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Abstract

Chronic obstructive pulmonary disease (COPD) is a lung disease that can be quantified using chest 

computed tomography scans. Recent studies have shown that COPD can be automatically 

diagnosed using weakly supervised learning of intensity and texture distributions. However, up till 

now such classifiers have only been evaluated on scans from a single domain, and it is unclear 

whether they would generalize across domains, such as different scanners or scanning protocols. 

To address this problem, we investigate classification of COPD in a multicenter dataset with a total 

of 803 scans from three different centers, four different scanners, with heterogenous subject 

distributions. Our method is based on Gaussian texture features, and a weighted logistic classifier, 

which increases the weights of samples similar to the test data. We show that Gaussian texture 

features outperform intensity features previously used in multicenter classification tasks. We also 
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show that a weighting strategy based on a classifier that is trained to discriminate between scans 

from different domains can further improve the results. To encourage further research into transfer 

learning methods for the classification of COPD, upon acceptance of this paper we will release 

two feature datasets used in this study on http://bigr.nl/research/projects/copd.

Index Terms

Chronic obstructive pulmonary disease (COPD); computed tomography (CT); domain adaptation; 
importance weighting; lung; multiple instance learning; transfer learning

I. INTRODUCTION

CHRONIC obstructive pulmonary disease (COPD) is characterized by chronic inflammation 

of the lung airways and emphysema, i.e., degradation of lung tissue [1]. Emphysema can be 

visually assessed in vivo using chest computed tomography (CT) scans, however, to 

overcome limitations of visual assessment, automatic quantification of emphysema has been 

explored [2]–[6]. Several of these methods rely on supervised learning and require manually 

annotated regions of interest (ROIs) [2]–[4], while other approaches using multiple instance 

learning (MIL) only require patient-level labels indicating overall disease status [5], [6]. In 

this work we address this weakly-supervised classification setting, i.e., the scans are only 

labeled as belonging to a COPD or non-COPD subject, and no information on ROI level is 

available. The problem can be seen as a categorization (assign scan to a COPD or non-

COPD category) problem or as a detection (detect whether COPD is present in the scan) 

problem; to be consistent with machine learning terminology we refer to this problem as 

“classification”. Although we do not focus on quantification (quantifying the grade of 

COPD in the scan), we discuss how our classification method can be adapted for this 

purpose.

A challenge for classification of COPD in practice is that the training data may not be 

representative of the test data, i.e. the distributions of the training and the test data are 

different. This can happen if the data originates from different domains, such as different 

subject groups, scanners, or scanning protocols. One approach to overcome this problem is 

to search for features that are robust to such variability. For example, in a multi-cohort study 

with different CT scanners [4], the authors compare intensity distribution features to local 

binary pattern (LBP) texture features, and suggest that intensity might be more effective in 

multi-scanner situations.

Another way to explicitly address the differences in the distributions of the training and test 

data is called transfer learning [7] or domain adaptation. These differences can be caused by 

different marginal distributions p(x), different labeling functions p(y|x), or even different 

feature and label spaces. In this work the x’s are the feature vectors describing the 

appearance of the lungs, and the y’s are the categories the subjects belong to. Changes in 

subject groups, scanners and scanning protocols, can affect the distributions p(x), such as 

“this dataset has lower intensities”, p(y), such as “this dataset has more subjects with 

COPD” and/or p(y|x), such as “in this dataset this appearance corresponds to a different 

category”.

Cheplygina et al. Page 2

IEEE J Biomed Health Inform. Author manuscript; available in PMC 2021 March 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://bigr.nl/research/projects/copd


Based on which distributions are the same, and which distributions are different, different 

transfer learning scenarios can be distinguished. One of these scenarios is transductive 

transfer learning, where labeled training data (or source data), as well as unlabeled test data 

(or target data), are assumed to be available. This is the scenario we investigate.

According to [7], transfer learning methods can be divided into instance-transfer, feature-

transfer, parameter-transfer and relational-knowledge-transfer approaches. This paper 

presents an instance-transfer approach, but we briefly discuss instance-transfer and feature-

transfer, which are most abundant in medical imaging, in order to contrast our work from the 

literature. In short, feature-transfer approaches aim to find features which are good for 

classification, possibly in a different classification problem. In contrast, instance-transfer 

methods aim to select source samples which help the classifier to generalize well. One 

intuitive instance-transfer approach is called “importance weighting” [8]–[10], i.e., assigning 

weights to the source samples, based on their similarity to the unlabeled target samples, and 

subsequently training a weighted classifier. This strategy assumes that only the marginal 

distributions p(x) are different, and that the labeling functions p(y|x) are the same. However, 

in practice, importance weighting can also be beneficial in cases where the labeling 

functions are different [11].

