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Abstract

During memory recall and visual imagery, reinstatement is thought to occur as an echoing of the neural patterns during
encoding. However, the precise information in these recall traces is relatively unknown, with previous work primarily
investigating either broad distinctions or specific images, rarely bridging these levels of information. Using ultra-high-field
(7T) functional magnetic resonance imaging with an item-based visual recall task, we conducted an in-depth comparison of
encoding and recall along a spectrum of granularity, from coarse (scenes, objects) to mid (e.g., natural, manmade scenes) to
fine (e.g., living room, cupcake) levels. In the scanner, participants viewed a trial-unique item, and after a distractor task,
visually imagined the initial item. During encoding, we observed decodable information at all levels of granularity in
category-selective visual cortex. In contrast, information during recall was primarily at the coarse level with fine-level
information in some areas; there was no evidence of mid-level information. A closer look revealed segregation between
voxels showing the strongest effects during encoding and those during recall, and peaks of encoding–recall similarity
extended anterior to category-selective cortex. Collectively, these results suggest visual recall is not merely a reactivation of
encoding patterns, displaying a different representational structure and localization from encoding, despite some overlap.
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Introduction
When we visually recall an object or scene, our memory contains
rich object and spatial information (Bainbridge et al. 2019).
During such recollection, our brain is thought to reinstate neural
patterns elicited by the initial perception (McClelland et al. 1995;
Buckner and Wheeler 2001; Tompary et al. 2016; Dijkstra et al.
2019). One common view is that the hippocampus indexes pop-
ulations of neocortical neurons associated with that memory
(Teyler and Rudy 2007; Danker and Anderson 2010; Schultz
et al. 2019). Under this view, representations in hippocampus are
largely independent of a memory’s perceptual content (Davachi
2006; Liang et al. 2013; Huffman and Stark 2014). In contrast, the
neocortex is thought to show sensory reinstatement, where the
same regions show the same representations during recall as

during encoding (O’Craven and Kanwisher 2000; Wheeler et al.
2000; Kahn et al. 2004; Lee et al. 2012; Staresina et al. 2012;
Ritchey et al. 2013; Dijkstra et al. 2017). However, prior work has
focused on specific levels of information (e.g., broad stimulus
class, specific image), and the extent to which representations
during recall reflect the same information as during perception,
at all levels of granularity (from individual exemplar up to
broad stimulus category), is unclear. Here, using ultra-high-
field (7T) functional magnetic resonance imaging (fMRI), we
conducted an in-depth investigation of the content of encoded
and recalled representations of objects and scenes across
cortex, hippocampus, and the medial temporal lobe (MTL),
assessing the granularity of detail in the representations of
individual items.
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Figure 1. Experimental stimuli and task. (a) Nested structure of stimuli and example images. A total of 192 trial-unique images were encoded and recalled by
participants, arranged under nested structure based on the “coarse” level (object/scene), “mid” level (e.g., open/closed or natural/manmade scene), and “fine” level

(e.g., mountains/lake) of stimulus organization. Each fine-level category contained eight different exemplar images (e.g., eight different lake photographs). (b) The
timing of each trial. Participants studied an image for 6 s, performed a distractor task requiring detection of an intact image amongst scrambled images for 4 s, and
then after a randomized jitter of 1–4 s, recalled the original image through visual imagery for 6 s. Finally, they indicated the vividness of their memory with a button
press.

First, we employed a hierarchically organized stimulus set
(Fig. 1a) with three levels of granularity from coarse (scenes/ob-
jects) to mid (e.g., natural/manmade scenes) to fine (e.g., bed-
rooms/conference rooms) levels. Prior work comparing encoding
and recall have primarily investigated memory content at oppo-
site ends of this granularity spectrum. At a coarse level, recall
of stimulus classes (faces, scenes, objects) has been reported
to reactivate high-level visual regions (Polyn et al. 2005; John-
son et al. 2009; Reddy et al. 2010; LaRocque et al. 2013) and
produce differentiable responses in hippocampus (Ross et al.
2018). At the fine level, other work has shown reinstatement
for individual images, with specific visual stimuli decodable
in high-level visual cortex (Dickerson et al. 2007; Buchsbaum
et al. 2012; Lee et al. 2012; Kuhl and Chun 2014) and MTL
(Zeineh et al. 2003; Gelbard-Sagiv et al. 2008; Chadwick et al.
2010; Wing et al. 2015; Mack and Preston 2016; Tompary et al.
2016; Lee et al. 2019). Decoding for specific images (Thirion et al.
2006; Naselaris et al. 2015), positions (Stokes et al. 2011), and
orientations (Klein et al. 2004; Albers et al. 2013) is even present
in early visual cortex (EVC) during visual imagery. However,
it is often unclear what information is driving discrimination
across the brain: fine-level image-specific information, coarse-
level perceptual category information, or information unrelated
to stimulus content such as memory strength. For example,
although recalled grating orientation is decodable from EVC
(V1–V3), reinstatement strength but not content is decodable

