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Abstract

Our work expands the use of capsule networks to the task of object segmentation for the first time 

in the literature. This is made possible via the introduction of locally-constrained routing and 

transformation matrix sharing, which reduces the parameter/memory burden and allows for the 

segmentation of objects at large resolutions. To compensate for the loss of global information in 

constraining the routing, we propose the concept of “deconvolutional” capsules to create a deep 

encoder-decoder style network, called SegCaps. We extend the masked reconstruction 

regularization to the task of segmentation and perform thorough ablation experiments on each 

component of our method. The proposed convolutional-deconvolutional capsule network, 

SegCaps, shows state-of-the-art results while using a fraction of the parameters of popular 

segmentation networks. To validate our proposed method, we perform experiments segmenting 

pathological lungs from clinical and pre-clinical thoracic computed tomography (CT) scans and 

segmenting muscle and adipose (fat) tissue from magnetic resonance imaging (MRI) scans of 

human subjects’ thighs. Notably, our experiments in lung segmentation represent the largest-scale 

study in pathological lung segmentation in the literature, where we conduct experiments across 

five extremely challenging datasets, containing both clinical and pre-clinical subjects, and nearly 

2000 computed-tomography scans. Our newly developed segmentation platform outperforms other 

methods across all datasets while utilizing less than 5% of the parameters in the popular U-Net for 

biomedical image segmentation. Further, we demonstrate capsules’ ability to generalize to unseen 

handling of rotations/reflections on natural images.
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1. Introduction

The task of segmenting objects from images can be formulated as a joint object recognition 

and delineation problem. The goal in recognition is to locate an object’s presence in an 

image, whereas delineation attempts to draw the object’s spatial extent and composition 

(Bagci et al., 2012). Solving these tasks jointly (or sequentially) results in partitions of non-

overlapping, connected regions, homogeneous with respect to some signal characteristics. 

Object segmentation is an inherently difficult task; apart from recognizing the object, we 

also have to label that object at the pixel level, which is an ill-posed problem.

Segmentation is of significant importance in biomedical image analysis, aiding systems 

focused on localizing pathologies (A. El-Baz et al., 2006), tracking disease progression (Xu 

et al., 2019), characterizing anatomical structure and defects (Farag et al., 2005), and many 

more (Elnakib et al., 2011). Due to its significance is many applications, segmentation is an 

essential part of most computer-aided diagnosis (CAD) systems, where the functionality of 

such systems can be heavily dependent on the accuracy of the segmentation module. 

Medical image segmentation brings its own set of unique challenges. Many anatomical 

structures vary significantly across individuals, with the presence of pathologies adding an 

additional layer of variation and complexity. Further, scanner artifacts and other noise can 

make the segmentation suboptimal. Recently convolutional neural network (CNN) 

methodologies have dominated the segmentation field, both in computer vision and medical 

image segmentation, most notably U-Net for biomedical image segmentation (Ronneberger 

et al., 2015), due to their remarkable predictive performance.

1.1. Drawbacks of CNNs and How Capsules Solve Them

The CNNs, despite showing remarkable flexibility and performance in a wide range of 

computer vision tasks, do come with their own set of flaws. Due to the scalar and additive 

nature of neurons in CNNs, neurons at any given layer of a network are ambivalent to the 

spatial relationships of neurons within their kernel of the previous layer, and thus within 

their effective receptive field of the given input. Feature maps in CNNs only contain scalar 

values, whether or not a given feature is present at each scalar location. These maps are 
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created from one layer to the next by multiplying each previous layer feature map by a set of 

kernel, then summing their activations to designate the presence/absence of the next higher-

level feature. Since CNNs only have the ability to add presence activations within local 

kernels, higher-level neurons can only identify features within their effective receptive fields, 

but they cannot describe those feature in any way (e.g. precise location information, pose, 

deformation, etc.) To address this significant shortcoming, Sabour et al. (2017) introduced 

the idea of capsule networks, where information at the neuron level is stored as vectors, 

rather than scalars. These vectors contain information about:

1. spatial orientation and location information,

2. magnitude/prevalence, and

3. other attributes of the extracted feature

represented by each capsule type of that layer. This solves the previous issue of precise 

spatial localization in CNNs because capsule vectors can now additionally rate-code the 

exact position within the effective receptive field of the already place-coded vectors within 

the dimensions of those vectors. These sets of neurons, henceforth referred to as capsule 

types, are then “routed” to capsules in the next layer via a dynamic routing algorithm which 

takes into account the agreement between these capsule vectors, thus forming meaningful 

part-to-whole relationships not found in standard CNNs.

The overall goal of this study is to extend capsule networks and the dynamic routing 

algorithm to accomplish the task of object segmentation for the first time in the literature. 

We hypothesize that capsules can be used effectively for object segmentation with high 

accuracy and heightened efficiency compared to the state-of-the-art segmentation methods. 

To show the efficacy of the capsules for object segmentation, we choose a challenging 

application of pathological lung segmentation from computed tomography (CT) scans, 

where we have analyzed the largest-scale study of data obtained from both clinical and pre-

clinical subjects, comprising nearly 2000 CT scans across five datasets and muscle and 

adipose (fat) tissue segmentation from magnetic resonance imaging (MRI) scans of three 

different contrasts obtained from a cohort of 50 patients (150 scans). We chose pathological 

lung segmentation for its obvious life-saving potential and unique challenges such as high 

intra-class variation, noise, artifacts and abnormalities, and other reasons discussed in 

Section 2. The additional experiments on muscle and adipose (fat) tissue segmentation 

compliment these first experiments both in the modality of the imaging technology used 

(MRI vs. CT) and anatomical structure. To further demonstrate the general applicability of 

our methods, we also provide proof-of-concept results for rotations/reflections on standard 

computer vision images showing, the ability of a capsule-based segmentation network to 

generalize to unseen poses of objects, a strong motivation for choosing capsule networks 

over CNNs in segmentation applications.

1.2. Building Blocks of Capsules for Segmentation

Performing object segmentation with a capsule-based network is extremely difficult due to 

the added computational cost of storing and routing vector representations, rather than 

scalars. The original capsule network architecture and dynamic routing algorithm is 
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extremely computationally expensive, both in terms of memory and run-time. Additional 

intermediate representations are needed to store the output of “child” capsules in a given 

layer while the dynamic routing algorithm determines the coefficients by which these 

children are routed to the “parent” capsules in the next layer. This dynamic routing takes 

place between every parent and every possible child. One can think of the additional 

memory space required as a multiplicative increase of the batch size at a given layer by the 

number of capsule types at that layer. The number of parameters required quickly swells 

beyond control as well, even for trivially small inputs such as MNIST and CIFAR10. For 

example, given a set of 32 capsule types with 6 × 6, 8D-capsules per type being routed to 10 

× 1, 16D-capsules (as is the case in CapsNet), the number of parameters for this layer alone 

is 10 × (6 × 6 × 32) × 16 × 8 = 1,474,560 parameters. This one layer contains, 

coincidentally, roughly the same number of parameters as our entire proposed deep 

convolutional-deconvolutional capsule network with locally-constrained dynamic routing 

which itself operates on up to 512 × 512 pixel inputs. To scale the original CapsNet up to 

512 × 512, without these novelties, would require 512 × 512 × 32 × 8 × 512 × 512 × 10 × 16 

= 2814749767106560 parameters and hence over 10 million GB of memory to store the 

parameters alone.