Transfer learning techniques are relatively new in the medical imaging domain, and have 

shown to be successful in several applications, such as classification of Alzheimer’s disease 

[12], [13] and segmentation of magnetic resonance (MR) images [11], [14] and microscopy 

images [15], [16]. In chest CT scans, transfer learning has been used for classification of 

different abnormalities in lung tissue [17], [18]. However, these approaches focus on feature-

transfer between datasets, possibly even from non-medical datasets, while we investigate an 

instance transfer approach which focuses on differences between data acquired at different 

sites. To the best of our knowledge, our work is the first to investigate the use of transfer 

learning for classification of COPD.

The contributions of this paper are twofold. Our first contribution is a comparison of 

different types of intensity- and texture-based features for the task of classifying COPD in 

chest CT scans, to assess the features’ robustness across scanners. The second contribution 

is a proposed approach which combines transfer learning with a weakly-supervised 

classifier. To this end, we investigate three different weighting strategies. We use four 

datasets, which differ with respect to the subject group, site of collection, scanners and 

scanning protocols used. Furthermore, we publicly release two feature datasets used in this 

study to further the progress in transfer learning in classification of COPD and in medical 

image analysis in general.

II. METHODS

Following Sørensen et al. [5], we represent each chest CT image by a set of 3D ROIs. Each 

ROI is represented by a feature vector describing the intensity and/or texture distribution in 

that ROI. In order to classify each individual test scan, we assign weights to the training 

scans based on their similarity to the test scan, and subsequently train a weighted multiple 

instance classifier. The procedure is illustrated in Fig. 1.
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A. Notation and Feature Representation

Each scan is represented by a bag Xi = xij ∣ j = 1, …, ni ⊂ ℝm of ni instances (ROIs), where 

the j-th instance or ROI is described by a m-dimensional feature vector xij. The bags have 

labels yi ∈ {+1, −1}, in our case COPD and non-COPD, but the instances are unlabeled: the 

problem is thus called weakly supervised. The bags originate from two different datasets: 

training (source) and test (target) data. We will denote bags and instances from the source 

data by X and x, bags and instances from the target data are denoted by Z and z. Both the 

distributions p(X) and p(Z), and the distributions p(y|X) and p(y|Z) may be different from 

each other.

We represent each CT scan by a bag of 50 possibly overlapping, volumetric ROIs of size 41 

× 41 × 41 voxels, extracted at random locations inside the lung mask. The lung masks were 

obtained prior to this study. For three datasets (DLCST and both COPDGene datasets), the 

lung masks were obtained with a region-growing algorithm and postprocessing step used in 

[19], and for one dataset (Frederikshavn) with a method based on multi-atlas registration and 

graph cuts, similar to [20].

We use Gaussian scale space (GSS) features, which capture the image texture, to represent 

the ROIs. Each image is first convolved with a Gaussian function at scale σ using 

normalized convolution within the lung mask. We use four different scales, {0.6, 1.2, 2.4, 

4.8} mm, and compute eight filters: smoothed image, gradient magnitude, Laplacian of 

Gaussian, three eigenvalues of the Hessian, Gaussian curvature and eigen magnitude. The 

filtered outputs are summarized with histograms, where adaptive binning [21] is used to best 

describe the data while reducing dimensionality. We quantize the output of each filter into 

ten bins, where the bin edges used for adaptive binning (i.e. volume in each bin must be 

equal) of all datasets have been determined on an independent sample from one of the 

datasets (DLCST). This leads to 8 × 4 × 10 = 320 features in total.

B. Classifier

To learn with weakly labeled scans, we use a MIL classifier. In particular we use an 

approach we refer to SimpleMIL, which could be also seen as a naive MIL classifier. The 

name SimpleMIL was first used in [6], but the approach is older, and is often used as a 

baseline, even if MIL is not mentioned, for example in [22]. SimpleMIL propagates the 

training bag labels to the training instances, and trains a supervised classifier. We use a 

weighted logistic classifier w∗, defined as follows:

w* = argminw ∑
xij, yij

sijL w, xij, yij + λ‖w‖2
2 , (1)

where w is a vector of m feature coefficients (we drop the intercept for ease of notation), the 

loss is defined as L(w, x, y) = 1
ln2 ln 1 + exp −yw⊤x , λ is a regularization term controlling the 

complexity of the weight vector, and sij is the importance weight associated with the j-th 

instance from the i-th bag (see Section II-C).
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To make sure that the total effect of weights is the same across different weighting strategies, 

before training the classifier we multiply the weights by N /∑i, jsij, such that the sum of the 

weights is equal to the number of training instances N.