from the hippocampus (Bosch et al. 2014). Furthermore, few
studies have investigated the ability to detect reinstatement of
mid-level information (e.g., is it a natural or manmade scene,
a big or small object) during recall, even though such informa-
tion is known to be decodable during perception (Kravitz et al.
2011; Park et al. 2011; Konkle et al. 2012). Our approach using
nested levels of stimulus information reveals what granularity of
information is contained in regions across the visual processing
pathway and whether reinstatement is simply an echo of the
same response from encoding to recall.

Second, to isolate the activity specific to recall, we adopted
a visual imagery task focusing on recall of individual items
without requiring the learning of cue–stimulus associations,
which have commonly been used (Ganis et al. 2004; Kuhl et al.
2012; Zeidman, Lutti, et al. 2015a; Jonker et al. 2018). Recalled
representations in associative tasks are likely to contain infor-
mation not only about the recalled item, but also the cue and the
association itself. Furthermore, there are differences in neocor-
tex when performing an associative versus item-based memory
task (Staresina and Davachi 2006). In fact, the neural represen-
tation of a target may be largely dependent on what cue it is
associated with (Xiao et al. 2017). Here, we employ an item-based
recall task in which participants encode trial-unique images,
and following a distractor task, recall that specific image. This
approach allows us to investigate the recall of individual items,
without the learning of associations.
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Using this direct recall task and nested stimulus structure,
we find striking differences in the representational structure
and spatial localization for visual encoding and recall, suggest-
ing recall patterns are not just a repetition of patterns during
encoding, despite some similarities.

Materials and Methods
Participants

A total of 34 adults were recruited for the experiment. All par-
ticipants were healthy, right handed, and had corrected or nor-
mal vision. In all, 12 participants were unable to complete the
experiment due to discomfort in the 7T scanner, drowsiness,
or scanner malfunction, and their data were excluded from the
study. This level of participant dropout is not unusual for 7T
scans, given that nausea and vertigo occasionally occur, and the
bore is more restrictive than the more standard 3T scanners.
The final set of participants included 22 adults [15 female;
mean age: 24 years, standard deviation (SD): 3.4 years, range:
19–35 years]. All participants provided consent following the
guidelines of the National Institutes of Health (NIH) Institutional
Review Board (National Institute of Mental Health Clinical Study
Protocol NCT00001360, 93M-0170) and were compensated for
their participation.

Stimuli

We assembled 192 stimulus images with nested categorical
structure (Fig. 1a). We refer to the different levels of information
as coarse, mid, and fine. At a coarse level, 50% of the stimuli were
objects and 50% scenes.

At a mid level, the objects and scenes were varied according
to factors known to show differential responses in the brain dur-
ing perception. The objects were made up of four object types,
varying along two factors: (1) small/big objects (Konkle et al.
2012; Bainbridge and Oliva, 2015) and (2) tool/nontool objects
(Beauchamp and Martin 2007; Mahon et al. 2007; Valyear et al.
2007). Big objects were selected as objects generally larger than
a 1-foot diameter and small objects were those smaller than a 1-
foot diameter. Tools were defined as objects commonly grasped
by one’s hands using a power grip (Grèzes et al. 2003), although
note that there are multiple ways tools are defined in the field
(Lewis 2006). Similarly, the scenes were made up of four scene
types, varying along two factors: (1) natural/manmade (Park et al.
2011) and (2) open/closed (Kravitz et al. 2011). Natural scenes
were defined as those primarily made up of natural objects
(i.e., plants, rocks, sand, ice), whereas manmade scenes were
primarily made of artificial objects (i.e., buildings, furniture).
Open scenes were defined as those with an open spatial extent,
whereas closed scenes were defined as those in which the
viewer is enclosed by boundaries (Park et al. 2011).

At a fine level, each object or scene type contained three
categories, with eight exemplars for each object or scene cat-
egory (e.g., “small, non-tool objects”: bowl, cupcake, flowers;
“closed, manmade scenes”: bathroom, conference hall, living
room; see Fig. 1a for all fine-level categories). Images were all
square 512 × 512 pixel images presented at 8◦ of visual angle,
and objects were presented cropped in isolation on a white
background.