We solve this memory burden and parameter explosion by extending the idea of 

convolutional capsules (primary capsules in Sabour et al. (2017) are technically 

convolutional capsules without any routing) and rewriting the dynamic routing algorithm in 

two key ways. First, children are only routed to parents within a defined spatially-local 

kernel. Second, transformation matrices are shared for each member of the grid within a 

capsule type but are not shared across capsule types. To compensate for the loss of global 

connectivity with the locally-constrained routing, we extend capsule networks by proposing 

“deconvolutional” capsules which operates using transposed convolutions, routed by the 

proposed locally-constrained routing. These innovations allow us to still learn a diverse set 

of different capsule types while dramatically reducing the number of parameters in the 

network, addressing the memory burden. Also, with the proposed deep convolutional-

deconvolutional architecture, we retain near-global contextual information and produce 

state-of-the-art results for our given applications. Our proposed SegCaps architecture is 

illustrated in Figure 2. As a comparative baseline, we also implement a simple three-layer 

capsule structure, more closely following that of the original capsule implementation, shown 

in Figure 1.

1.3. Summary of Our Contributions

The novelty of this paper can be summarized as follows:

1. Our proposed SegCaps is the first use of a capsule network architecture for 

object segmentation in literature.

2. We propose two technical modifications to the original dynamic routing 

algorithm where (i) children are only routed to parents within a defined spatially-

local window and (ii) transformation matrices are shared for each member of the 

grid within a capsule type. These modifications, combined with convolutional 

capsules, allow us to operate on large images sizes (up to 512 × 512 pixels) for 
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the first time in literature, where previous capsule architectures typically do not 

exceed inputs of 32 × 32 pixels in size.

3. We introduce the concept of ”deconvolutional” capsules and create a novel deep 

convolutional-deconvolutional capsule architecture, far deeper than the original 

three-layer capsule network, implement a three-layer convolutional capsule 

network baseline using our locally-constrained routing to provide a comparison 

with our SegCaps architecture, and extend the masked reconstruction of the 

target class as a method for regularization to the problem of segmentation as 

described in Section 3.

4. We validate the efficacy of SegCaps on the largest-scale study for pathological 

lung segmentation in the literature, comprising five datasets from both clinical 

and pre-clinical subjects with nearly 2000 total CT scans, and 150 MRI scans at 

three different contrasts for thigh muscle and adipose (fat) tissue segmentation. 

For lung segmentation, our proposed method produces improved results in terms 

of dice coefficient and Hausdorff distance (HD), when compared with state-of-

the-art methods U-Net (Ronneberger et al., 2015), Tiramisu (Jégou et al., 2017), 

and P-HNN (Harrison et al., 2017), while dramatically reducing the number of 

parameters needed to achieve this performance. The proposed SegCaps 
architecture contains 4.6% of the parameters of U-Net, 9.5% of P-HNN, and 

14.9% of Tiramisu. Thorough ablation studies are also performed to analyze the 

contribution and effect of several experimental settings in our proposed model. In 

particular, there is no other study to conduct fully-automated deep learning based 

pre-clinical image segmentation due to the extreme levels of variation in both 

anatomy and pathology present in animal subjects, the large number of high-

resolution slices per scan with typically high levels of noise and scanner artifacts, 

as well as the sheer difficulty in even establishing ground-truth labels compared 

to human-subject scans.

1.4. Preliminary Non-Archival SegCaps Study

In a preliminary non-archival study, we introduced the first-ever capsule-based segmentation 

network in the literature, which we named SegCaps (LaLonde and Bagci, 2018). This initial 

study demonstrated the ability of SegCaps to perform on-par with state-of-the-art CNNs on 

the task of pathological lung segmentation from a dataset of CT scans. However, the study 

was extremely limited in a number of regards: 1) The ground-truth for the dataset was 

provided by an automated algorithm, raising concerns of similar biases/errors in the 

proposed algorithm existing within the ground-truth; 2) Results were only presented in terms 

of Dice scores which do not accurately capture the quality of the segmentation boundaries 

for the large lung fields; 3) The amount of pathology present in LUNA challenge dataset was 

fairly limited, targeted at lung nodule detection, rather than segmentation. In this journal 

extension of our non-archived work, we significantly extend the applications of SegCaps to 

better demonstrate its generalization abilities and versatility, performing segmentation in 

both CT and MRI on a wide range of anatomical structures. We obtained radiologist 

provided annotations for five large-scale pathological lung datasets from both clinical and 

preclincal subjects covering a wide range of pathologies, as well as dataset of three different 
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MRI contrasts for segmenting muscle and adipose (fat) tissue. We also perform a set of 

experiments to show a capsule-based segmentation network can better handle changes to 

viewpoint than a CNN-based approach.

2. Background and Related Works

Object segmentation in the medical imaging and computer vision communities has remained 

an interesting and challenging problem over the past several decades. Early attempts in 

automated object segmentation were analogous to the if-then-else expert systems of that 

period, where the compound and sequential application of low-level pixel processing and 

mathematical models were used to build-up complex rule-based systems of analysis 

(Horowitz and Pavlidis, 1974; Rosenfeld and Kak, 1982). In computer vision fields, 

superpixels and various sets of feature extractors such as scale-invariant feature transform 

(SIFT) (Lowe, 1999) or histogram of oriented gradients (HOG) (Dalal and Triggs, 2005) 

were used to construct these spaces. Specifically in medical imaging, methods such as level 

sets (Vese and Chan, 2002), fuzzy connectedness (Udupa and Samarasekera, 1996), graph-

based (Felzenszwalb and Huttenlocher, 2004), random walk (Grady, 2006), and atlas-based 

algorithms (Pham et al., 2000) have been utilized in different application settings. Over time, 

the community came to favor supervised machine learning techniques, where algorithms 

were developed using training data to teach systems the optimal decision boundaries in a 

constructed high-dimensional feature space.

In the last few years, deep learning methods, in particular convolutional neural networks 

(CNNs), have become the state-of-the-art for various image analysis tasks (Ren et al., 2015; 

He et al., 2016, 2017; Huang et al., 2017; Hu et al., 2018). Specifically related to the object 

segmentation problem, U-Net (Ronneberger et al., 2015), Fully Convolutional Networks 

(FCN) (Long et al., 2015), and other encoder-decoder style CNNs have become the desired 

models for various medical image segmentation tasks. Most recent attempts in the computer 

vision and medical imaging literature utilize the extension of these methods to address the 

segmentation problem (Zhao et al., 2017; Chen et al., 2018b; Yang et al., 2018).

2.1. CNN-Based Segmentation

The object segmentation literature is vast, both before and in the deep learning era. Herein, 

we only summarize the most popular deep learning-based segmentation algorithms. Based 

on FCN (Long et al., 2015) for semantic segmentation, U-Net (Ronneberger et al., 2015) 

introduced an alternative CNN-based pixel label prediction algorithm which forms the 

backbone of many deep learning-based segmentation methods in medical imaging today. 

