once the updated coupling 

parameters become different enough from those used to generate the synthetic MSA 

according to criteria we discuss below, at which point we generate a new synthetic MSA 

using MCMC.

3.1. MCMC sequence generation

Here we describe the MCMC algorithm for GPUs in more detail. A GPU contains many 

cores which can run a large number of “threads” in parallel to perform a computation, and as 

described above we have each thread carry out a MCMC walk for a single sequence using 

the Metropolis-Hastings algorithm. Mi3-GPU can use multiple GPUs in parallel across 

multiple compute-nodes using the MPI (Message Passing Interface) standard. We use the 

mwx64x random number generator library for OpenCL to generate trial mutant residues and 

evaluate acceptance [34].
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The main optimization of our implementation is to harness GPU hardware for increased 

parallelization in calculating ΔE for all sequences in each MC step needed to evaluate the 

Metropolis probability, as this is the computational bottleneck of our algorithm. GPUs have 

a much larger number of parallel processors than CPUs, but also have much higher memory 

bandwidth to feed data to the processors and increased opportunity for data-sharing among 

processors. When implementing a parallel algorithm for GPUs one can make choices which 

rebalance processor workload versus data transfer requirements, for instance by tuning data-

sharing among processors and arranging for optimized memory access patterns, and this is 

what we have done for the ΔE calculation. As is typical of GPU software, ours is limited by 

the memory access speed rather than by the arithmetic processor speed, and our main 

optimizations are in memory access. Our implementation does not change the computational 

complexity of the MCMC algorithm, rather it is a parallelization using GPU hardware.

To perform a MCMC step for all N sequences, for each sequence S the value of ΔE is 

computed in a fieldless gauge as a sum over L − 1 coupling change values as

ΔE S, i, α = E Sα
i − E S = ∑

j ≠ i
Jαsj

ij − Jsisj
ij

(3)

for a mutation to residue α at position i. In order to evaluate ΔE for all N sequences in each 

MCMC step, a naive implementation would require loading L − 1 coupling parameters Jαβ
ij , 

which are semi-randomly distributed among all 
L
2 q2 couplings, and L sequence characters 

sj for all N walkers, which can add up to many Gb. We mitigate this on the GPU through 

optimized memory access. A GPU contains memory locations including a large pool of 

“global” memory (often many Gb) with high memory-access latency and small amount of 

“local” memory (often less than 100 Kb) with much lower access latency which can be 

shared among GPU processors. Parameters such as the Jαβ
ij  values must be loaded from 

global memory before they can be used in computations.

Key to our GPU implementation’s performance is the choice to simultaneously mutate the 

same position in all sequences in each step, rather than mutate different random positions in 

each sequence, as this allows for significant data-sharing between processors as well as other 

memory-access optimizations. Specifically, this allows threads on a GPU to share the 

coupling values involving the mutated position in GPU local memory. For each of the L − 1 

terms of the sum in Eq. 3 only the q2 coupling values corresponding to position-pair i, j are 

needed to evaluate all sequences at once, which is small enough to share in the GPU’s local 

memory to share among processors. Additionally, this data-sharing strategy allows a GPU 

memory-access optimization known as “latency hiding”. GPU threads are divided into 

“work groups”, in our case into 512 threads per group. When the local memory requirement 

per work-group is low, as it is here, the GPU can run more work-groups in parallel at once 

leading to higher “GPU occupancy” and the GPU can interleave memory transfers from the 

GPU’s global memory to local memory for some work-groups with computation by other 

work-groups, which hides the global memory access latency. Another important GPU 

optimization is “memory coalescing” which reduces memory latency when consecutive 
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threads in a work-group load consecutive elements of global memory to local memory. By 

using a fieldless gauge and appropriate memory layout, our data-sharing strategy allows the 

memory transfer of the coupling parameters to be carried out in a highly coalesced manner. 

The character sj in Eq. 3 can also be loaded in a coalesced manner by all work-units after 

transposing the MSA in memory so that consecutive memory addresses represent the same 

position in all sequences, i.e. the MSA is represented as an L × N buffer where the N axis is 

the “fast” (consecutive) axis.

The fact that the same position is mutated in all walkers raises the question of whether 

statistical coupling is introduced between the walkers, which would bias our results if this 

led to non-independent samples of the distribution P(S). It can be seen that there is no such 

statistical coupling by considering two walkers evolving over the joint sequence state-space 

(S1, S2) by point mutations. In each step each walker individually attempts a mutation at the 

same random position i to a different random residue with q possibilities, and the two moves 

are separately accepted using the Metropolis-Hastings criterion. The joint-state of the 

outcome may be (S1, S2), S1
iα, S2 , S1, S2

iβ , or S1
iα, S2

iβ  for all q2 possible values of α and 

β, where S1
iα is the first walker’s sequence mutated at position i to residue α. This is a subset 

of the possibilities if the two walkers were allowed to mutate different positions i, j with 

outcome states (S1, S2), S1
iα, S2 , S1, S2

jβ , or S1
iα, S2

jβ  for all α, β, and one finds that the 

ratio of the forward and backward Metropolis rates from each of the restricted (same-

position) final states to the initial state is the same in both schemes. Since we have a 

conservative potential and both schemes are ergodic, they reach equilibrium satisfying 

detailed balance with equal rate-ratios and therefore equal equilibrium probabilities, which 

in the second scheme clearly involves no correlations between walkers.