In-scanner Recall Task and Post-scan Recognition Task

Participants first completed a single run of a 7 min 6 s block-
design localizer scan to identify scene- and object-selective

regions. In this localizer, participants viewed 16 s blocks of
images of objects, scenes, faces, and mosaic–scrambled scenes
and identified consecutive repeated images. All images used
in the localizer were distinct from those used in the main
experiment. Participants then completed eight runs of an item-
based memory recall task requiring visual imagery (Fig. 1b). In
each trial, participants studied a trial-unique stimulus image
for 6 s. After a 1 s fixation, they performed a distractor task
in which they viewed a stream of 16 quickly presented images
(250 ms each) and had to press a button as soon as they saw
the sole intact image in a stream of mosaic–scrambled images.
Scrambled and intact target images were taken from a separate
stimulus set and were chosen to be of the same coarse level (i.e.,
object or scene) as the studied image in order to keep general
visual properties consistent (i.e., not switching from one type of
stimulus to another). These distractor images had random mid
and fine levels, unrelated to the stimulus being encoded and
recalled. Intact object images were presented as an intact object
against a mosaic–scrambled background, so that participants
would have to detect the object to successfully perform the
task (rather than identify white edges). The distractor task
lasted for 4 s total and was followed by a 1–4 s jittered interval
in which participants were instructed to wait and maintain
fixation. The word “RECALL” then appeared on the screen
for 6 s, and participants were instructed to silently visually
imagine the originally studied image in as much detail as
possible. Finally, following the “RECALL” phase, participants
were given 2 s to press a button, indicating the vividness
of their memory as either high vividness, low vividness, or
no memory. The next trial then continued after a 1 s delay.
Participants were instructed that the task was difficult, and
they should focus on reporting their vividness truthfully. On
average, participants reported “high vividness” on 60.8% of
trials (SD = 16.9%), “low vividness” on 29.9% of trials (SD = 12.8%),
and “no memory” on 9.3% of trials (SD = 8.4%). Trials in which
participants indicated “no memory” were not included in any
of the main analyses of the data. Each run contained 24 trials,
lasting 8 min 38 s, and participants completed eight runs total.
Each run included three “catch trials” that skipped the recall
phase, in order to keep participants vigilant, to discourage them
from preemptively recalling the target image, and to better
separate recall from distractor and encoding phases during
deconvolution. Each fine-level stimulus category (e.g., guitar,
cupcake) was shown once per run, and each stimulus exemplar
image was only used once in the entire experiment, so that there
would be no memory effects on subsequent presentations of the
same image.

After the scan, participants performed a post-scan recogni-
tion task to test their memory for the images studied in the
scanner. Participants were presented with all 192 images studied
in the scanner randomly intermixed with 192 foil images of the
same fine-level stimulus categories and were asked to indicate
for each image whether it was old or new. Two participants were
unable to complete the post-scan recognition task due to time
constraints. Analyses on the post-scan recognition data as well
as vividness ratings are reported in the Supplementary material
(SM1 and SM2).

MRI Acquisition and Preprocessing

The experiment was conducted at the NIH, using a 7T Siemens
MRI scanner and 32-channel head coil. Whole-brain anatomical
scans were acquired using the MP2RAGE sequence, with 0.7 mm
isotropic voxels. Whole-brain functional scans were acquired

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa329#supplementary-data
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with a multiband echo-planar imaging (EPI) scan of in-plane
resolution 1.2 × 1.2 mm and 81 slices of 1.2 mm thickness (multi-
band factor = 3, repetition time = 2 s, echo time = 27 ms, matrix
size = 160 × 160, field of view = 1728 × 1728, flip angle = 55◦).
Slices were aligned parallel with the hippocampus and generally
covered the whole brain (when they did not, sensorimotor
parietal cortices were not included). Functional scans were
preprocessed with slice timing correction and motion correction
using AFNI (Analysis of Functional NeuroImages), and surface-
based analyses were performed using SUMA (SUrface MApping;
Cox 1996; Saad and Reynolds 2012).