Following this, many subsequent works follow this encoder-decoder structure, 

experimenting with dense connections, skip connections, residual blocks, and other types of 

architectural additions to improve segmentation accuracy for particular imaging 

applications. For instance, a recent example by Jégou et al. (2017) combines a U-Net-like 

structure with the very successful DenseNet (Huang et al., 2017) architecture, creating a 

densely connected U-Net structure, called Tiramisu. Other successful frameworks for 

segmentation and their specific innovations are the following.
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SegNet (Badrinarayanan et al., 2017) attempts to improve the upsampling process by 

performing “unpooling”, capturing the pooling indices from the max pooling layers in the 

encoder to more accurately place features in the decoder feature maps. Although the 

encoder-decoder structure is specifically designed to capture global context information, 

several methods attempt to further improve this global context in different ways. RefineNet 

(Lin et al., 2017) fuses features from multiple resolutions through adding residual 

connections and chained residual pooling to create a large cascaded encoder-decoder 

structure. PSPNet (Zhao et al., 2017) introduces a pyramid pooling module by pooling at 

different kernel sizes and concatenating back to the features maps. Large Kernel Matters 

(Peng et al., 2017) uses large 1 × 15 + 15 × 1 and 15 × 1 + 1 × 15 global convolution 

networks. ClusterNet (LaLonde et al., 2018) combines two fully-convolutional networks, 

one to capture global and one for local information, to segment specifically a large number 

of densely packed tiny objects, normally lost in networks with pooling. DeepLab (Chen et 

al., 2018a) utilizes an atrous spatial pyramid pooling (ASPP) unit to better capture image 

context from multiple scales. The latest version of DeepLab (v3+) (Chen et al., 2018b) 

follows a very similar structure to U-Net with the addition of an ASPP for image context and 

depthwise separable convolutions for efficiency.

2.2. Segmentation in Biomedical Imaging

As mentioned in Section 1, segmentation is of critical importance as a first stage in many 

biomedical imaging applications. Though well motivated, performing segmentation within 

biomedical imaging introduces a number of unique challenges, including handling many 

different imaging modalities anatomical structures, and potential deformities/abnormalities 

caused by a wide range of reasons. Further, imaging data across different applications can be 

2D, 3D, and even 4D, requiring unique considerations. Multi-view networks, such as 

(Mortazi et al., 2017a), remain a popular approach to handling imaging data with more than 

two dimensions. 3D networks such as 3D U-Net (Çiçek et al., 2016) and V-Net (Milletari et 

al., 2016) have also gained recent popularity based off the highly successful U-Net 

(Ronneberger et al., 2015). Nonetheless, due to a combination of limited GPU memory and 

the desire to exploit existing pretrained models, majority of the literature uses 2D network 

and analyzes 3D data in a slice-wise manner. In this study, we focus on two of the most 

commonly investigated imaging modalities, namely CT and MRI, and detail the specific 

related works to those applications in the following paragraphs.

2.3. Pathological Lung Segmentation from CT

Anatomy and pathology segmentation have been central to the most medical imaging 

applications. Despite its importance, accurate segmentation of pathological lungs from CT 

scans remains extremely challenging due to a wide spectrum of lung abnormalities such as 

consolidations, ground glass opacities, fibrosis, honeycombing, tree-in-buds, and nodules. 

Specifically developed for pathological lung segmentation, Mansoor et al. (2014) created a 

two-stage approach based on fuzzy connectedness and texture features, incorporating 

anatomical information by segmenting the rib-cage. Most recently, Harrison et al. (2017) 

developed P-HNN, which achieved very strong results on a subset of three clinical datasets 

by modifying the Holistically-Nested Network (HNN) (Xie and Tu, 2015) structure to 

progressively sum side-output predictions during the decoder phase. In this study, we test the 
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efficacy of the proposed SegCaps algorithm for pathological lung segmentation due to 

precise segmentation’s importance as a precursor to the deployment of nearly any computer-

aided diagnosis (CAD) tool for pulmonary image analysis.

2.4. Muscle and Adipose (Fat) Tissue Segmentation from MRI

A number of applications favor MRI as the primary imaging modality, including most 

popularly cardiac applications. For example, Mortazi et al. (2017b) proposed a multi-view 

CNN, following an encoder-decoder structure and adding a novel loss function, for 

segmenting the left atrium and proximal pulmonary veins from MRI. Body composition 

analysis (e.g. segmenting/quantifying muscle and adipose (fat) tissue) favors MRI as well, 

due to its excellent soft tissue contrast and lack of ionizing radiation. In Irmakci et al. 

(2018), the authors proposed a method based on fuzzy connectivity to perform segmentation 

of muscle and fat tissue of the thigh region of whole-body MRI scans. This work represents 

the current state of the art results in terms of Dice score.

2.5. Capsule Networks

A simple three-layer capsule network, called CapsNet, showed remarkable initial results in 

Sabour et al. (2017), producing state-of-the-art classification results on the MNIST dataset 

and relatively good classification results on the CIFAR10 dataset. Since then, researchers 

have begun extending the idea of capsule networks to other applications, including brain-

tumor clsassification (Afshar et al., 2018), lung-nodule screening (Mobiny and Van Nguyen, 

2018), action detection (Duarte et al., 2018), point-cloud autoencoders (Zhao et al., 2019), 

adversarial detection (Frosst et al., 2018; Qin et al., 2019), and even creating wardrobes 

(Hsiao and Grauman, 2018), as well as several technical contributes to improve the routing 

mechanism for datasets such as MNIST, CIFAR10, SVHN, SmallNorb, etc. (Hinton et al., 

2018; Kosiorek et al., 2019). Nonetheless, the majority of these works remain focused on 

small image classification, and no work yet exists in literature for a method of capsule-based 

object segmentation.

The remainder of the paper is organized as follows: Section 1.2 introduces the locally-

constrained dynamic routing and transformation matrix sharing which are the key building 

blocks for our method; Section 3 describes our proposed SegCaps framework in detail, 

including the deconvolutional capsules and reconstruction regularization for segmentation. 

The network is a deep encoder-decoder architecture with skip connections concatenating 

together capsule types from earlier layer with the same spatial dimensions. The input and 

outputs shown are from the task of muscle segmentation from MRI scans of patient’s thighs. 

segmentation; Section 4.3 details the five experimental datasets, our implementation settings 

(e.g. hyperparameters), and the results of our main experiments; Section 5 covers the 

ablation studies performed which help to determine the contribution of each aspect of our 

proposed method to the final results; and finally Section 6 is the discussion and conclusions 

of our work. Experimental results of our method applied to other types of imaging data and 

applications to provide empirical support for the general applicability of our study are 

included in the appendix.
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3. SegCaps: Capsules for Object Segmentation

In the following section, we describe the formulation of our SegCaps architecture. As 

illustrated in Figure 2, the input to our SegCaps network is a large image (e.g. 512 × 512 

pixels), in this case, a slice of a MRI Scan. The image is passed through a 2D convolutional 

layer which produces 16 feature maps of the same spatial dimensions. This output forms our 

first set of capsules, where we have a single capsule type with a grid of 512 × 512 capsules, 

each of which is a 16 dimensional vector. This is then followed by our first convolutional 

capsule layer. In the following, we generalize the process of our convolutional capsules and 

routing to any given layer l in the network.

At layer l, there exists a set of capsule types

T l = t1l, t2l, …, tnl ∣ n ∈ ℕ . (1)

For every til ∈ T l, there exists an ℎl × wl grid of zl-dimensional child capsules,

C = c1, 1, …, c1, wl, …, cℎl, 1, …, cℎl, wl , (2)

where ℎl × wl is the spatial dimensions of the output of layer l − 1. At the next layer of the 

network, l + 1, there exists a set of capsule types

T l + 1 = t1l + 1, t2l + 1, …, tml + 1 ∣ m ∈ ℕ . (3)

And for every tjl + 1 ∈ T l + 1, there exists an ℎl + 1 × wl + 1 grid of zl + 1-dimensional parent 

capsules,

P = p1, 1, …, p1, wl + 1, …, pℎl + 1, 1, …, pℎl + 1, wl + 1 , (4)

where ℎl + 1 × wl + 1 is the spatial dimensions of the output of layer l.