When a test bag Zi is presented to the classifier, w∗ is used to obtain posterior probabilities 

p(yij = +1|zij) and p(yij = −1|zij) for each instance zij. A posterior probability for the test bag 

is obtained by combining the instance posteriors. Here we apply the average rule,

p yi = + 1 ∣ Zi
p yi = − 1 ∣ Zi

= 1
ni

∑
j = 1

ni p yij = + 1 ∣ zij
p yij = − 1 ∣ zij

, (2)

which assumes that all instances contribute to the bag label. In other words, on average, the 

instances should be classified as positive - it is not sufficient if only a few instances are 

positive. This is consistent with the observation that COPD is not a localized disease, but 

more spread out throughout the lung. A combining strategy similar to the average rule 

(thresholding the posteriors and then combining the decisions, rather than combining the 

probabilities as we do here) was used for classification of COPD in [2]. Furthermore, the 

average rule has been used in other medical imaging applications [22], [23]. Other 

assumptions, where only a single positive instance is needed for a positive bag, are also 

possible and will be discussed in Section V.

Despite the simplicity of this approach, this strategy has achieved good results in previous 

experiments on weakly-labeled single-domain chest CT data [5], [6]. In [6], this method was 

used with a logistic and a nearest neighbor classifier, and the logistic classifier achieved the 

best performance.

C. Instance Weighting

We estimate the weights of the source bags with three different weight measures:

1. using the distance from the source bags to the target bag,

2. using the distance from the target bag to the source bags,

3. using the estimated probability of the source bag belonging to the target class

In the traditional instance weighting approach, the weights are assigned to instances x, 

which are considered independent. However, for MIL, this is not the most intuitive 

approach, since the different instances xij within the same bag Xi are expected to be 

correlated. Therefore, rather than finding similar instances in the training data, we are more 

interested in similar bags. Because we want to assign the weights on bag-level, in what 

follows we describe how to obtain a weight si for each bag Xi. In training the SimpleMIL 

classifier, however, each instance is associated with a weight equal to the bag weight, i.e. sij 

= si.

By weighting the training samples, we aim for the weighted distribution (px) to become 

more similar to p(z), and thus for the trained classifier to provide more accurate estimates 

p(y|z).
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1) Source to Target Weights: The first approach is based on a bag distance between 

the source bag, and the target bag. We use weights that are inversely proportional to the 

source-to-target (s2t) distance of source bag Xi to a target bag Z. In converting the distances 

to weights, we scale the weights to the interval [0,1], which assumes that there are always 

relevant and irrelevant source samples. The s2t weights are then defined as follows:

sis2t = dmax
s2t − di

s2t

dmax
s2t − dmin

s2t (3)

where

di
s2t = 1

Xi
∑

xij ∈ Xi
min

zk ∈ Z
‖xij − zk‖2 . (4)

and dmax = maxi di and dmin = mini di are the maximum and minimum bag distances found 

in the training set.

In other words, for each instance in the source bag, we find its nearest neighbor in the target 

bag Z, and average the nearest neighbor distances. A divergence measure that is analogous 

to this distance has been successfully used in previous works on transfer learning in medical 

image analysis [11], [14]. The distance we propose is more efficient to compute, and has 

shown to be robust in high-dimensional situations [24] (and references therein) than related 

divergences.

2) Target to Source Weights: The matching of instances with their nearest neighbors 

makes the bag distance asymmetric. In previous work on medical imaging such asymmetry 

was important for classification performance [24]. The rationale is that for a test scan with 

unusual ROIs (i.e., outliers in feature space), we want to ensure that these outliers influence 

the training weights as much as possible. However, with the s2t distance, it is possible that 

the test outliers do not participate in the weighting process at all. Therefore we also examine 

weights based on the counterpart of the source-to-target distance, i.e. the target-to-source 

(t2s) distance:

sit2s = dmax
t2s − di

t2s

dmax
t2s − dmin

t2s (5)

where

di
t2s = 1

Z ∑
zk ∈ Z

min
xij ∈ Xi

‖xij − zk‖2
(6)

and dmax
t2s  and dmin

t2s  are defined analogously to dmax
s2t  and dmin

s2t .

Note that we can only use the t2s distance for weighting because we are computing bag 

distances. If we would weight the training instances independently, some of the training 

Cheplygina et al. Page 6

IEEE J Biomed Health Inform. Author manuscript; available in PMC 2021 March 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



instances might not get matched with target instances, and therefore might not receive a 

weight.

3) Logistic Weights: The last weighting approach is based on how well a logistic 

classifier ws, which models posterior probabilities, can separate the source and target data. 

That is, all the instances in the source data are labeled as class −1, and samples in the target 

data are labeled as class 1, and the classifier ws is trained on these two classes. The source 

samples are then evaluated by the classifier to obtain their probabilities of belonging to the 

target class p y = 1 ∣ xij = exp −ws ⊤ xij /∑yijin − 1, + 1 exp −yijws ⊤ xij . For a training 

bag, we therefore have the following:

si
log = 1

Xi
∑

xij ∈ Xi

exp −ws ⊤ xij
∑yi ∈ − 1, + 1 exp −yiws ⊤ Xij

(7)

This approach is common in transfer learning literature in the field of machine learning [25], 

and, in the infinite-sample case and no change in labeling function, has shown to be 

equivalent to a classifier trained on the source samples [8]. In medical image analysis, this 

approach has been used for segmentation of tumors in brain MR images [26] for a domain 

adaptation setting where only the sampling of the training and test data is different.