fMRI Region of Interest Definitions

For each participant, key regions of interest (ROIs) for EVC,
object-selective cortex, scene-selective cortex, and hippocam-
pus were determined a priori and defined using functional and
anatomical criteria (Fig. 2). Using the independent functional
localizer, we identified three scene-selective regions with a
univariate contrast of scenes > objects: parahippocampal place
area (PPA; Epstein and Kanwisher 1998), medial place area (MPA;
Silson et al. 2016), and occipital place area (OPA; Dilks et al.
2013). We localized object-selective regions lateral occipital
(LO) and posterior fusiform (pFs) with a univariate contrast of
objects > scrambled images (Grill-Spector et al. 2001). Finally,
we localized EVC with a univariate contrast of scrambled
images > baseline. With each contrast, the functional ROIs were
defined as the contiguous set of at least 20 voxels showing
significant activation for the contrast, located within the broader
anatomical areas described in the literature (e.g., PPA should be
in and around the collateral sulcus, Epstein and Baker 2019;
LO should be within lateral occipitotemporal cortex). For all
contrasts, we first identified these contiguous sets of voxels with
a univariate contrast with a false discovery rate (FDR)-corrected
threshold of q = 0.001. When a contiguous set of voxels could
not be identified, we looked at increasingly liberal thresholds
of q = 0.005, q = 0.01, q = 0.05, P = 0.001, P = 0.005, P = 0.01, and
P = 0.05, until a contiguous set of 20 voxels passing that thresh-
old was identified. If no contiguous set of voxels was identified
at this threshold, then the ROI was determined missing for that
given participant. Left and right ROIs were combined to create
bilateral ROIs in the analyses. Overlapping voxels between
scene- and object-selective regions were discarded from any
ROI. LO, pFs, PPA, and EVC were identified in 22 participants, OPA
in 21 participants, and MPA in 20 participants. Anatomical ROIs
were localized using FreeSurfer’s recon-all function using the
hippocampal–subfields–T1 flag (Iglesias et al. 2015), and then
visually inspected for accuracy. This hippocampus parcellation
function splits the hippocampus into the head/body (Hip-
HB) and tail (Hip-T), and within the head/body region further
segments the hippocampus into different subfields (dentate
gyrus, CA1, CA3, and subiculum; Iglesias et al. 2015). We did
not find meaningful differences across subfields (all subfields
either showed identical results to the Hip-HB or Hip-T), but
report those results in the Supplementary material (SM3). This
FreeSurfer parcellation also localized the perirhinal cortex (PRC)
and parahippocampal cortex (PHC) within the MTL. PHC was
determined as a participant’s anatomically defined PHC minus
voxels already contained with their functionally defined PPA.
For the main body of the text, we report the results from the
Hip-HB (with subfields combined), Hip-T, PRC, and PHC. A table
of ROI sizes by participant is provided in the Supplementary
material (SM4).

Whole-Brain Univariate Analyses

We conducted whole-brain univariate contrasts using a general
linear model (GLM) that split the trials into six regressors along
two factors: (1) encoding/distractor/recall and (2) scenes/ob-
jects. Six additional regressors for head movement were also
included. In addition, trials in which participants indicated they
had “no memory” for the item were modeled separately as three
regressors (for the encoding, distractor, and recall periods) in
the GLM to avoid them contributing to either target stimulus
responses or an implicit baseline. We then performed whole-
brain t-contrasts of scenes versus objects separately during
encoding and recall. All whole-brain contrasts were projected
onto the cortical surface using AFNI surface mapper SUMA
(Saad and Reynolds 2012).

With these whole-brain analyses, we located and compared
the peak voxels of activation during encoding and recall. For
each participant, we localized the peak voxel within each broad
visual ROI definition (e.g., for PPA, voxels in and around the
collateral sulcus, Epstein and Baker 2019) separately for encod-
ing and recall. We extracted the Montreal Neurological Institute
(MNI) coordinates for each participant for the voxels with the
highest object activation near LO and pFs, and the highest scene
activation near PPA, MPA, and OPA. The peaks of encoding and
recall were directly compared across participants with a paired
Wilcoxon signed-rank test, comparing the median anterior–
posterior coordinates between encoding and recall.

Representational Similarity Analyses and
Discrimination Indices

Multivariate analyses were conducted to look at the represen-
tations of different stimulus information during encoding and
recall, across brain regions. For these analyses, the experimental
data were first split into two independent halves—even runs and
odd runs. For each split half, a GLM was calculated, modeling
separate regressors for each fine-level category (e.g., cupcake) for
the encoding period (6 s boxcar function), distractor period (4 s
boxcar), and recall period (6 s boxcar). Each event (e.g., encoding
a cupcake) thus had two resulting beta estimates: one across
even runs and one across odd runs. As in the univariate analysis
GLM, trials in which participants indicated they had no memory
for the image were captured with three additional regressors for
the encoding period, the distractor period, and the recall period.
The estimated motion parameters from the motion correction
were included as six further regressors.