In convolutional capsules, for every parent capsule type tjl + 1 ∈ T l + 1, every parent capsule 

px,y ∈ P receives a set of “prediction vectors”, ux, y ∣ t1
2, ux, y ∣ t2

2, …, ux, y ∣ tnl , one for each 

capsule type in T l. This set of prediction vectors is defined as the matrix multiplication 

between a learned transformation matrix for the given parent capsule type, Mtj
l + 1, and the 

sub-grid of child capsules outputs, Ux, y ∣ til, within a user-defined kernel centered at position 

(x,y) in layer l; hence

ux, y ∣ til = Mtj
l + 1 ⋅ Ux, y | til, ∀ til ∈ T l . (5)
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Explicitly, each Ux, y ∣ til  has shape kℎ × kw × zl, where kh ×kw are the dimensions of the 

user-defined kernel, for all capsule types til ∈ T l. Each Mtj
l + 1  has shape 

kℎ × kw × zl × zl + 1. Thus, we can see each ux, y ∣ til is an zl + 1-dimensional vector, since 

these will be used to form our parent capsules. In practice, we solve for all parent capsule 

types simultaneously by defining M to have shape kℎ × kw × zl × T l + 1 × zl + 1, where 

T l + 1  is the number of parent capsule types in layer l + 1. Note, as opposed to CapsNet, we 

are sharing transformation matrices across members of the grid (i.e. each Mtj
l + 1 does not 

depend on the spatial location (x,y)), as the same transformation matrix is shared across all 

spatial locations within a given capsule type, similar to how convolutional kernels scan an 

input feature map. This is one way our method can exploit parameter sharing to dramatically 

cut down on the total number of parameters to be learned. The values of these 

transformation matrices for each capsule type in a layer are learned via the backpropagation 

algorithm with a supervised loss function.

Algorithm 1 Locally-Constrained Dynamic Routing.

1: procedure ROUTING ux, y ∣ til, d, l, x, y

2:  for all capsule types til at position (x,y) and capsule type tjl + 1 at position (x, y): btil ∣ x, y 0.

3:  for d iterations do

4:   for all capsule types til  at position (x,y): rtil softmax btil  ⊳softmax computes Eq. 7

5:   for all capsule types tl + 1 at position  (x, y): px, y ∑nrtil ∣ x, yux, y ∣ til

6:   for all capsule types tjl + 1 at position (x, y):vx, y squash px, y  ⊳ squash computes Eq. 8

7:   for all capsule types til and all capsule types tjl + 1:btil ∣ x, y bti′ ∣ x, y + ux, y ∣ til ⋅ vx, y

 return vx, y

To determine the final input to each parent capsule px,y ∈ P, where again P is the grid of 

parent capsules for parent capsule type til + 1 ∈ T l + 1, we compute the weighted sum over 

these “prediction vectors” as,

px, y = ∑
n

rtil ∣ x, yux, y ∣ til, (6)

where rtil ∣ x, y are the routing coefficients determined by the dynamic routing algorithm, and 

each member of the grid (x,y) has a unique routing coefficient. These routing coefficients are 

computed by a “routing softmax”,
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rtil ∣ x, y =
exp btil ∣ x, y

∑tj
l + 1exp btil | tj

l + 1
, (7)

whose initial logits, btil ∣ x, y are the log prior probabilities that prediction vector ux, y | til

should be routed to parent capsule px,y. Note that the ∑tjl + 1 term is across parent capsule 

types in T l + 1 for each (x,y) location.

Our method differs from the dynamic routing implemented by Sabour et al. (2017) in two 

ways. First, we locally constrain the creation of the prediction vectors. Second, we only 

route the child capsules within the user-defined kernel to the parent, rather than routing 

every single child capsule to every single parent. The output capsule is then computed using 

a non-linear squashing function

vx, y = ‖px, y‖2

1 + ‖px, y‖2
px, y

‖px, y‖, (8)

where vx,y is the vector output of the capsule at spatial location (x,y) and px,y is its final 

input. Lastly, the agreement is measured as the scalar product,

ax, y ∣ til = vx, y ⋅ ux, y ∣ til . (9)

The pseudocode for this locally-constrained dynamic routing is summarized in Algorithm 1. 

A final segmentation mask is created by computing the length of the capsule vectors in the 

final layer and assigning the positive class to those whose magnitude is above a threshold, 

and the negative class otherwise.

3.1. Deconvolutional Capsules

In order to form a deep encoder-decoder network, we introduce the concept of 

“deconvolutional” capsules. These are similar to the locally-constrained convolutional 

capsules; however, the prediction vectors are now formed using the transpose of the 

operation previously described. Note that the dynamic routing of these differently-formed 

prediction vectors still occurs in the exact same way, so we will not re-describe that part of 

the operation.

The set of prediction vectors for deconvolutional capsules are defined again as the matrix 

multiplication between a learned transformation matrix, Mtj
l + 1, for a given parent capsule 

type tjl + 1 ∈ T l + 1, and the sub-grid of child capsules outputs, W x, y ∣ til for each capsule 

type in til ∈ T l, within a user-defined kernel centered at position (x,y) in layer l. However, 

in deconvolutional capsules, we first need to reshape our child capsule outputs following the 

fractional striding formulation used in Long et al. (2015). This allows us to effectively 

upsample the height and width of our capsule grids by the scaling factor chosen. For each 

member of the grid, we can then form our prediction vectors again by
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wx, y | til = Mtj
l + 1 ⋅ W x, y | til, ∀ til ∈ T l . (10)

Thus, we have each wx, y ∣ til as a zl + 1-dimensional vector, and is input to the dynamic 

routing algorithm to form our parent capsules. As before, in practice we solve for all parent 

capsule types simultaneously by defining M to have shape kℎ × kw × zl × T l + 1 × zl + 1, 

where T l + 1  is the number of parent capsule types in layer l + 1. Here, we still sharing 

transformation matrices across members of the grid (i.e. each Mtj
l + 1 does not depend on the 

spatial location (x,y)), similar to how transposed convolutional kernels scan an input feature 

map.

3.2. Reconstruction Regularization

As a method of regularization, we extend the idea of reconstructing the input to promote a 

better embedding of our input space. This forces the network to not only retain all necessary 

information about a given input, but also encourages the network to better represent the full 

distribution of the input space, rather than focusing only on its most prominent modes 

relevant to the desired task. Since we only wish to model the distribution of the positive 

input class and treat all other pixels as background, we mask out segmentation capsules 

which do not belong to the positive class and reconstruct a similarly masked version of the 

input image. We perform this reconstruction via a three layer 1 × 1 convolutional network, 

then compute a mean-squared error (MSE) loss between only the positive input pixels and 

this reconstruction. More explicitly, we formulate this problem as

Rx, y = Ix, y × Sx, y ∣ Sx, y ∈ 0, 1 ,  and  (11)

ℒR = γ
X × Y ∑

x

X
∑

y

Y
‖Rx, y − Or

x, y‖, (12)

where ℒR is the supervised loss for the reconstruction regularization, γ is a weighting 

coefficient for the reconstruction loss, Rx,y is the reconstruction target pixel, Ix,y is the image 

pixel, S x,y is the ground-truth segmentation mask value, and Or
x, y is the output of the 

reconstruction network, each at pixel location (x,y), respectively, and X and Y are the width 

and height, respectively, of the input image. For simplicity γ was initially set to 1; however, 

the parameter produces similar results for settings from 1 – 0.001. Lower than this or higher 

than this starts to degrade performance. An ablation study of the contribution of this 

regularization is included in Section 5. The total loss is the summation of this reconstruction 

loss and a weighted binary cross-entropy (BCE) loss for the segmentation output, weighted 

by the foreground/background pixel balance of each training set respectively.
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4. Experiments and Results

4.1. Pathological Lung Datasets

Experiments were conducted on five pathological lung datasets, obtained from both clinical 

and pre-clinical subjects, containing nearly 2000 CT scans, with annotations by expert 

radiologists. An example typical scan with ground-truth from each dataset is shown in 

Figure 3. The three clinical and two pre-clinical (mice) datasets analyzed are as follows:

• The Lung Image Database Consortium and Image Database Resource Initiative 
(Armato et al., 2011), abbreviated as LIDC-IDRI, contains 885 annotated CT 

scans of lung cancer screening patients collected from seven academic centers 

and eight medical imaging companies. Scans were captured using seven different 

GE Medical Systems LightSpeed scanner models, four different Philips 

Brilliance scanner models, five different Siemens Denition, Emotion, and 

Sensation scanner models, and Toshiba Aquilion scanners. Slice thicknesses 

range from 0.6 to 5 mm with in-plane pixel sizes ranging from 0.461 to 0.977 

mm. All image sizes are 512 × 512 pixels per slice.