III. EXPERIMENTS

A. Data

We use four datasets from different scanners in the experiments (Table I). The first dataset 

consists of 600 baseline inspiratory chest CT scans from the Danish Lung Cancer Screening 

Trial [27]. The second (120 inspiratory scans) and third (67 inspiratory scans) datasets 

consist of subjects from the COPDGene study [28], both acquired at the National Jewish 

Center in Denver, Colorado. The fourth dataset (16 scans) consists of subjects with 

respiratory problems referred to the out-patient clinic of the Frederikshavn hospital in 

Denmark. We refer to these datasets as DLCST, COPDGene1, COPDGene2 and 

Frederikshavn throughout the paper.

All scans are acquired at full inspiration, and the COPD diagnosis is determined according 

to the Global Initiative for Chronic Obstructive Lung Disease (GOLD) criteria [29], i.e., 

FEV1/FVC < 0.7. As in previous work by the authors [5], [6] and in other literature [30], 

[31] where COPD categorization is addressed with machine learning methods (but without 

using imaging data), we consider a binary classification problem. In other words, we treat 

subjects with GOLD grade 0 as the non-COPD class, and subjects with GOLD grades 

between 1 and 4 as the COPD class.

We consider DLCST, COPDGene1 and COPDGene2 both as source data and as target data, 

and Frederikshavn only as target data, due to its small size.
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B. Feature Datasets

In the proposed approach, each ROI is represented by GSS as described in Section II-A, 

resulting in a feature vector with 320 dimensions. We compare our method with intensity 

features based on kernel density estimation (KDE) used in [4]. We use 256 bins in order for 

the dimensionality to be comparable to the Gaussian features. To focus on the more 

informative part of the intensities, we apply the KDE to the range [−1100HU, −600HU]. We 

originally used a larger range and 4096 bins, following correspondence with the authors of 

[4]. However, this gave poor results in preliminary experiments on DLCST and 

Frederikshavn data. We concluded that the classifier suffered from overfitting, and adapted 

the range and dimensionality to produce reasonable results for those two datasets.

Furthermore, we compare our feature set to two of its subsets: a subset with 40 features 

describing the intensity of the scan at different scales (GSS-i), and its complement with 280 

features describing with derivatives only, thus more describing the texture (GSS-t). These 

comparisons will allow us to evaluate whether it is the intensity information that is 

responsible for differences between GSS and KDE, or the particular choice of 

implementation used in KDE.

C. Classifiers Without Transfer Learning

We first use SimpleMIL with a logistic classifier without any weighting. We train classifiers 

on each of the three source datasets (DLCST, COPDGene1 and COPDGene2). We then 

apply the trained classifiers to the four target datasets (DLCST, COPDGene1, COPDGene2 

and Frederikshavn). When the source and target datasets are the same, this experiment is 

performed in a leave-one-scan-out procedure.

The logistic classifier has only one free parameter, the regularization parameter λ. For both 

w∗ (the SimpleMIL classifier) and ws (the classifier used to determine the logistic weights) 

we fix λ = 1, because in preliminary experiments choosing other values did not have a large 

effect on the results.

D. Classifiers With Transfer Learning

We then use SimpleMIL with a weighted logistic classifier. For each of the nine 

combinations of source and different-domain target datasets, we perform a leave-one-image-

out procedure. For each target image, we determine the weights using three different 

methods: s2t, t2s and logistic. We then train the weighted classifiers and evaluate them on 

the target image. Again, the regularization parameter λ is fixed to 1.

E. Evaluation

The evaluation metric is the area under the receiver-operating characteristic curve (ROC), or 

AUC. We test for significant differences using the DeLong test for ROC curves [32].

To summarize results over nine pairs of source and target data, we also rank the different 

weighting methods and different feature methods, and report the average ranks. To assess 

significance, we perform a Friedman/Nemenyi test [33] at the p = 0.05 level. This test first 

checks whether there are any significant differences between the ranks, and if so, determines 
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the minimum difference in ranks (or critical difference) required for any two individual 

differences to be significant. For nine pairs of datasets and four methods, the critical 

difference is 1.56.

IV. RESULTS

A. Performance Without Transfer Learning

Fig. 2 shows the results of different features for the SimpleMIL logistic classifier, without 

using any transfer learning. In this section we summarize the results per test dataset.

ForDLCST, the best results are obtained when training within the same dataset using GSS 

(AUC 0.790) or GSS-t features (AUC 0.779). The AUCs are not very high compared to 

those of other datasets, but they are consistent with previous results on DLCST [5], [6].