We then investigated the similarity between different types
of stimulus information during encoding, recall, and distractor
periods, using representational similarity analyses (Kriegesko-
rte et al. 2008). For each ROI, we created a representational
similarity matrix (RSM) comparing the similarity of all pairs of
fine-level stimulus category (e.g., cupcake vs. guitar). Similarity
was calculated as the Pearson’s correlation between the voxel
values (t-statistic) in an ROI for one fine-level category (e.g.,
cupcake) from one half of the runs (e.g., odd runs), with the
voxel values for another category (e.g., guitar) from the other
half (e.g., even runs). Specifically, pairwise item similarity was
taken as the average of the correlation with one split (odd runs
for item A and even runs for item B) and correlation with the
opposite split (even runs for item A and odd runs for item B). This
metric indicates the similarity in the neural representations
of two categories, and importantly, because the comparisons
use separate halves of the data, we can observe a category’s

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa329#supplementary-data
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Figure 2. Main regions of interest (ROIs). The current study focused on a set of visual- and memory-related ROIs. Visual regions consisted of early visual cortex (EVC),
object-selective regions of the lateral occipital (LO) and the posterior fusiform (pFs), and scene-selective regions of the parahippocampal place area (PPA), medial
place area (MPA), and occipital place area (OPA). Visual regions were individually localized using functional localizers in each participant; shown here are probabilistic
ROIs of voxels shared by at least 12% of participants. Memory-related regions consisted of the hippocampus divided into anterior (head and body) and posterior

(tail) subregions, as well as the perirhinal cortex (PRC, not shown) and parahippocampal cortex (PHC, not shown). These ROIs were segmented automatically using
anatomical landmarks.

similarity to itself across runs. This self-similarity measure thus
quantifies the degree to which a given region shows similarity
across exemplars within a category (i.e., are cupcakes similar to
other cupcakes). Correlation coefficients were all corrected with
Fisher’s Z-transformations. We focused our main analyses on
three RSMs: (1) correlations of the encoding responses (Encod-
ing RSM), (2) correlations of the recall responses (Recall RSM),
and (3) correlations of the encoding responses with the recall
responses (Cross-Discrimination RSM). These different classifi-
cations allow us to see what stimulus information exists sepa-
rately during encoding and recall, as well as what information is
shared between encoding and recall.

From these RSMs, we conducted discriminability analyses,
which show the degree to which each ROI can discriminate the
different conditions of fine-, mid-, and coarse-level information
(e.g., do the responses in PPA discriminate natural vs. man-
made scenes?). For each comparison of interest, we computed
a discrimination index D, calculated as the difference of the
mean across-condition correlations (e.g., scenes with objects)
from mean within-condition correlations (e.g., scenes with other
scenes; Kravitz et al. 2011; Harel et al. 2013, 2014; Cichy et al.
2014; Henriksson et al. 2015). The intuition behind this index
is that if an ROI contains information about that comparison,
then within-condition similarity should be higher than across-
condition similarity (e.g., if the PPA does discriminate natural vs.
manmade scenes, then natural scenes should be more similar
to other natural scenes than manmade scenes). Discriminability
analyses at all levels of stimulus granularity were calculated
from the same underlying correlation matrix, and there were
close to the same number of trials contributing to the calculation
of each cell in the matrix (only differing due to the exclusion
of no memory trials). However, note that the comparisons of
different granularity use different proportions of the matrix; for
example, the coarse level of objects versus scenes utilizes the
whole matrix, whereas the mid level of natural versus man-
made only looks within scenes. We compared these discrimi-
nation indices versus a null hypothesis of zero discrimination
using one-tailed t-tests. Although multivariate analyses may
often violate the assumptions of parametric statistics (Allefeld
et al. 2016), in practice, using one-tailed t-tests to evaluate
discrimination indices is not meaningfully different from non-
parametric methods (Nili et al. 2020). However, we confirmed
all results hold when also calculating significance with a per-
mutation test across 1000 RSM permutations (Supplementary
material (SM5)). Mid-level discriminability was only computed
within same coarse-level items (e.g., only scenes were used

for the natural vs. manmade comparison), and fine-level dis-
criminability was only computed within same mid-level items
(e.g., when looking at the discriminability of living rooms, they
were only compared with other closed, manmade scenes). Refer
to Figure 3 for a depiction of these discrimination indices and
to see example RSMs. All statistics reported are FDR corrected
within each ROI across all 21 discriminations (the seven dis-
criminations shown in Fig. 3, each for encoding, recall, and
cross-discrimination) at a value of q < 0.05.

Discrimination-Based Searchlight Analyses

We also conducted discriminability analyses using spherical
searchlights (3-voxel radius) in two ways. First, we conducted
discriminability analyses (as described above) for searchlights
centered on voxels within the ROIs. For each searchlight, we
obtained a scene–object discriminability metric during encoding
and one during recall, allowing us to examine the relationship
between encoding and recall information in these ROIs. Note
that although the center voxel in the searchlight was located
within each given ROI, peripheral voxels could fall outside of
an ROI’s boundaries. This is to ensure that searchlights are
of equal volume throughout the ROI and will result in only a
small amount of smoothing of the ROI’s borders (e.g., 3 voxels
at maximum).