The MCMC step is Input-Output-bound by the memory transfers of the coupling parameters 

and sequence characters from GPU global to local memory. In order to evaluate a single 

MCMC step for all sequences a total of LN sequence characters (1 byte each) are loaded 

using coalesced loads of 4-byte words, and Lq2 coupling values (4 bytes each) are loaded 

per work-group using coalesced loads, and the number of work-groups is N/w for work-

group size w, for a total transfer of 4NLq2/w bytes for the coupling parameters. The value of 

w affects GPU performance independently of this Input-Output analysis by controlling GPU 

data-sharing and occupancy, and due to program constraints we require it to be a power of 2. 

We find w = 512 is optimal in our tests. This gives a total transfer requirement amortized per 

GPU-walker (divided by N) of L + 4Lq2/w bytes per MCMC step.

In Fig. 3 we benchmark the MCMC sequence generation phase for varied combinations of 

L, q, N on a single NVidia V100 GPU. We use randomly generated coupling parameters, but 

have tested with other coupling parameters and find this choice does not noticeably affect 

the running time. We fit these data by least-squares to the functional aL + b(4Lq2/w) with 

two free scaling parameters a, b reflecting the speed of the sequence character transfers and 

coupling-parameter transfers respectively, which we expect to be differently affected by 

GPU memory access behavior. We find an excellent fit with a = 4.2×10−12 s/step, b = 
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3.1×10−12 s/step. There is some variation due to difficult-to-predict GPU occupancy and 

caching effects for different system sizes.

Additionally, for large number of walkers N we expect GPU occupancy will be high and the 

amortized time per walker will not depend on the number of walkers N, which we observe in 

Fig. 3C. At small N the amortized time per walker increases, suggesting lower occupancy 

and inefficient use of the GPU. This has implications for how to divide work among GPUs 

when multiple GPUs are available. Distributing a fixed amount of walkers among a greater 

number of GPUs allows more walkers to be iterated in parallel, but there are diminishing 

returns to using more GPUs as the number of walkers per GPU becomes low and GPU 

occupancy decreases. For typical protein lengths, Fig. 3C suggests that using about 104 or 

fewer walkers per GPU leads to inefficient GPU usage. Because it is best to use a number of 

walkers which are a power of 2 to maximize GPU occupancy, we recommend arranging to 

use 215 or more walkers per available GPU.

We compare these running times to equivalent running times on CPUs. For the same sets of 

parameters, we run MCMC with a nearly identical parallelized algorithm on CPUs, 

including the same-position optimization using shared memory which also optimizes 

memory access on CPUs. Running on a 20-core Intel(R) Xeon(R) CPU E5–2660 v3 @ 

2.60GHz using 2133 MHz DDR4 memory, we find an average speedup of 90x in amortized 

s/step on the GPU compared to the CPU (Fig. 4). The smallest speedup was 46x for the 

smallest system for q = 4, and the largest speedup was 247x for q = 21, L = 200, which is 

more typical of systems studied using protein covariation analysis. The CPU timings 

increase dramatically for certain large q and L such as L = 200, q > 12, which may be due to 

caching issues as the storage size of the coupling parameters begins to exceed the size of the 

caches on the processor used in these tests. These large system sizes are the ones commonly 

of interest for protein family analysis.

3.2. MCMC Convergence

In order to obtain independent samples from the distribution P(S) from each GPU walker, 

we must run enough MCMC steps for the system to reach a Markov equilibrium. 

Determining how long to run an MCMC simulation so that it has converged is a difficult 

problem [35, 36, 37, 38]. We estimate MCMC convergence by measuring the inter-walker 

lag-t/2 autocorrelation of the walker energies, ρ({E(t)}, {E(t/2)}), where {E(t)} is the vector 

of N walker energies at time t, as illustrated in Fig. 5. We stop when the p-value of the null 

(uncorrelated) expectation of ρ estimated using a Gaussian approximation is greater than a 

cutoff, of 0.2 by default. This strategy takes advantage of the fact that our implementation 

runs a large number (often 104 to 107) MC walkers in parallel, and involves both within-

chain contrasts (the energy of a MCMC chain at two different points) and between-chain 

contrasts (the energy of different chains) which helps avoid issues with convergence 

diagnostics that only depend on one of these [36]. Convergence is detected when the p-value 

is high, so that the within-chain energy variations are similar to the cross-chain variations. 

This diagnostic imposes negligible additional computational cost and only requires 

recording the sequence energies at half the number of steps.
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We note that our MCMC-sampling scheme does not use enhanced-sampling methods such 

as parallel-tempering or Swendsen-Wang algorithm which can be important for obtaining 

convergence of Ising systems near or below a critical effective temperature. We have found 

that protein-family sequence data such as obtained from the Pfam database can be accurately 

fit to Potts models in the high-temperature phase.