• The Lung Tissue Research Consortium database (Karwoski et al., 2008), 

abbreviated as LTRC, contains 545 annotated CT scans, with most donor 

subjects having interstitial fibrotic lung disease or chronic obstructive pulmonary 

disease (COPD). All scans using the LTRC protocol were obtained using either 

General Electric or Siemens scanners with 16 or more detectors, and imaging 

parameters were standardized as much as possible among the enrollment centers 

(with slice thickness 1.25 mm or less with 50% overlapping reconstruction in a 

high-spatial, frequency-preserving algorithm). All image sizes are 512 × 512 

pixels per slice.

• The Multimedia Database of Interstitial Lung Diseases (Depeursinge et al., 

2012), abbreviated as UHG, built at the University Hospitals of Geneva contains 

214 annotated CT scans of patients affected with one of the 13 histological 

diagnoses of interstitial lung disease (ILD). The dataset follows the HRCT 

scanning protocol, with a slice thickness of 1 – 2 mm, spacing between slices of 

10 – 15 mm, scan time of 1 – 2 s, no contrast agent, axial pixel matrix of 512 × 

512, and x, y spacing of 0.4 – 1 mm.

• The TB-Smoking dataset collected at Johns Hopkins University, abbreviated as 

JHU-TBS, contains 108 annotated CT scans of mice subjects affected with 

tuberculosis (TB) and exposed to smoke inhalation. Slice thicknesses range from 

0.1 to 0.2 mm with in-plane pixel sizes ranging from 0.1 to 0.2 mm. Images 

range in size from 176 × 176 to 352 × 352 pixels per slice.

• The TB dataset also collected at Johns Hopkins University, abbreviated as JHU-
TB, contains 208 annotated CT scans of mice subjects affected with TB 

undergoing experimental treatment. Slice thicknesses range from 0.041 to 0.058 

mm with in-plane pixel sizes ranging from 0.041 to 0.058 mm. Images range in 

size from 199 × 212 to 580 × 496 pixels per slice.
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In total, 1960 CT scans were annotated in this study. Each dataset was treated completely 

separate, as each offers unique challenges to automated segmentation algorithms. For 

preprocessing, all CT scans were clipped at −1024 and 3072, then normalized to a 0 − 1 

scale. All images used their original resolutions during training and testing. Ten-fold cross-

validation was performed for training all algorithms, with 10% of training data left aside for 

validation and early-stopping. The mean and standard deviation (std) across the 10-folds for 

each dataset is presented for two key metrics, namely the 3D Dice similarity coefficient 

(Dice) and 3D Hausdorff distance (HD) computer for each 3D CT scan.

4.2. Implementation Details

All algorithms, namely U-Net, Tiramisu, P-HNN, our three-layer baseline capsule 

segmentation network, and SegCaps are all implemented using Keras (Chollet et al., 2015) 

with TensorFlow (Abadi et al., 2015). The U-Net architecture is implemented exactly as 

described in the original paper by Ronneberger et al. (2015). P-HNN was implemented 

based on their official Caffe code, including individual layer-specific learning rate 

multipliers and kernel initialization. However, we removed the layer-specific learning rate 

and changed the kernel initialization to Xavier to match the other networks and achieve 

much better results. Tiramisu follows the highest performing model presented in (Jégou et 

al., 2017), namely FC-DenseNet103. To remain consistent, since pre-trained models are not 

available for our custom-designed SegCaps, and to better see the performance of each 

individual method under different amounts of training data and pathologies present, no pre-

trained weights were used to initialize any of the models; instead, all were trained from 

scratch on each dataset investigated. It can be reasonably assumed based on previous studies 

that pre-training on large datasets such as ImageNet would improve the performance of all 

models. A weighted-BCE loss is used for the segmentation output of all networks, with 

weights determined by the foreground/background pixel balance of each training set 

respectively. For the capsule network, the reconstruction output loss is computed via the 

masked-MSE described in Section 3. All possible experimental factors are controlled 

between different networks; all networks are trained from scratch, using the same data 

augmentation methods (scale, flip, shift, rotate, elastic deformations, and random noise) and 

Adam optimization (Kingma and Ba, 2014) with an initial learning rate of 0.00001. A batch 

size of 1 is chosen for all experiments to match the original U-Net implementation. The 

learning rate is decayed by a factor of 0.05 upon validation loss stagnation for 50,000 

iterations and early-stopping is performed with a patience of 250,000 iterations based on 

validation 2D Dice scores. Positive/negative pixels were set in the segmentation masks based 

on a threshold of on the networks’ output score maps. Thresholds are found dynamically for 

each testing split based on which level provides the best Dice score for the validation set of 

images. All code is made publicly available.1

4.3. Lung Segmentation Results

The final quantitative results of these experiments to perform lung segmentation from 

pathological CT scans are shown in Tables 1 - 5. Table 1 shows results on the LIDC-IDRI 

dataset, the largest of the three clinical datasets with typically the least severe pathology 

1https://github.com/lalonderodney/SegCaps
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present on average compared to the other two clinical datasets. Table 2 shows results on the 

LTRC dataset, a large dataset with large amounts of ILD and COPD pathology present. 

Table 3 shows results on the UHG dataset, perhaps the most challenging of the three clinical 

datasets, both due to its relatively smaller size and the severe average amount of pathology 

present in patients scanned. Table 4 shows results on the JHU-TBS dataset, and provides the 

first fully-automated deep learning based segmentation results presented in the literature for 

lung segmentation on pre-clinical subjects. Table 5 shows results on the JHU-TB dataset, a 

larger but more challenging dataset of mouse subjects with typically more severe pathology 

present than the JHU-TBS dataset.

The results of these experiments show SegCaps consistently outperforms all other compared 

state-of-the-art approaches in terms of the commonly measured metrics, Dice and HD. 

Additionally, SegCaps achieves this while only using a fraction of the total parameters of 

these much larger networks. The proposed SegCaps architecture contains less than 4.6% 

parameters than U-Net, less than 9.5 % of P-HNN, and less than 14.9 % of Tiramisu. A 

comparison with similarly sized version of these other networks is shown in Section 5.2. As 

a brief note in regardless to the discrepancy in results for P-HNN between our study and 

those in the original work, this can be explained by several factors: the original work i) used 

ImageNet pre-trained models, ii) selected a carefully chosen subset (73 scans) of the UHG 

dataset, and iii) trained and tested models using all datasets combined in the cross-validation 

splits.