Second, we conducted discriminability analyses in search-
lights iteratively moved throughout each individual’s brain,
to examine ability to discriminate information outside of
our predefined ROIs. Group maps were combined with one-
tailed t-tests comparing group discrimination indices versus no
discrimination (0). Group maps were thresholded at P < 0.005
uncorrected for visualization purposes; however, we also
provide unthresholded maps. We conducted these searchlights
looking at both discriminability of information within memory
process type (encoding or recall) as well as ability to cross-
discriminate information between encoding and recall. We also
identified the locations of peak voxels for encoding, recall, and
cross-discrimination, using the same methods as described in
the Whole-Brain Univariate Analyses.

Encoding–Recall Correlation and Overlap Analyses

In order to directly compare encoding and recall information
within ROIs, we conducted two separate analyses. We specifi-
cally focused on coarse-level discrimination of objects versus

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa329#supplementary-data
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Figure 3. Calculating information discriminability from representational similarity matrices. (Left) Depictions of the cells of the representational similarity matrices
(RSMs) used to calculate discrimination indices for key regions of interest (ROIs). The RSMs represent pairwise Pearson’s correlations of stimulus groupings calculated
from ROI voxel t-values, compared across separate run split halves (odd vs. even runs). These depictions show which cells in the matrices are used in the calculation

of discriminability of different properties, with green cells indicating within-condition comparisons, which are compared with gray cells indicating across-condition
comparisons. For all discriminability calculations except fine-level discrimination of individual categories (object and scene individuation), the diagonal was not
included. All operations were conducted on the lower triangle of the matrix, although both sides of the diagonal are shown here for clarity. (Right) Examples of
encoding and recall RSMs from the data in the current study, specifically the rank-transformed average RSM for the parahippocampal place area (PPA), lateral occipital

(LO), and the hippocampus head and body. Blue cells are more similar, whereas red cells are more dissimilar.

scenes, as this discrimination is reliably found across regions for
both encoding and recall (see Results).

First, we calculated the correlation between encoding and
recall discrimination indices in the searchlights within each
ROI (see previous section). For each searchlight centered within
an ROI, we Spearman rank correlated its coarse-level discrimi-
nation index (scenes vs. objects) between encoding and recall.
This analysis reveals the degree to which voxels that repre-
sent encoding information also represent recall information.
High correlations indicate that voxels that can discriminate
objects versus scenes during encoding can also discriminate
them during recall, whereas low correlations provide evidence
for no relationship between encoding and recall discriminability.
Significance was calculated using a nonparametric Wilcoxon
signed-rank test, comparing the rank correlations against a null
median of zero.

Second, given the relatively low correlations we observed, we
conducted an overlap analysis to determine the degree to which
the most discriminative voxels are the same between encoding
and recall. To perform this analysis, for each ROI, we took the
top 10% discriminating encoding voxels and compared their
overlap with the top 10% discriminating recall voxels. Chance
level of overlap was calculated with permutation testing, by
taking two random sets of searchlights (rather than the top-
ranked searchlights) consisting of 10% of the ROI size. Across
100 permutations per ROI per participant, we calculated the
overlap between these two shuffled sets, and then took the
average across all permutations as the chance level for each
participant. This permuted level of chance ultimately resolves to
10% across all ROIs, which matches the computed chance level
for this analysis—if you take two random sets of 10% of voxels,
by chance, 10% of those voxels should overlap. Significance
was calculated with a nonparametric paired Wilcoxon rank-sum

test comparing the true overlap percentage with the permuted
random overlap percentage.

Results
In the following sections, we examine the relationship between
representations elicited during encoding and recall. First, we
compare granularity of stimulus content representations in
object- and scene-selective visual ROIs and the MTL. We observe
reduced information during recall, particularly for mid-level
information. Second, to directly compare encoding and recall
representations, we conduct searchlight analyses to investigate
the distribution of voxels showing the strongest discrimination
during encoding, recall, and cross-discriminability between
these two phases, both within and outside the ROIs. We observe
little correlation between discrimination during encoding and
recall and find that the voxels that represent recalled informa-
tion are frequently distinct from those that represent encoding
information, with the strongest representations during recall
anterior to the category-selective regions traditionally studied
during perception.