4. Quasi-Newton Optimization

After a synthetic MSA has been generated by MCMC, in the parameter update phase we 

update the coupling parameters of the model using Eq. 2, which we derive here. We use a 

quasi-Newton approach to find the root of the constraint equation Δf = 0, following previous 

methodology [20, 24] but using a different “pairwise” approximation leading to the new 

coupling update equation in Eq. 2. The expected change in marginals df due to a change in 

couplings dJ is given to first order by

dfαβ
ij = ∑

k < l, ϕψ

∂fαβ
ij

∂Jϕψ
kl dJϕψl

kl (4)

and by inverting this linear equation we can solve for the step dJ which would give a desired 

df, as dJ = ∂f
∂J

−1
df. This requires inverting the Jacobian matrix whose elements can be 

found from the definition of fαβ
ij  to be

∂fαβ
ij

∂Jϕψ
kl = fαβ

ij fϕψ
kl − fαβϕψ

ijkl
(5)

where fαβϕψ
ijkl  is a 4th-order marginal, which reduces to lower order marginals in the cases 

where the upper indices are equal to each other, and equals 0 in the case that two upper 

indices are equal but the corresponding lower indices are different. This Jacobian is a non-

sparse 
L
2 q2 by 

L
2 q2 matrix, and is too large to invert numerically in a reasonable time.

To invert it we resort to a pairwise approximate inversion, by assuming that residues at each 

pair of positions varies independently of other position-pairs so that each bivariate marginal 

fαβ
ij  depends only on the couplings at the same positions Jαβ

ij  for all α, β, and all other off-

diagonal elements in the Jacobian are 0. This reduces the problem to a set of independent 

pair (L = 2) systems, and in this section we drop the i, j indices. In the L = 2 system there are 

q2 − 1 independent marginals (i.e., all but one of the bivariate marginals due to 

normalization ∑ fαβ = 1), and in the fieldless gauge there are q2 couplings, and thus one 

superfluous parameter. Then Eqs. 5 and 4 simplify to

dfαβ ≈ ∑
ϕψ

fαβfϕψ − fαβδϕ
αδψ

β dJϕψ (6)

and by rearranging we find this is solved (up to a constant due to the gauge freedom) by
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dJαβ = − dfαβ
fαβ

. (7)

We set dfαβ = γ fαβ − fαβ  with step-size factor γ chosen small enough for the linear 

approximation to be valid. This step will reduce the discrepancy between the dataset 

bivariate marginals and the model marginals, and will lead to the optimized solution when 

iterated. Substituting this into Eq. 7 gives the coupling-update relation of Eq. 2.

In practice, we also modify the step direction by adding an extra damping parameter to Eq. 2 

to prevent large step-sizes for coupling parameters corresponding to small sampled values of 

fαβ in the denominator, as Eq. 7 diverges as fαβ → 0. Such large steps would move the 

parameters outside the range of linear approximation we are using, and can prevent smooth 

progress towards the solution. The damping modification is equivalent to adding flat 

pseudocount p to the bivariate marginals, giving pseudocounted marginals 

fαβ = fαβ + p / 1 + pq2 , and substituting these for fαβ in Eq. 7 to obtain a modified step 

direction

dJαβ = − dfαβ
fαβ

= − dfαβ
fαβ + p . (8)

This damped step direction leads to the same solution as the undamped step direction, since 

if Δfαβ = 0 then Δfαβ = 0 and dJαβ = 0, and the inferred solution Jαβ will be independent of 

p. This damping reduces the step size for couplings corresponding to small marginals where 

divergence of Eq. 7 is more likely. We find that it is useful to use a higher value for p such as 

0.01 when the system is far from the solution, and as the system approaches the solution and 

the typical step sizes becomes smaller p can be decreased.

4.1. Zwanzig Reweighting

The marginals required in the update step of Eq. 2 must be determined from a 

computationally demanding MCMC sequence-generation run, but using a Zwanzig 

reweighting approach we evaluate the marginals for small changes in couplings without 

regenerating a new set of sequences, allowing many more approximate coupling update 

steps per round of MCMC generation [21, 22, 23, 24]. Zwanzig reweighting methods use the 

fact that a thermodynamic average under one Hamiltonian is equal to a weighted 

thermodynamic average under a different Hamiltonian. For instance, the model bivariate 

marginals fαβ
ij  are a thermodynamic average over sequences under a Potts Hamiltonian with 

parameters J, but they are also equal to a weighted thermodynamic average over a modified 

Hamiltonian with parameters J′ through the relation

fαβ
ij = ∑

S
δsi

αδsj
β P S J (9)
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= ∑
S

δsi
αδsj

β P S J
P S J′ P S J′ (10)

= ∑
S

δsi
αδsj

β eE S J′ − E S J P S J′ (11)

where the last sum can be seen as a a thermodynamic average under Hamiltonian parameters 

J′ where each sequence is given a weight ws = eΔE ≡ eE(S|J′)−E(S|J).