Qualitative results for typical samples from all datasets are shown in Figures 4 – 8. As can 

be seen in these qualitative examples, SegCaps achieves higher results by not falling into the 

typical segmentation failure causes, namely over-segmentation and segmentation-leakage. 

These qualitative examples are supported by our quantitative findings where over-

segmentation is best captured by the HD metric and segmentation-leakages are best captured 

by the Dice metric.

Further, we investigate how different capsule vectors in the final segmentation capsule layer 

are representing different visual attributes. Figure 9 shows three selected visual attributes 

(each row) out of the sixteen (dimension of final capsule segmentation vector) across 

different perturbation values of the vectors ranging from −0.25 to +0.25 (each column) for 

an example clinical and pre-clinical scan. We observe that regions with different textural 

properties (i.e., small and large homogeneous) are progressively captured by the different 

dimensions of the capsule segmentation vectors.

4.4. Muscle and Adipose (Fat) Tissue Segmentation Datasets and Preprocessing

Experiments were conducted on the Baltimore Longitudinal Study of Ageing (BLSA) 

(Ferrucci, 2008), where a total of 150 scans were collected using three contrasts from 50 

subjects. These MRI were acquired using a 3T Philips Achieva MRI scanner (Philips 

Healthcare, Best, The Netherlands) equipped with a Q-body radiofrequency coil for 

transmission and reception. Three different T1-weighted MR contrasts, namely water and 

fat, water-only (fat-suppressed), and fat-only (water-suppressed), were used, where water 

and fat suppression were achieved using spectral pre-saturation with inversion recovery 

(SPIR), with coverage from the proximal to distal ends of the femur using 80 slices in the 
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foot to head direction, a field of view (FOV) of 440 × 296 × 400 mm3 and a voxel size of 1 × 

1 mm2 in-plane, and slice thickness varies from 1 mm to 3 mm in different scans (one 

particular scan was with 5 mm slice thickness). The age of subjects ranged between 44 − 89 

years and the body mass index (BMI) ranged from 18.67 − 45.68. Examples of each MRI 

contrast with the ground truth-annotations (GT) for both muscle and adipose (fat) tissue are 

shown in Figure 10.

For training and testing, we performed preprocessing on the MRI images. First we applied 

the non-uniform non-parametric intensity normalisation technique by Tustison et al. (2010) 

to remove field bias. Next we apply Curvature Anisotropic Diffusion to smooth the image 

and remove noise. Lastly we perform z-score normalization to normalize the intensities 

before standardizing the image to the 0 − 1 range.

4.5. Muscle and Adipose (Fat) Tissue Segmentation Results

Experiments were performed using U-Net and SegCaps and compared to the state-of-the-art 

method by Irmakci et al. (2018) using the same comparative metric (i.e. Dice coefficient). 

The results of these experiments are shown in Tables 6 – 8 and show that both U-Net and 

SegCaps can outperform the previous state-of-the-art, while SegCaps does so using again 

only a small fraction of the parameters as U-Net while performing at the same level as U-

Net. The results reported for Irmakci et al. (2018) are the results from the original work 

(using manual seeding) on the same dataset. For U-Net and SegCaps, qualitative results are 

shown in Fig 11 for six of the 50 patients in the BLSA dataset. As with the lung 

segmentation experiments, U-Net tends to struggle with areas of similar intensity values, 

which do not belong to the correct tissue class.

4.6. Generalizing to Unseen Orientations of Objects

In a final set of experiments, we tested the affine equivariant property of capsule networks 

on natural images. It has been stated that, due to the affine projections of capsule vectors 

from children to parents, capsules should be robust to affine transformations on the input, 

and should in fact be able to generalize to unseen poses of target classes. However, no study 

has formally demonstrated this property. In this experiment, we randomly selected images 

from the PASCAL VOC dataset which contained only a single foreground object. Both U-
Net and SegCaps were then trained on a single selected image until training accuracy 

converge to 100%, which occurred around 1000 epochs for both networks. For training, each 

network followed exactly the training settings described in Section 4.2. Each network was 

then tested on 90 degree rotations and the mirroring of the training image. SegCaps 
performed well on nearly all images tested, while U-Net performed quite poorly, as can be 

seen in Figure 12. Since U-Net has significantly more parameters than SegCaps, we also ran 

experiments at 10000 epochs, long after both networks had converged to 100% training 

accuracy. U-Net continued to present failures, where SegCaps did not suffer the same issue. 

This shows that SegCaps is indeed far more robust to affine transformations on the input, a 

significant issue for CNNs as shown in both this experiment and works such as by Alcorn et 

al. (2019).
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5. Ablations Studies

In the following subsections, we investigate the role of the deeper encoder-decoder network 

structure enabled by the introduction of our deconvolutional capsules, the effect of the 

reconstruction regularization, the optimal number of dynamic routing iterations to perform, 

and the relative efficiency of parameter use with similarly-sized versions of all studied 

networks. The UHG dataset is perhaps the most challenging of the three clinical lung 

segmentation datasets in our study, both due to its relatively smaller size and the average 

amount of pathology present in patients scanned. As seen in Table 3, results on all metrics 

are significantly lower for this challenging dataset. For those reasons, and the lower 

performance scores leading to bigger differences between approaches, as well as the dataset 

being publicly available, we chose this dataset for running our ablation experiments.

5.1. Network Structure/Deconvolutional Capsules

The original CapsNet introduced by Sabour et al. (2017) was a simple three layer network, 

consisting of a single convolutional layer, a primary capsule layer (convolutional layer with 

a reshape function), and a fully-connected capsule layer. This network achieved remarkable 

results for its size, beating the state-of-the-art on MNIST and performing well on CIFAR10. 

In our initial efforts for this study, we attempted to apply this network to the task of 

segmentation, however, the fully-connected capsule layer was far too memory intensive to 

make this approach viable with our 512 × 512 2D slices of CT scans. After introducing the 

locally-constrained dynamic routing and transformation matrix sharing, we then created a 

network nearly identical to the original CapsNet with the fully-connected capsule layer 

swapped out for our locally-constrained version. A diagram of this network is shown in 

Figure 1. The results of this network on the UHG dataset is shown in Table 9. As one might 

expect, swapping out a layer which is fully-connected in space for one which is locally-

connected dramatically hurt the performance for a task which relies on global information 

(i.e. determining lung tissue/air from non-lung tissue, bone, etc.). This motivated the 

introduction of the “deconvolutional” capsule layer which allows for the creation of deep 

encoder-decoder networks, and thus the recovery of global information, retention of local 

information, and the parameter savings of locally-constrained capsules.

5.2. Parameter Use

Shown in Tables 10– 11, we investigate the number of parameters in the proposed SegCaps, 

U-Net, Tiramisu and P-HNN, as well as down-scaled versions of U-Net, Tiramisu, and P-
HNN. U-Net and P-HNN are scaled down by dividing the number of feature maps per layer 

by a constant factor, k = 4.68 and k = 3.2 respectively, and Tiramisu is scaled down by using 

the lighter FC-DenseNet56 purposed in the original work by Jégou et al. (2017). When the 

parameters of U-Net and P-HNN are scaled down to roughly the same number of parameters 

as SegCaps, these models perform comparatively worse, as shown in Table 11, providing 

evidence that SegCaps is able to make better use of the parameters available to it than its 

CNN counterparts. Tiramisu-56 is a minor exception to this trend as its Dice score remained 

similar while the HD only fell slightly from Tiramisu-103. The reason for this is most likely 

because Tiramisu-56 was carefully engineered to achieve the highest possible accuracy with 

few parameters while the addition of dense connections has been shown to make far better 
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use of parameters than standard non-dense CNNs (Huang et al., 2017). However, as can be 

see in Table 11, when all networks have roughly the same number of parameters, SegCaps 
outperforms all other methods.