Discriminating Stimulus Content from Scene-
and Object-Selective Visual Regions and MTL

What aspects of a visual memory are represented in scene-
and object-selective areas and MTL during encoding and recall?
We asked this question by discriminating stimulus information
from the patterns of blood oxygen level–dependent responses
at various scales of stimulus granularity, ranging from a coarse
level (scenes, objects) to a mid level (e.g., natural/manmade
scene, big/small object) and to a fine level (e.g., cupcake, gui-
tar). This discrimination was conducted across independent
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Figure 4. Information discriminability in scene- and object-selective regions. Discriminability for visual regions of interest (ROIs) for each stimulus property was

calculated from the representational similarity matrices (as in Fig. 3). Bar graphs indicate mean discrimination index for different comparisons across ROIs, are split
by coarse stimulus class, and show three levels of discrimination: (1) the coarse level (objects vs. scenes), (2) the mid level (objects: big/small, tools/nontools; scenes:
open/closed, natural/manmade), and (3) the fine level (individuation of specific object and scene categories). The y-axis represents the average discrimination index (D),
which ranges from −1 to 1. Significance (∗) indicates results from a one-tailed t-test versus zero, with an FDR-corrected level of q < 0.05 (applied to all 21 comparisons

within each ROI). Values that do not pass FDR correction can still be seen in Supplementary material SM6. Pink bars indicate discriminability during encoding trials,
blue bars indicate discriminability during recall trials, and hatched purple bars indicate cross-discriminability (i.e., there is a shared representation between encoding
and recall). Error bars indicate standard error of the mean.

exemplars, never including the same images in the similarity
calculations. This allowed us to see what levels of information
are represented in these regions, separate from an ability to
distinguish identical images. Discrimination indices and their
corresponding P-values (see Methods) for all ROIs are reported in
Supplementary material SM6. Here, in the text, we only describe
statistics that pass FDR correction, but all values including those
where P < 0.05 but P does not pass FDR correction are included
in this table.

Visual ROIs: Detailed Information during Encoding,
Limited Information during Recall

We investigated discriminability in object-selective regions LO
and pFs, scene-selective regions PPA, MPA, and OPA, and visual
area EVC (Fig. 4, refer to Supplementary material SM6 for dis-
crimination indices and individual statistics).

We first examined what information was discriminable
during the encoding period in object- and scene-selective
regions. All regions could discriminate coarse-level information
(objects vs. scenes), all P < 10−4. For mid-level object information,
tool/nontool could be discriminated in object-selective regions
LO (P = 0.009) and pFs (P = 0.012), but object size did not
show significant discriminability in any region. For mid-level
scene information, open/closed could be discriminated in
LO (P = 0.009), pFs (P = 0.002), and PPA (P = 0.001), whereas
manmade/natural could be discriminated in LO (P = 0.001),
PPA (P = 0.003), and MPA (P = 4.76 × 10−4). Finally, fine-level
object information could be discriminated in all regions except
MPA (all P < 0.001), whereas the fine level for scenes could be
discriminated in scene-selective regions PPA (P = 7.64 × 10−4)
and OPA (P = 0.002). In addition, response patterns in the
encoding period for all visual ROIs were predictive of reported

memory vividness, and patterns in the LO, PPA, and OPA were
predictive of subsequent recognition (Supplementary material
SM1 and SM2). Overall, these results confirmed the findings of
prior studies (Valyear et al. 2007; Walther et al. 2009; Kravitz
et al. 2011; Park et al. 2011; Troiani et al. 2012), in which during
encoding and perception, responses in scene- and object-
selective regions can be used to distinguish various levels of
information about visually presented scenes and objects.

We next investigated the information present in these ROIs
during recall. Discrimination of coarse-level information was
significant in all visual regions (all P < 0.001). However, no region
showed significant discriminability for any mid-level informa-
tion (big/small, tool/nontool for objects, and open/closed, nat-
ural/manmade for scenes; all P > 0.10). Also, no region showed
fine-level object information during recall. However, significant
fine-level information during recall of scenes was present in
pFs (P = 0.009) as well as scene regions PPA (P = 0.011) and MPA
(P = 0.008). In addition, response patterns from all visual areas
during recall were predictive of recall vividness, although not
predictive of subsequent recognition (Supplementary material
SM1 and SM2). These results reveal that although visual regions
maintain coarse-level information during recall, we find no
evidence for mid-level stimulus information. Despite the lack of
mid-level information, however, there is fine-level information
in some regions.

To investigate which regions show a shared neural repre-
sentation during encoding and recall, we conducted a cross-
discrimination analysis identifying the degree to which a
region shows similar patterns between encoding and recall.
The only significant cross-discrimination was for the coarse
level (objects vs. scenes), which was found in pFs (P = 0.006)
and MPA (P = 1.59 × 10−4). Significant cross-discrimination
did not emerge for any mid-level information in any ROI

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa329#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa329#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa329#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa329#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa329#supplementary-data
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Figure 5. Information discriminability in the hippocampus and medial temporal lobe. Discriminability for hippocampal ROIs, perirhinal cortex (PRC), and parahip-
pocampal cortex (PHC) for each stimulus property was calculated from the RSMs. Bar graphs are displayed in the same manner as Figure 4 and indicate
mean discrimination index for comparisons of different levels of stimulus information (coarse, mid, and fine levels for objects and scenes). Pink bars indicate
discriminability during encoding trials, blue bars indicate discriminability during recall trials, and hatched purple bars indicate cross-discriminability (i.e., there is

a shared representation between encoding and recall). Error bars indicate standard error of the mean. Asterisks (∗) indicate significance at an FDR-corrected level
of q < 0.05.