For COPDGene1 and COPDGene2 we obtain much higher AUCs than for DLCST, ranging 

between AUC 0.850 and 0.956. When training on one dataset and testing on the other, the 

performances are similar to when training within a single dataset, suggesting the protocol 

was well-standardized and that using a slightly different scanner did not have a large effect 

on the scans. In this cross-dataset scenario, all features give good results, with GSS-i being 

slightly better (AUC 0.917 and 0.953) than the others. However, when training on a very 

different dataset, DLCST, the situation changes: the best results are still provided by GSS-i 

(AUC 0.879 and 0.859), but the gap between GSS-i and the other features now increases. In 

particular, the performance of KDE-i drops dramatically to AUC 0.554 and 0.716.

The Frederikshavn dataset also can be classified well, but the success is more dependent on 

the dataset and the features used, than is the case for COPDGene. The best performances on 

Frederikshavn are obtained with GSS-t features (AUC between 0.938 and 0.953), followed 

by GSS (AUC between 0.813 and 0.906). The two types of intensity features perform the 

worst, with GSS-i doing slightly better than KDE-i.

B. Performance With Transfer Learning

We now examine the performances of the importance-weighted classifiers. The 

performances are shown in Table II for completeness, but for better interpretation of the 

numbers, a summary is provided in Table III. In total we considered nine across-domain 

experiments. Averaged over these nine experiments, we report the AUC, the rank of each 

weighting method (per feature), and the rank of each feature (per weighting method).

The average AUCs do not give a conclusive answer about whether weighting is beneficial. 

For both types of intensity features, weighting always improves performance, but for GSS 

and GSS-t weights can also deteriorate the performance slightly. The best results are 

obtained with the logistic weights, which improves average performance for all feature 

types.

The average ranks for the weights, per feature, tell a slightly different story, although here 

almost none of the differences are significant. For GSS, none of the weighting methods rank 

higher than the unweighted case. For the other features, it is always beneficial to do some 
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form of weighting, but the best method varies per feature. In general, the differences 

between the ranks are quite small and not significant. The only exception is GSS-i, where 

s2t has a much better rank than the other methods, and it is also the only feature for which 

any significant differences in ranks are found.

When comparing the ranks of the features, the differences are much larger. Now significant 

differences are found for each weight type. GSS features are clearly the best overall, with 

ranks close to 1, followed by GSS-i and GSS-t (although these differences are not 

significant), and KDE-i are the worst, with ranks close to 4. The last difference is significant 

for all weighting strategies.

V. DISCUSSION

The main findings from the previous section are: (i) there are large differences between 

datasets, (ii) there are large differences between features, and (iii) weighting, in particular 

with logistic classifier-based weights, can improve performance. In this section we discuss 

these results in more detail. We then discuss limitations of our method, and provide some 

recommendations for classification of COPD in multi-center datasets.

A. Datasets

The datasets differ in several ways. First of all, the acquisition parameters lead to differences 

in the appearances of the scans. This is illustrated in Fig. 3. The acquisition parameters are 

the most different for the DLCST data, which can be also seen in the visual appearance in 

the images. This can partially explain the lower performances, especially with intensity 

features, when training on the DLCST dataset.

Another important difference is the distribution of COPD severity, which affects how high 

the performances can become in general. For example, DLCST is more difficult to classify 

than the other datasets. The highest AUC for DLCST is 0.79 (when training on the same 

domain), whereas the AUCs for the other datasets are often higher than 0.9. This difference 

can be explained by the differences in COPD severity between datasets. DLCST contains 

many cases of mild COPD, which can be easily misclassified as healthy subjects. The other 

datasets contain more severe cases of COPD. This is supported by the fact that, if we remove 

the GOLD 2–4 subjects from the COPDGene datasets, the AUC decreases to around 0.8 for 

the best features.

The datasets have different sizes, which can also affect the results of the classifiers. When 

the training and test data are from the same or similar domain, the training dataset should be 

sufficiently large to describe all possible variations. As a result, when testing on 

COPDGene2, it is actually better to train on COPDGene1 (which has similar scans, but is 

larger than COPDGene2), than to do same-domain training on COPDGene2. Another 

example is Frederikshavn: since both DLCST and the COPDGene datasets are rather 

dissimilar, the larger DLCST training data tends to give better results. As such, it would be 

interesting to compare results of different methods, when sampling the same number of 

training scans from each dataset.
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B. Features

Our results show that intensity is not always a robust choice of features when classifying 

across domains. Gaussian scale space features, which combine intensity and texture 

components, had higher performances overall, and in some cases, the intensity components 

could even deteriorate the performance. These findings are interesting with respect to 

previous results from the literature. On a task of classifying ROIs within a single domain, [3] 

showed that local binary pattern (LBP) texture features combined with intensity features can 

give good classification performance. However, [4] showed that intensity features alone 

performed better than a different implementation of LBP in across domain classification.