In Zwanzig reweighting methods, we replace these exact thermodynamic averages by 

approximate averages based on Monte Carlo sampling. Then estimated bivariate marginals 

corresponding to couplings J′ can be computed from a sample of sequences generated using 

couplings J as

fαβ
ij ′ = 1

N′ ∑
S ∈ MSA

N
δsi

αδsj
β eE S J′ − E S J (12)

where N′ = ∑S ∈ MSA
N eE S |J′ − E S |J  is a normalization factor. After computing a coupling 

update using Eq. 2, we can use this relation to compute updated bivariate marginals, and 

then iterate to perform many coupling update steps. Eq. 12 is implemented on the GPU by 

standard histogram or “reduction” techniques.

The accuracy of this approximation decreases as the coupling perturbation increases and the 

overlap between the sequences generated under the original Hamiltonian parameters J and 

sequences which would be generated under J′ becomes small. We estimate this overlap 

using a quantity reflecting the “effective” number of sequences contributing to the average in 

Eq. 12, based on analysis of finite-sampling error. Eq. 12 can be seen as a weighted sum of 

the result of N Bernoulli trials, each trial having a weight ws. The statistical variance in such 

a sum can be shown to be f(1 − f)/N where N = ∑S ws
2/ ∑S ws2 , which is the same as the 

result for an unweighted Bernoulli sum with effective number of sequences N, and N also 

has the desirable property that it is not affected by the gauge transformations of the 

parameters described previously. We iterate Eqs. 2 and 12 while the heuristic condition 

N > 0.9N holds by default, meaning effective number of effective sequences N must be at 

least 90% of N. In practice we find this allows for large numbers of coupling-update steps, 

particularly when the parameters J used to generate the sequences are close to satisfying the 

constraint Δf = 0.

5. Parameter Convergence and Statistical Accuracy

As phases 1 and 2 of the algorithm are iterated the residuals Δfαβ
ij  corresponding to the 

constraint equation will decrease but in practice will not reach 0, and so we use parameter 

convergence diagnostics to decide when to stop the inference procedure. Initially, the 

residuals will correspond to the initial guess for the Hamiltonian parameters, J′. By default, 

the Mi3 software will set the initial J′ to correspond to a “site-independent” model which 
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captures the univariate marginal statistics of the dataset MSA but not the pairwise site 

covariances. This can be computed by choosing field parameters ℎα
i = − logfα

i  and then 

performing a gauge transformation to a fieldless gauge, and this produces a Potts model 

where the bivariate marginals of generated sequences will be fαβ
ij inflep

= fα
i fβ

j
, which are 

different from the dataset bivariate marginal fαβ
ij

. The initial residuals are then 

Δfαβ
ij = fα

i fβ
j − fαβ

ij
 which will reduce in magnitude upon iteration of the algorithm. Our 

software keeps track of different statistics to help judge whether the Potts parameters have 

converged to a solution to the constraint equation, which we describe here.

A simple measure of parameter convergence is the sum-of-squares of the residuals, 

∑ij, αβ Δfαβ
ij 2

. Another common measure is the average relative error for the bivariate 

marginals above 1%, as these correspond to values which are determined from the dataset 

MSA with low relative statistical error, or Ferr = Δfαβ
ij /fαβ

ij
f > 0.01. Our software tracks 

both of these. However, these measures of the model error based on estimated bivariate 

marginals are limited by finite-sampling effects. When estimated from a sample of N 

sequences, the estimated marginal fαβ
ij  has statistical variance fαβ

ij 1 − fαβ
ij /N, reflecting 

multinomial sampling, and this variance affects our algorithm in two ways: First, the 

bivariate marginals of the dataset MSA we wish to fit often have finite-sampling error. This 

causes modelling error and overfitting which we account for in preprocessing steps 

described further below, but otherwise does not affect our parameter convergence 

diagnostics. Second, the bivariate marginals estimated from the synthetic MSAs we generate 

in phase 1 have finite sampling error. The size N of the synthetic MSAs, which is equal to 

the number of GPU walkers, sets a limit on how accurately we can evaluate the residuals Δf. 
For instance we can estimate that the smallest achievable SSR using the chosen number of 

walkers N and the dataset bivariate marginals fαβ
ij

 is min SSR ≈ ∑ij, αβ fαβ
ij 1 − fαβ

ij /N, once 

the model bivariate marginals fαβ
ij  are approximately equal to the dataset marginal fαβ

ij
. 

Likewise, one can approximate min Ferr ≈ 2 1 − f /Nfπ 1/2
f > 0.01, which for example 

for our kinase dataset is 5.6% for N = 10000, which is a large fraction of the initial site-

independent Ferr
0  of 9.6%. This shows why it is desirable to generate synthetic datasets with 

larger N, and shows the limitation of parameter convergence diagnostics based on sampled 

bivariate marginals.