5.3. Reconstruction Regularization

The idea of reconstructing the input as a method of regularization was used in CapsNet by 

Sabour et al. (2017). The theory behind this technique and the regularization effect it 

introduces is similar in nature to the problem of “mode collapse” in generative adversarial 

networks (GANs). When training a generative neural network for a specific task through the 

backpropagation algorithm, the model “collapses” to focusing on only the most prevalent 

modes in the data distribution. A similar phenomenon occurs when you train a 

discriminative network for a specific task, the model “collapses” to only focus on the most 

discriminative features in the input data and ignores all others. By mapping the capsule 

vectors back to the input data, this forces the network to pay attention to more relevant 

features about the input, which might not be as discriminative for the given task, yet still 

provide some useful information, as evident by the improved results shown in Table 12. A 

similar results can be seen in VEEGAN by Srivastava et al. (2017), where they help solve 

the issue of mode collapse in GANs through a reconstructor network which reverses the 

action of the generator by mapping from data to noise.

5.4. Dynamic Routing Iterations

Since the dynamic routing algorithm chosen for this study is an iterative process, we can 

investigate the optimal number of times to run the routing algorithm per forward pass of the 

network. In the original work by Sabour et al. (2017), they found three iterations to provide 

the optimal results. As seen in Table 13, the number of routing iterations does have an effect 

on the network’s performance, and we find the same result in this study of three iterations 

being optimal over a set of different numbers of iterations studied. Several other recent 

studies have also found three routing iterations to achieve optimal performance (LaLonde et 

al., 2020a,b). However, other recent studies have found different routing methods or number 

of routing iterations to be optimal. Likely, as found by Paik et al. (2019), capsule networks 

will likely need to find an improved routing mechanism.

6. Discussions & Conclusion

We propose a novel deep learning algorithm, called SegCaps, for biomedical image 

segmentation, and showed its efficacy in a challenging problem of pathological lung 

segmentation from CT scans and thigh muscle and adipose (fat) tissue segmentation from 

MRI scans, as well as experiments around the affine equivariance properties of a capsule-

based segmentation network. The proposed framework is the first use of the recently 

introduced capsule network architecture and expands it in several significant ways. First, we 

modify the original dynamic routing algorithm to act locally when routing children capsules 

to parent capsules and to share transformation matrices across capsules within the same 

capsule type. These changes dramatically reduce the memory and parameter burden of the 

original capsule implementation and allows for operating on large image sizes, whereas 

previous capsule networks were restricted to very small inputs. To compensate for the loss of 
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global information, we introduce the concept of “deconvolutional capsules” and a deep 

convolutional-deconvolutional capsule architecture for pixel level predictions of object 

labels. Finally, we extend the masked reconstruction of the target class as a regularization 

strategy for the segmentation problem.

Experimentally, SegCaps produces improved accuracy for lung segmentation on five 

datasets from clinical and pre-clinical subjects, in terms of Dice coefficient and Hausdorff 

distance, when compared with state-of-the-art networks U-Net (Ronneberger et al., 2015), 

Tiramisu (Jégou et al., 2017), and P-HNN (Harrison et al., 2017). For muscle and adipose 

(fat) tissue segmentation, SegCaps can perform on par with U-Net while only using a small 

fraction of the parameters, and outperforms the previous state-of-the-art. More importantly, 

the proposed SegCaps architecture provides strong evidence that the capsule-based 

framework can more efficiently utilize network parameters, achieving higher predictive 

performance while using 95.4% fewer parameters than U-Net, 90.5% fewer than P-HNN, 

and 85.1% fewer than Tiramisu. To the best of our knowledge, this work represents the 

largest study in pathological lung segmentation, and the only showing results on pre-clinical 

subjects utilizing state-of-the-art deep learning methods.

The results of these experiments demonstrate the effectiveness of the proposed capsule-

based segmentation framework. This study provides helpful insights into future capsule-

based works and provides lung-field segmentation analysis on pre-clinical subjects for the 

first time in the literature.
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• First ever capsule network for image segmentation.

• Reduced memory burden: locally-constrained routing and transformation 

matrix sharing.

• Introduced novel deconvolutional capsules to create encoder-decoder 

architecture.

• Extended the reconstruction regularization to the segmentation task.

• Outperformed existing methods across five clinical and preclinical datasets 

for lung segmentation from CT scans.
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Figure 1: 
A simple three-layer capsule segmentation network closely mimicking the work by Sabour 

et al. (2017). This baseline capsule network uses our proposed locally-constrained dynamic 

routing algorithm with transformation matrix sharing, as well as the masked reconstruction 

of the positive input class. The input and outputs shown are of muscle tissue segmentation 

from MRI scans.
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Figure 2: 
The proposed SegCaps architecture for biomedical image
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Figure 3: 
Example scans with ground-truth masks (magenta) for each of the five datasets in this study.
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Figure 4: 
Qualitative results for a 2D slice from a CT scan taken from the LIDC-IDRI dataset. It can 

be noticed that the CNN-based methods’ typical failure cases are where the pixel intensities 

(Hounsfield units) are far from the class mean (i.e. high values within the lung regions or 

low values outside the lung regions).
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Figure 5: 
Qualitative results for a 2D slice from a CT scan taken from the LTRC dataset. It can be 

noticed that the CNN-based methods’ typical failure cases are where the pixel intensities 

(Hounsfield units) are far from the class mean (i.e. high values within the lung regions or 

low values outside the lung regions).
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Figure 6: 
Qualitative results for a 2D slice from a CT scan taken from the UHG dataset. It can be 

noticed that the CNN-based methods’ typical failure cases are where the pixel intensities 

(Hounsfield units) are far from the class mean (i.e. high values within the lung regions or 

low values outside the lung regions).
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Figure 7: 
Qualitative results for a 2D slice from a CT scan taken from the JHU-TBS dataset. Note this 

drastically different anatomy and high level of noise present in the preclinical mice subjects. 

It can be noticed that the CNN-based methods’ typical failure cases are where the pixel 

intensities (Hounsfield units) are far from the class mean (i.e. high values within the lung 

regions or low values outside the lung regions).
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Figure 8: 
Qualitative results for a 2D slice from a CT scan taken from the JHU-TB dataset. Note this 

drastically different anatomy and high level of noise present in the preclinical mice subjects. 

It can be noticed that the CNN-based methods’ typical failure cases are where the pixel 

intensities (Hounsfield units) are far from the class mean (i.e. high values within the lung 

regions or low values outside the lung regions).
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Figure 9: 
Reconstructions of selected capsule vectors (rows) under different perturbations from −0.25 

– 0.25 (columns). The top three rows are reconstructions of a scan slice from the clinical 

LTRC dataset, while the bottom three are from the pre-clinical JHU-TB dataset. These 

results demonstrate that different dimensions of the capsule vectors are in fact learning 

different attributes of the lung tissue being segmented.
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Figure 10: 
Example magnetic resonance (MR) images from the Baltimore Longitudinal Study of 

Ageing (BLSA) (Ferrucci, 2008) dataset. Three different T1-weighted MR contrasts, namely 

water and fat, water-only (fat-suppressed), and fat-only (water-suppressed) are shown with 

their ground-truth (GT) annotations.