We note that there are several differences between [4] and the current study. We focus on 

weakly-supervised classification of entire chest CT scans, whereas [4] deals with a multi-

class ROI classification problem. Furthermore, in our transfer learning experiments the 

training and test domains are disjoint, i.e., the classifier does not have access to any labeled 

data from the test domain. On the other hand, in [4] scans from the same domain are present 

in the training set. Combined with their use of the nearest neighbor classifier, this could 

enable intensity features to perform well even if intensities are different across domains. A 

further difference is that to avoid overfitting, we reduced the dimensionality of the intensity 

representation.

C. Classifier

We chose SimpleMIL with logistic classifier and the average assumption due to its good 

performance on a similar problem [6]. This classifier assumes that all instances contribute to 

the bag label, i.e., for a subject to have COPD, the ROIs must on average be classified as 

having disease patterns. This reflects the idea that COPD is a diffuse disease, affecting large 

parts of the lung rather than small isolated regions [34].

An alternative assumption is the traditional, ”noisy-or” MIL assumption [35], which is 

defined as follows:

p y = 1 ∣ Zi
p y = − 1 ∣ Zi

=
1 − ∏j = 1

ni 1 − p yij = 1 ∣ zij

∏j = 1
ni p yij = − 1 ∣ zij

, (8)

In this case, for a subject to have COPD, it is sufficient that only one ROI which has a high 

probability of having disease patterns, i.e. a value of p(yij = 1|zij close to 1. Although this 

assumption is intuitive for some computer-aided diagnosis applications, in practice it is less 

robust than the average assumption because there is class overlap between positive and 

negative instances, and individual instances can be easily misclassified. Relying only the 

label of the most positive instance therefore leads to bag-level errors.

We did post-hoc experiments to investigate how replacing the average assumption with the 

noisy-or assumption would affect the results. For this we performed only the baseline 

experiments without weighting, for the GSS features, within and across datasets (i.e. the 

numbers that can be seen in the top left of Fig. 2). In Table IV we again present these 
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performances, next to the performances of using the classifier with the noisy-or assumption. 

Here we can see that overall, the average assumption outperforms the noisy-or assumptions, 

with a few exceptions. With noisy-or, in particular the performances across dissimilar 

datasets deteriorate, as can be seen when a combination of DLCST and one of the 

COPDGene datasets is used.

D. Weights

Weighting can improve performance across domains, but does not guarantee improved 

performance. In our experiments, no weighting method was always (for each dataset 

combination and feature type) better than the unweighted baseline. However, on average the 

logistic classifier-based weights performed quite well. The logistic weights had the highest 

average performance on each of the four feature types, and the highest rank on three out of 

four features, although the differences were not significant.

The small difference between s2t and t2s, the different ways in which source and target bags 

can be compared, is interesting. In a study of brain tissue segmentation across scanners [24], 

weighting trained classifiers based on the t2s distance was more effective than weighting 

them based on the s2t distance. We thus hypothesized that t2s might also be a better strategy 

for weighting training samples, but our results show that this is not the case.

To further understand the differences between the weights, we looked at the weights 

assigned to each training bag. In Fig. 4 we show the weights when training on DLCST and 

testing on COPDGene2 for two of the feature types: GSS with 320 features and GSS-i with 

40 features. In each case, we first find the mean and the standard deviation of the weights, 

assigned to each training bag. We then sort the training bags by their mean weight, and plot 

the mean and the standard deviations with error bars.

Per training bag, the distance-based weights have a higher variance than the logistic weights. 

Furthermore, with distance-based weights, the distributions are more steep, i.e. more training 

bags have a very low, or a very high average weight. Setting many weights (almost) to zero, 

as is the case for the distance-based weights, effectively decreases the sample size, possibly 

resulting in lower performance.

One of the reasons for this behaviour is the way that the weights are scaled. With the logistic 

weights, the exponential function provides a more natural scaling of the weights. For 

example, if all the source bags are similar to the target bag, they will all receive similar 

weights. The scaling we apply for the distance-based weights is more “artificial”, because 

the most similar bag is assumed to have weight 1, and the least similar bag is assumed to 

have weight 0. Furthermore, logistic weights are based on all the source bags, i.e., they are 

assigned by a classifier trained to distinguish the target bag from all the source bags. On the 

other hand, the distance-based weights are based only on the distance between the target bag 

and each individual source bag, which leads to noise.

In Fig. 4 we also see that the differences between the weight types are much larger for GSS-

i. This is consistent with the fact that we observe smaller differences in AUC performances 

for GSS. This might be caused by the differences in dimensionality: in higher dimensions, 
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distances become more and more similar, reducing the differences in the weights. The 

logistic weights are the most robust to the difference in dimensionality.

We now focus on the logistic weights, as these weights perform better on average. 

Examining their effect on different combinations of source and target datasets, we see that 

they have the most benefit when the datasets have different scan protocols. Using logistic 

weights when training on COPDGene1 and testing on COPDGene2 and vice versa has only 

small improvements, or even deteriorates the performance. This suggests that both the 

marginal distributions p(x) and the labeling functions p(y|x) and of these datasets are very 

similar, due to a similar distribution of subjects and the same scanning protocol.