Additionally, we find that parameter convergence diagnostics based on the bivariate 

marginals can be relatively insensitive to changes in the model parameters, so that small 

relative changes in the bivariate marginals, for example of 1%, correspond to relatively large 

changes in the coupling parameters and in the predicted statistical energies of sequences in 

the dataset MSA. This motivates a convergence diagnostic which more directly tracks the 

values of the coupling parameters and sequence energies E(S). One method we have 

developed for this purpose uses a quantity we have previously described called the 
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“covariance energy” given by X = ∑ij Xij, which is a sum of “covariance energy terms” given 

by

Xij = − ∑
αβ

Jαβ
ij Cαββ

ij
(13)

for each position-pair i, j [27]. Here Cαβ
ij = fαβ

ij − fα
i fβ

j are the residue-covariances, which 

equal 0 if the two positions i, j vary independently. The covariance energy can be interpreted 

as the average statistical energy gained by sequences in the dataset MSA due to mutational 

covariances: It is the average difference in statistical energy between the sequences in the 

dataset MSA and those of a “shuffled” or “site-independent” MSA created by randomly 

shuffling each column of the dataset MSA, thus breaking any covariances between columns. 

Mathematically ∑ijXij = −∑ijαβ Jαβ
ij fαβ

ij − −∑ijαβ Jαβ
ij fα

i fβ
j = E S corr − E S indep, 

using a fieldless gauge. The pairwise terms Xij can similarly be interpreted as the statistical 

energy gained due to covariances between columns i and j only, and all covariance energy 

terms are gauge-independent. Because this convergence diagnostic involves average 

sequence energies we expect it to be more sensitive than Ferr, and indeed we find that the 

total covariance energy continues to change significantly even as changes in the SSR or Ferr 

become relatively small (Fig. 6). Thus, convergence of the model parameters may be better 

detected by observing convergence of X to a fixed value after many iterations of the MCMC 

algorithm.

Another convergence diagnostic which depends on the sequence energies rather than the 

bivariate marginals involves the statistical energies of the sequences in the dataset MSA. If 

the inference has converged, then the relative statistical energies of the sequences in the 

MSA should not change significantly upon further updates to the couplings. We measure this 

by the correlation ρ(Ei, E) between the dataset MSA energies E computed with the final 

coupling values and those computed with couplings from previous iterations Ei, a 

computation which is insensitive to constant shifts in energy due to gauge transformations. 

These are shown in Fig. 6C, showing that our model converges to consistent predictions of 

sequence energy, and that this correlation continues to change even when the bivariate 

marginals appear to have converged.

The inference is complete once parameter convergence is determined using these 

diagnostics, and the Potts couplings can be then used in various applications, including 

contact prediction, prediction of mutant fitness effects, and more. In Fig. 6 we show different 

measures of parameter convergence for our L = 232, q = 21 kinase model. The rate of 

parameter convergence depends on model parameters L, q, N and other statistical properties 

of the data which depend on the protein family being fit as described in Ref [27].

6. Error analysis and Preprocessing tools

In the description of the inference procedure above we took the dataset MSA bivariate 

marginals as given, without specifying how they were determined. While the inference 

procedure can be applied to bivariate marginals obtained from arbitrary sources, specific 

types of preprocessing may be necessary for different types of data and to account for 
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different forms of statistical error. Mi3-GPU includes helper tools for preprocessing of 

protein-family data for use in protein covariation analysis in particular, to account for biases 

and statistical error in the sequence data. Some preprocessing steps may only be applicable 

to certain types of sequence data, for instance the phylogenetic corrections described below 

may be needed in analysis of “ancient” protein families, but are often not used for single-

species viral datasets. For this reason, Mi3 implements such functionality as a set of optional 

helper scripts. The helper scripts include methods to compute MSA statistics including 

bivariate marginals with sequence weights accounting for phylogenetic structure, and to 

compute pseudocounts to account for finite sampling error.

6.1. Sequence Weighting and Histogramming

For inference we assume that the sequences in the MSA are independently generated by the 

evolutionary process, but this assumption is violated for certain types of datasets, for 

instance protein-family MSA datasets catalogued in the Pfam database which have 

phylogenetic relationships. A popular method to account for phylogeny by downweighting 

similar (likely related) sequences in the dataset was introduced in the earliest Potts-

covariation analysis implementations, for instance in Ref. [8]. For each sequence in the 

dataset one computes the number of other sequences nS with sequence identity above a 

given threshold θident, which is commonly taken as 20% to 40% of the sequence length. That 

sequence’s weight is then wS = 1/nS, and one interprets Neff = ∑S wS as the “effective” 

number of sequences in the dataset. This strategy is used by most covariation analyses of 

protein-families.

A naive implementation of such pairwise Hamming distance computations requires 
N
2 L

residue comparisons for N sequences with sequence length L, which in practice can take 

longer than the inverse Ising inference itself for large N. As an optimization, we note that 

one can arrange the evaluation order such that after computing all distances to a sequence S 
one computes distances to the sequence S′ most similar to S. Then the sequence identities 

for S′ to the MSA can be computed by updating those for S based only on the positions 

which differ between S and S′. This reduces the number of residue comparisons to 
N
2 LI

where I depends on the range of sequence identities of sequences in the MSA. For our 

kinase dataset this gives a speedup of 7.7x. We provide scripts using this method to more 

efficiently compute sequence weights, pairwise sequence similarity histograms and mean 

sequence identities for an MSA.