LaLonde et al. Page 33

Med Image Anal. Author manuscript; available in PMC 2022 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 11: 
Qualitative results on the BLSA dataset for T1-weighted water-only (fat-suppressed), water-

fat, and fat-only (water-suppressed) contrasts of six different patients. Results are shown for 

U-Net and SegCaps, with U-Net showing systematic issues with areas of similar intensities 

values to foreground class, but which actually belong to the background class. and vice-

versa.
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Figure 12: 
Testing the affine equivariant properties of capsule networks, specifically SegCaps, by 

overfitting on a single image, trained without augmentation, then predicting on 

transformations of that image.
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Table 1:

Experimental results on 885 CT scans from the LIDC-IDRI database (Armato et al., 2011), measured by 3D 

Dice Similarity Coefficient and Hausdorff Distance (HD).

Method Dice (%± std) HD (mm± std)

U-Net (Ronneberger et al., 2015) 96.06 ± 2.40 41.211 ± 9.109

Tiramisu (Jégou et al., 2017) 94.40 ± 3.66 42.205 ± 15.210

P-HNN (Harrison et al., 2017) 95.64 ± 2.92 41.775 ± 13.866

SegCaps 96.98 ± 0.36 30.764 ± 2.793
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Table 2:

Experimental results on 545 CT scans from the LTRC database (Karwoski et al., 2008), measured by 3D Dice 

Similarity Coefficient and Hausdorff Distance (HD).

Method Dice (%± std) HD (mm± std)

U-Net (Ronneberger et al., 2015) 95.52 ± 2.80 37.625 ± 6.831

Tiramisu (Jégou et al., 2017) 95.41 ± 2.08 43.969 ± 14.869

P-HNN (Harrison et al., 2017) 95.46 ± 3.93 33.835 ± 9.596

SegCaps 96.91 ± 2.24 26.295 ± 3.806
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Table 3:

Experimental results on 214 CT scans from the UHG database (Depeursinge et al., 2012), measured by 3D 

Dice Similarity Coefficient and Hausdorff Distance (HD).

Method Dice (%± std) HD (mm± std)

U-Net (Ronneberger et al., 2015) 88.10 ± 1.84 44.303 ± 34.148

Tiramisu (Jégou et al., 2017) 87.67 ± 1.38 61.227 ± 54.096

P-HNN (Harrison et al., 2017) 88.64 ± 0.64 43.698 ± 24.026

SegCaps 88.92 ± 0.66 37.171 ± 23.223
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Table 4:

Experimental results on 108 CT scans from the JHU-TBS database, measured by 3D Dice Similarity 

Coefficient and Hausdorff Distance (HD).

Method Dice (%± std) HD (mm± std)

U-Net (Ronneberger et al., 2015) 90.38 ± 3.86 7.593 ± 0.886

Tiramisu (Jégou et al., 2017) 86.45 ± 5.76 7.428 ± 1.337

P-HNN (Harrison et al., 2017) 88.81 ± 6.81 7.517 ± 1.896

SegCaps 93.35 ± 0.95 4.367 ± 1.367
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Table 5:

Experimental results on 208 CT scans from the JHU-TB database, measured by 3D Dice Similarity Coefficient 

and Hausdorff Distance (HD).

Method Dice (%± std) HD (mm± std)

U-Net (Ronneberger et al., 2015) 76.26 ± 9.51 24.295 ± 14.684

Tiramisu (Jégou et al., 2017) 79.99 ± 6.24 24.647 ± 11.629

P-HNN (Harrison et al., 2017) 80.11 ± 7.46 26.597 ± 16.168

SegCaps 80.91 ± 5.27 26.021 ± 10.260
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Table 6:

Experimental results on water-only (fat-suppressed) MRI scans from the BLSA dataset, measured by 3D Dice 

Similarity Coefficient.

Method Adipose (Fat) (%± std) Muscle (%± std)

FC (Irmakci et al., 2018) 44.46 ± 27.29 67.70 ± 24.67

U-Net (Ronneberger et al., 2015) 84.48 ± 8.33 90.00 ± 1.85

SegCaps 84.45 ± 6.60 90.74 ± 1.49
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Table 7:

Experimental results on water-fat MRI scans from the BLSA dataset, measured by 3D Dice Similarity 

Coefficient.

Method Adipose (Fat) (%± std) Muscle (%± std)

FC (Irmakci et al., 2018) 78.52 ± 14.77 84.56 ± 14.66

U-Net (Ronneberger et al., 2015) 91.11 ± 3.10 90.34 ± 8.76

SegCaps 91.26 ± 2.77 92.59 ± 1.14
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Table 8:

Experimental results on fat-only (water suppressed) MRI scans from the BLSA dataset, measured by 3D Dice 

Similarity Coefficient.

Method Adipose (Fat) (% ± std) Muscle (%± std)

FC (Irmakci et al., 2018) 77.52 ± 16.38 73.00 ± 17.78

U-Net (Ronneberger et al., 2015) 94.61 ± 2.67 93.85 ± 1.01

SegCaps 94.28 ± 2.59 93.38 ± 1.42
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Table 9:

Comparing the deeper encoder-decoder network structure SegCaps enabled by our proposed deconvolutional 

capsules, versus a network designed to be as similar as possible to CapsNet (Sabour et al., 2017) (Baseline 
SegCaps), abbreviated in table as Base-Caps.

Method Dice (%± std) HD (mm± std)

Base-Caps 75.97 ± 4.60 3 352.582 ± 133.451

SegCaps 88.92 ± 0.66 37.171 ± 23.223
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Table 10:

Number of parameters for each of the networks examined in this study. The percentage of less parameters 

(Percent Less) is measured relative to the number of parameters in U-Net.

Method Parameters Percent Less

U-Net 31.0 M 0.00 % Baseline (100 %)

P-HNN 14.7 M 52.58 47.42 %

Tiramisu 9.4 M 69.68 30.32 %

Baseline SegCaps 1.7 M 94.52 5.48 %

SegCaps 1.4 M 95.48 4.52 %
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Table 11:

Experimental results on the UHG dataset using downscaled version of U-Net and Tiramisu to roughly equal 

the same number of parameters (1.4 M) as SegCaps. The value of k (number of feature maps per layer 

reduction factor) for U-Net and P-HNN is included in parentheses.

Method Dice (%± std) HD (mm± std)

U-Net (orig.) 88.10 ± 1.84 44.303 ± 34.148

U-Net (4.68) 87.57 ± 2.80 62.006 ± 62.693

Tiramisu-103 87.67 ± 1.38 61.227 ± 54.096

Tuamisu-56 87.68 ± 0.96 67.913 ± 36.190

P-HNN (orig.) 88.64 ± 0.64 43.698 ± 24.026

P-HNN (3.2) 86.69 ± 1.39 82.223 ± 48.989

SegCaps 88.92 ± 0.66 37.171 ± 23.223
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Table 12:

Examining the effect of the proposed extension of the reconstruction regularization to the task of 

segmentation.

Method Dice (%± std) hD (mm± std)

No Recon 88.58 ± 1.03 42.345 ± 21.180

With Recon 88.92 ± 0.66 37.171 ± 23.223
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Table 13:

Examining the effect of different number of routing iterations (abbreviated as # Iters) per forward pass of 

SegCaps. In 1,3, one routing iteration is performed when the spatial resolution remains the same and three 

iterations are performed when the resolution changes.

# Iters Dice (%± std) HD (mm± std)

1 88.17 ± 1.23 67.668 ± 58.556

2 88.58 ± 1.03 42.345 ± 21.180

3 88.92 ± 0.66 37.171 ± 23.223

4 87.72 ± 1.36 110.901 ± 71.701

1,3 88.11 ± 1.13 72.877 ± 54.649
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