E. Limitations

1) Intensity Normalization: Normalization has been shown to reduce differences 

between quantitative emphysema [36] or air-trapping [37] measures from different scanners, 

and to improve correlations between emphysema and spirometry in scans reconstructed with 

different kernels [38]. However, as these studies use different strategies, there is no widely 

accepted way to perform normalization in chest CT and in theory, Hounsfield units should 

be comparable between scans, we initially did not perform normalization in this study.

We later conducted a post-hoc investigation of the effect of intensity normalization on our 

results. We normalized intensity by fitting a Gaussian to voxels inside the trachea, and 

shifted the intensities such that the peak of the Gaussian was at −1000 HU. This is the 

approach described in [36], a related approach is taken by [37].

We then extracted features, and performed experiments for the nine combinations of training 

and test datasets. In these experiments we observed the same performances for GSS-t (since 

a translation of intensities does not affect the gradient), and similar or slightly lower 

performances for GSS and GSS-i. For KDE-i, the performances became much better when 

training on DLCST and testing on COPDGene1 and COPDGene2, but slightly decreased in 

all other cases. We attribute these results to the binning of the intensities. Although the 

intensities are more comparable after normalization, which leads to some improved results, 

we use the same bins as in the experiments without normalization, which may not be 

optimal anymore.

The experiments with intensity normalization are summarized in Table V. We see that the 

average AUCs are slightly lower than in Table III for all features except GSS-t. Weighting 

still generally has a benefit, but the ranks of the weights are closer to each other, and 

therefore the differences in weights are not significant. However, the logistic weights rank 

better than the unweighted methods for all features used.

The ranking of the features is still the same as in the scenario without normalization. GSS 

has the best rank, followed closely by GSS-t, then by GSS-i and finally KDE-i. However, the 

differences between the best and worst ranks are also smaller, which means the differences 

are not significant.
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Overall, we conclude that intensity normalization by trachea air is a useful tool for making 

intensities more comparable. However, a weighting strategy can still be beneficial, although 

the differences are less pronounced than if no normalization is used. Finally, Gaussian 

texture-only features still remain a robust choice of features which remove the need for 

intensity normalization. This also removes the need to perform segmentation of the trachea 

as a preprocessing step.

2) Binary Classification: We considered a binary classification problem - non-COPD 

(GOLD 0) and COPD (GOLD 1–4) in our experiments. This is a limitation since it could be 

argued that identifying the early stages of disease is more difficult, but more relevant 

clinically. Since our classifier outputs posterior probabilities, we could use the posterior 

probability of a subject having COPD (i.e. p(y = 1|X)) as an indication of COPD severity as 

expressed by the GOLD grade. We use the Spearman correlation between the posterior 

probability and the GOLD grade to investigate this, for baseline experiments with GSS and 

KDE-i features. The correlation coefficients are presented in Table VI.

Overall we observe moderate and strong correlations, in particular when GSS features are 

used. The difference between GSS and KDE-i is particularly pronounced when training on 

DLCST and testing on DLCST or COPDGene, where the correlations decrease from 

moderate for GSS to weak or very weak for KDE-i. The correlations for Frederikshavn are 

often close to zero, except when training on DLCST and testing, where the correlation is 

moderate. The very weak correlations are not significant due to the small size of the dataset.

F. Recommendations

Based on our observations, we offer some advice to researchers who might be faced with 

classification problems involving scans from different scanners.

1. Adaptive histograms of multi-scale Gaussian derivatives are a robust choice of 

features. Although originally this specific filterbank was used for classifying 

ROIs [3] and later classifying DLCST scans [5], we did not need any 

modifications to successfully apply them to independent datasets.

2. If using intensity histogram features, adaptive binning is a good way to focus on 

the more informative intensity ranges, while keeping the dimensionality low. 

Reducing the dimensionality in KDE only reduces the number of bins, but does 

not consider their information content. As such, bins in informative intensity 

ranges become too wide, reducing the classification performance.

3. Randomly sampled ROIs together with a SimpleMIL logistic classifier that uses 

the averaging rule is a good starting point for distinguishing COPD from non-

COPD scans, achieving at most 79.0 (DLCST), 91.7 (COPDGene1), 95.6 

(COPDGene2) and 95.3 (Frederikshavn) AUC, in %.

4. Importance weighting appears not to be needed when the same cohort and only a 

slightly different scan protocol are used, such as with the COPDGene datasets.

5. Importance weights based on a logistic classifier trained to discriminate between 

source data and target data, are a good starting point. These weights gave the best 
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results overall, eliminate the scaling problem, and were much faster to compute 

(2 seconds per test image) than the distance-based weights (2 minutes per test 

image) in this study.

VI. CONCLUSIONS

We presented a method for COPD classification using a chest CT scan which generalizes 

well to datasets acquired at different sites and scanners. Our method is based on Gaussian 

scale-space features and multiple instance learning with a weighted logistic classifier. 