6.2. Pseudocounts and Regularization

Finite sampling error is a fundamental source of error or bias in inverse Ising inference, as in 

other inference problems, and is the cause of overfitting [15, 30, 27]. It arises in inverse 

Ising inference when estimating bivariate marginals from finite samples of sequences of size 

N, as described above. Finite sampling causes two different problems we distinguish here: 1. 

Unsampled residue types (the small-sample case), and 2. Overfitting of the training MSA 

sequence energies. We address these two problems using regularization and with 

pseudocounts.
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6.3. Covariation-Preserving Pseudocount

The first problem of unsampled or poorly sampled residues types or characters (low counts) 

causes the relative statistical error to become very large or formally infinite for the 

corresponding couplings, since the relative binomial sample variance (1 − f)/Nf diverges for 

small f. This causes division-by-zero errors when evaluating Eq. 2 and unrealistically makes 

the model predict that such residues are never observed or generated. Similar small-sample 

problems arises in many statistical contexts, and are commonly accounted for using 

pseudocounts.

Here we motivate a particular form of pseudocount suited for covariation analysis. The main 

advantage of this method is that it does not introduce spurious covariances into the data 

where none were present before pseudocounting, as happens with simpler pseudocount 

methods, and that it has a Bayesian interpretation. Avoiding spurious correlations is 

particularly important in protein covariation analysis as detecting the presence or absence of 

covariance is one of the main goals.

This pseudocount is derived as follows. Consider creating a modified sequence dataset 

composed of the original sequences but with a small per-position chance μ of mutating to a 

random residue at each position. For each pair of positions, the probability of mutating both 

positions is μ2, of mutating only the first position μ(1 − μ), and of no mutation is (1 − μ)2, 

and so the modified bivariate marginals, which we will use as our pseudocounted marginals, 

are

fαβ
ij

pc = 1 − μ 2fαβ
ij + 1 − μ μ

q fα
i + fβ

j + μ2

q2 (14)

and by summing over β the pseudocounted univariate marginals are

fα
i

pc = 1 − μ fα
i + μ

q (15)

This pseudocount uniformly scales down the pairwise covariances as we obtain 

Cαβ
ij

pc = 1 − μ 2Cα
ij, where, Cαβ

ij = fαβ
ij − fα

i fβ
j
 and so it preserves the relative strength of all 

covariances, and any pairs whose covariance was previously 0 remains 0.

We choose the pseudocount parameter μ based on a Bayesian analysis of the univariate 

marginals. Eq. 15 can be rewritten as fα
i

pc =
nαi + p
N + qp  where N is the sample size, nαi = Nfα

i

is the sample count for residue i, α, and p is a pseudocount, using the transformation μ = 

qp/(N +qp). This is the formula used to apply a flat pseudocount p to all the univariate 

counts and renormalize so the marginals sum to 1. It is also the expected value of the 

conjugate prior distribution of the multinomial distribution (the Dirichlet distribution) 

resulting from N Bernoulli trials with p “pseudo-observations”, which models the finite-

sampling procedure which produced the MSA. In Bayesian analysis, different choices of p 
correspond to well-known prior distributions on the marginals, for instance p = 1 is known 

as the “Bayes” prior and p = 0.5 is a “Jeffrey’s” prior. Choosing one of these priors with 
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corresponding μ, Eq. 14 yields a set of pseudocounted bivariate marginals whose univariate 

marginals are statistically consistent with the MSA and Bayesian prior, and which also 

preserve the covariance structure of the MSA.

We contrast this method with that of adding a small flat pseudocount (e.g. of 1/N) to the 

bivariate marginals, which is equivalent to adding a small number of completely random 

sequences to the original sequence dataset. Such a flat pseudocount will modify the relative 

strength of covariances in the MSA among different residues and positions and can 

introduce covariances where there were none before. In Fig. 7 we compare how different 

pseudocount strategies help correct for finite sampling error in marginals estimated from a 

small sample of 1000 sequences from out Potts model, compared to “exact” or reference 

marginals estimated from a sample of 4 × 106 sequences with very low sampling error. 

When no pseudocount is used (left panel), 62% of the estimated marginals are measured to 

be exactly 0, or never observed. When using either a flat pseudocount or our covariant 

pseudocount, these marginals now have a small but nonzero value, which helps fix issues 

with 0 observed counts. Furthermore, the pseudocount of Eq. 14 more accurately estimates 

the value of small bivariate marginals in the lower left area of the plot (right panel).

6.4. Regularization

The other finite-sampling problem is due to ill-conditioning of the inverse Ising problem and 

to overfitting of the sequence likelihoods P(S) of sequences in the dataset MSA. This 

problem can occur even if there are no “small sample” problems as described above, and 

arises due to the collective effect of statistical biases in each model parameter.

Finite sampling and overfitting occur when the dataset MSA has too few sequences, and in 

Ref. [27] we found that the magnitude of this effect can be measured by a parameter called 

the “signal-to-noise” ratio (SNR) which can be approximated as SNR ~ Nχ2/θ, where θ is 

the number of model parameters as described above, which depends on the sequence length 

L, alphabet size q, dataset MSA depth (number of sequences) N, and a measure of sequence 

conservation χ. This value may be large (meaning little overfitting) even if the number of 

sequences N is much smaller than the number of model parameters θ.

Finite sampling error and overfitting can be corrected by various strategies collectively 

called “regularization”. Often the choice of regularization strategy depends on prior beliefs 

about the structure of the data, for example some forms of regularization should be used if 

the interactions are expected to be “sparse” [15]. A common regularization strategy is to add 

ℓ1 or ℓ2 regularization terms on the coupling parameters to the loss function implicitly used in 

our derivation above, which is ℒ = 1/N log∏S ∈ MSA P(S) and which is minimized when 

the constraint equation is zero as ∂ℒ
∂Jαβ

2j = Δfαβ`
ij = 0. Our software implements both of these 

regularization strategies as options by either adding an ℓ1 term R = ∑ijαβ Jαβ
ij  or an ℓ2 term 

R = ∑ijαβ Jαβ
ij 2

 to the likelihood. These regularization terms are gauge-dependent, and our 

software implements them in the “zero-mean” gauge which satisfies ∑αJαβ
ij = 0 as in 

previous publications [10, 16, 39].
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Here we also summarize a different regularization strategy which we have previously 

developed [27], which is to add a regularization term R = ∑ij γijXij to the loss function, for 

regularization strengths γij which may differ for each position-pair. This strategy has the 

advantage that it is gauge-independent, and we can tune it to match the expected statistical 

error in our datasets due to finite sampling. This strategy can be shown to be equivalent to 

performing MCMC inference using biased bivariate marginals as 

fαβ
ij = 1 − γij fαβ

ij + γijfα
i fβ

j
, where fαβ

ij
 refers to the marginals sampled from the MSA, fαβ

ij

to the biased marginals, and fαβ
ij  to the marginals of the Potts model. Varying γij from 0 to 1 

interpolates between the MSA bivariate marginals and the corresponding site-independent 

bivariate marginals. This bias, which behaves effectively like a pseudocount proportional to 

the univariate marginals, preserves the univariate marginal constraints while weakening 

potentially spurious correlations caused by finite sampling error since Cαβ
ij  becomes 0 when 

γij = 1, and can be implemented as a preprocessing step without needing to modify the 

MCMC algorithm.

We choose γij such that the discrepancy between the observed marginal and biased marginal 

is equal to that expected due to sampling error, if one were to take a sample of size N from 

the biased marginals. That is, based on the discrepancy between the observed marginals fαβ
ij

and the biased marginals fαβ
ij , measured using the “Kullback-Leibler” (KL) divergence 

KL fαβ, fαβ = ∑αβ fαβlog fαβ /fαβ . We choose the highest value γij such that the expected 

discrepancy E KL Fαβ, fαβ ≥ KL fαβ, fαβ , where Fαβ are sample marginals drawn from a 

multinomial distribution around fαβ with sample size N. This inequality can be solved 

numerically for γij by various means, as discussed in Ref. [27]. This should produce a 

regularized model which has statistical consistency with the observed MSA.

6.5. Conclusions

We have presented a GPU-optimized method for solving the inverse Ising problem using 

Markov-Chain Monte-Carlo with focus on its application to protein-covariation analysis. 

The method involves two components: First, a parallel MCMC simulation on the GPU to 

generate synthetic MSAs given a set of trial Potts Hamiltonian parameters Jαβ
ij , and second, a 

parameter-update method accelerated using Zwanzig reweighting techniques. The 

implementation of the MCMC on the GPU gives a large speedup of 247x compared to a 

multicore CPU for the GPU and CPU we tested, for datasets most similar to those examined 

in practice such as protein families catalogued in the Pfam database. Using Zwanzig 

reweighting techniques, we accelerate parameter convergence by allowing large numbers of 

coupling updates to be performed for each round of MCMC sequence generations. We 

developed diagnostics to detect the convergence of the MCMC phase of the inference, as 

well as convergence of the model parameters to the solution of the inverse Ising problem as 

the algorithm is iterated. We also provide helper scripts for preparing datasets for use in 

protein covariation analysis. While our method is designed to model of protein family 

datasets for which enhanced-sampling techniques appear to be generally unnecessary, the 

software could be improved in the future to use techniques such as parallel tempering to 
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allow inference in more challenging parameter regimes or types of datasets where these are 

necessary.
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Figure 1: 
Example applications of covariation analysis possible using Mi3-GPU. (A) Example of 

contact prediction in protein structure for the protein family used in this study. Dark points 

in the upper triangle of this contact map are i, j pairs with a strong Potts interaction score 

predicted using Mi3-GPU. The lower triangle shows contact frequency observed in 

structures in the PDB with a 6Å side-chain cutoff distance, with excellent agreement. (B) 