Weighting the training samples according to their similarity to the target data could further 

improve the performance, demonstrating the potential benefit of transfer learning techniques 

in this problem. Transfer learning methods beyond instance-transfer approaches could be 

interesting in the future. To this end, upon acceptance of the paper we will publicly release 

the DLCST and Frederikshavn datasets to encourage more investigation into transfer 

learning methods in medical imaging. We believe that developing methods that are robust 

across domains is an important step for adoption of automatic classification techniques in 

clinical studies and clinical practice.
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Fig. 1. 
Overview of the procedure. Step 1 is to represent each scan as a bag of instances (feature 

vectors). The bag is labeled as COPD (+1) or non-COPD (−1). Step 2 is to weight the 

training bags by their similarity to the unlabeled test scan. Step 3 is to use the weighted bags 

to train a classifier. In step 4 this classifier is used to classify the test instances. The instance 

labels are combined into an overall label for the scan, in this case COPD (+1).
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Fig. 2. 
AUC ×100 of SimpleMIL across datasets, without transfer, for four different feature types. 

Three datasets (rows) are used for training and four datasets (columns) are used for testing. 

Diagonal elements (for DLCST, COPDGene1 and COPDGene2) show leave-one-out 

performance within a single dataset.
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Fig. 3. 
Examples of slices from the DLCST, COPDGene1 and Frederikshavn datasets.
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Fig. 4. 
Distribution of weights when training on DLCST and testing on COPDGene2, for the GSS 

(top three plots) and GSS-i (bottom three plots) features. The mean and standard deviation 

of the weight per training bag is shown, for every 5th (due to the large number of bags) 

training bag in DLCST. The training bags are sorted by average weight for better 

visualization, there is therefore no correspondence between different x-axes.
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Table III

TOP: AVERAGE AUC, IN PERCENTAGE, OVER NINE TRANSFER EXPERIMENTS

gss gss-t gss-i kde-i

none 82.6 83.6 79.7 71.8

s2t 82.1 83.4 81.0 73.3

t2s 82.3 83.8 80.2 73.8

log 83.1 84.4 80.2 73.9

none 2.11 2.78 3.17 3.06

s2t 2.78 2.72 1.50 2.78

t2s 2.78 2.61 2.67 2.06

log 2.33 1.89 2.67 2.11

none 1.67 2.22 2.33 3.78

s2t 1.78 2.44 2.00 3.78

t2s 1.72 2.22 2.33 3.72

log 1.67 2.22 2.44 3.67

Note: Best weighting method is in bold, best feature is underlined. Middle: Ranks of each weight type (1=best, 4=worst), compare per column. Best 
weight, or weights that are not significantly worse (Friedman/Nemenyi test, critical difference = 1.56) are in bold. Bottom: Ranks of each feature 
type (1=best, 4=worst), compare per row. Best feature, or features that are not significantly worse (Friedman test, critical difference = 1.56) are 
underlined.
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TABLE IV

AUC (×100) OF SIMPLEMIL ACROSS DATASETS, WITHOUT TRANSFER, FOR GSS FEATURES AND TWO DIFFERENT 

ASSUMPTIONS: AVERAGE ASSUMPTION USED IN THIS PAPER (TOP) AND NOISY-OR ASSUMPTION (BOTTOM)

Test → DLCST COPDGene1 COPDGene2 Frederikshavn

Train ↓ Average assumption

DLCST 79.0 78.4 84.7 90.6

COPDGenet 67.4 88.4 95.6 81.3

COPDGene2 66.9 90.8 93.1 87.5

Noisy-or assumption

DLCST 74.8 62.9 61.0 92.2

COPDGenet 50.7 76.2 96.0 77.3

COPDGene2 50.0 84.6 81.1 87.5
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TABLE V

TOP: AVERAGE AUC, IN PERCENTAGE, OVER NINE TRANSFER EXPERIMENTS

gss gss-t gss-i kde-i

none 78.0 83.6 73.2 70.0

s2t 78.5 83.4 76.4 70.7

t2s 78.0 83.8 73.5 71.2

log 78.5 84.4 74.1 71.1

none 2.78 2.78 2.94 2.72

s2t 2.39 2.72 1.67 2.83

t2s 2.33 2.61 3.00 2.22

log 2.50 1.89 2.39 2.22

none 1.89 2.00 2.89 3.22

s2t 2.00 2.11 2.44 3.44

t2s 1.89 2.00 2.83 3.28

log 1.89 2.11 2.67 3.33

Note: Best weighting method is in bold, best feature is underlined. Middle: Ranks of each weight type (1=best, 4=worst), compare per column. The 
differences are not significant according to the Friedman/Nemenyi test. Bottom: Ranks of each feature type (1=best, 4=worst), compare per row. 
The differences are not significant according to the Friedman/Nemenyi test.
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