The models inferred by this method accurately reconstruct MSA statistical properties which 

are not directly fit. Top: The distribution of Hamming distances between all pairs of 

sequences in an MSA generated by the model is the same as for the dataset MSA and unlike 

that of an MSA generated using a site-independent model. Bottom: MSAs generated from 

the model reproduce the higher-order marginals (subsequence frequencies) in the data as far 

as finite-sampling limitations allow us to verify. This suggests the sufficiency of pairwise 

Potts models to model protein sequence variation, as discussed in Ref. [25]. The y-axis 

reflects the average Pearson correlation in model marginal predictions with dataset 

marginals. The estimated finite-sample verification limit is shown in black as in Ref. [25]. 

Inset: The pairwise residue covariations Cαβ
ij  are very accurately reproduced in generated 

sequences. (C) Top: A Potts model fit to only 10,000 sequence generated from a “reference” 

model predicts their fitnesses (statistical energy) compared to the reference fitness, showing 

that our method is resilient to finite-sampling errors as discussed in ref [27]. Bottom: Potts 

computations of mutation effects in HIV protease predict experimental replicative capacity 

measurements from Ref. [28] as discussed in Ref. [26]. (D) Potts models predict complex 

background-dependent statistics of individual sequences. Top: The Potts model can classify 

which sequences are likely to have a particular residue at a position based on knowledge of 

the rest of the sequence, discussed in Ref. [29], and accurately predicts the observed residue 

frequencies in each classified sequence group. Bottom: The Potts model predicts the bias for 

of reversion of a primary drug-resistance mutants in HIV protease sequences due to 

accessory drug-resistance mutations by computing the statistical energy change ΔE caused 

by reversion, as discussed in Ref. [26]. In sequences with ΔE > 0 the drug-resistance 

mutation is “entrenched” and difficult to revert.
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Figure 2: 
Schematic of the computational strategy used by Mi3-GPU for inverse Ising inference. The 

algorithm alternates between a sequence generation phase (top of diagram) and a parameter-

update phase (bottom of diagram). See text for details.
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Figure 3: 
Performance of MCMC sequence generation as a function of L, q and N on an NVidia V100 

GPU, measured as the amortized MCMC step running time per GPU-walker. Each datapoint 

(colored lines) is an average of 3 runs, and the error bars are too small to see. The dotted 

black lines show a least-squares fit to the expected memory transfer requirements (see text). 

(A) The running time per walker increases linearly with L, and (B) weakly quadratically 

with q, where in these panels N is held fixed at N ~ 2 × 106, and very similar results are 

obtained for smaller values of N. (C) The amortized running time per walker levels off to its 

minimum for large N with where the MCMC generation is most efficient, using q = 16.
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Figure 4: 
Performance of the MCMC phase of the algorithm on the GPU compared to the CPU, 

computed as the CPU to GPU ratio of the amortized MCMC step running times, using N ~ 2 

× 106.
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Figure 5: 
Autocorrelation ρ({E(t)}, {E(t/2)}) of the walker energies for a Kinase Potts model as a 

function of Monte Carlo step, which we use a convergence diagnostic. Convergence is 

detected once the p-value of the correlation reaches 0.2, which occurs at the right end of this 

plot. The number of sequence energies is N ~ 106.
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Figure 6: 
Comparison of parameter convergence diagnostics, as a function of MCMC step for the 

kinase model inference. This inference was done in two stages: First, a smaller synthetic 

MSA of size N = 217 ~ 1 × 105 was used until MCMC step 192, after which N was increased 

to 219 ~ 5 × 105. ℓ1 regularization was used with a strength of λ = 0.00025. (A) The SSR. 

This levels off to a value of ~ 0.6 until we increase the synthetic MSA size where it lowers to 

0.3. (B) Ferr (C) The covariance energy X. This continues to decrease even after the bivariate 

diagnostics from panels A and B have leveled off. (D) Dataset energy correlations ρ(Ei, E) 

(see text), which level off suggesting parameter convergence.
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Figure 7: 
Comparison of pseudocounting strategies to estimate bivariate marginals from a small 

sample of 1000 sequences, compared to the “exact” or true value of the marginal. Histogram 

bins are colored according to the logarithm of the bin count. Left: Marginals computed 

without pseudocounts. Middle: Marginals computed using a flat pseudocount of 0.5/qN, 

which also function as a Jeffrey’s prior on the univariate marginals. Right: Marginals 

computed using the covariant pseudocount of Eq. 14 with p = 0.5 which also function as a 

Jeffrey’s prior on the univariate marginals, showing ability to reconstruct bivariate marginals 

corresponding to unsampled residue-pairs. In all panels, the Wilson score interval is shown 

in red for 2 standard deviations to illustrate the magnitude of finite-sampling error for 1000 

sequences. Marginals corresponding to 0 counts are show below the dotted gray line.
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