(all q > 0.05), nor at the fine level in any ROI (all q > 0.05).
These findings imply that encoding and recall may differ
in their representational structure across different levels
of information.

Given these effects in object- and scene-selective regions,
we conducted a follow-up analysis to look at visual responses
outside of category-selective cortex, namely EVC (Fig. 4,
Supplementary material SM6). During encoding, EVC showed
significant discrimination at the coarse level (P = 4.43 × 10−7),
but no discrimination at the mid level for scenes or objects
(all q > 0.05). However, EVC did show significant discrimination
of the fine level for both objects (P = 5.13 × 10−7) and scenes
(P = 0.005). During recall, EVC again showed significant coarse-
level discrimination (P = 0.004), no significant mid-level discrim-
ination (all P > 0.10), and significant fine-level discrimination
for objects (P = 0.008), although not for scenes (P > 0.05). EVC
did not show significant cross discrimination at any level (all
P > 0.20). These results suggest that retinotopic information—
driven by the visual features of different object categories
and their differences from scenes—is likely discriminable
during recall. However, mid-level information did not show
differences in early visual processing during encoding and was
not discriminable during recall.

Hippocampus and MTL Show Coarse-Level
Information during Encoding

We conducted the same analyses in the hippocampus and MTL
regions consisting of the PRC and PHC (Fig. 5). We primarily
focused on the segregation of the hippocampus into anterior
(Hip-HB) and posterior (Hip-T) regions, but results for the indi-
vidual subfields can be found in the Supplementary material
SM6.

During encoding, significant coarse-level discrimination of
objects versus scenes was present in Hip-HB (P = 3.28 × 10−4),
PRC (P = 5.74 × 10−5), and PHC (P = 4.62 × 10−6), but not Hip-T
(P = 0.108). There was no mid-level information present in any of
these regions (all q > 0.05), nor was there fine-level information
(all q > 0.05). During recall, coarse-level information was not
detected in the hippocampus (Hip-HB: P = 0.82; Hip-T: P = 0.48),
but was discriminable in PRC (P = 0.004) and PHC (P = 0.003).
No mid- or fine-level information was present during recall
in any of these regions (all P > 0.20). Finally, significant cross-
discriminability between encoding and recall was found in the
PRC (2.53 × 10−4) and PHC (3.99 × 10−4), but not in the hippocam-
pus (Hip-HB: P = 0.082; Hip-T: P = 0.10). No mid-level or fine-
level information was cross-discriminable in these regions (all
P > 0.10).

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa329#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa329#supplementary-data
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Although hippocampus did not show content-related
information beyond the coarse level during encoding, additional
analyses revealed other discriminable information present in
the hippocampus. Patterns during recall in the hippocampus
were significantly predictive of reported memory vividness,
although patterns during encoding were not (Supplementary
material SM1 and SM2). Furthermore, an analysis comparing
the representational structure in different ROIs revealed
that although visual areas were very dissimilar from the
hippocampus during the encoding period, their patterns
become more similar to those of the hippocampus during recall
(Supplementary material SM7 and SM8).

Discrimination of Information during the Distractor
Period

To ensure any ability to discriminate information during recall
was not due to bleed over from the encoding period or active
visual working memory strategies, we computed discrimination
indices during the distractor period. Distractor stimuli differed
by coarse-level category (scenes, objects), and indeed coarse-
level information was available in LO (discrimination index
D = 0.02, P = 5.94 × 10−5), PPA (D = 0.02, P = 5.00 × 10−5), and OPA
(D = 0.02, P = 6.13 × 10−5), although not in pFs, MPA, Hip-HB,
PRC, or PHC (q > 0.05), all of which showed discrimination
during the encoding and recall periods (with the exception
of the Hip-HB). Mid-level and fine-level information was not
discriminable in any ROI during the distractor period (q > 0.05),
despite the presence of such information during the encoding
period. Importantly, the lack of fine-level information during
the distractor period contrasts with the stronger and significant
fine-level information in pFs, PPA, and MPA during the recall
period. Thus, it is highly unlikely that information measured
during recall reflects carry over from the encoding period or
active visual working memory strategies.

In sum, the analyses in the last three sections reveal that
while during encoding information can be discriminated in
many of these ROIs from all levels of stimulus granularity (fine,
mid, and coarse), there is limited information available during
recall. Namely, although coarse- and fine-level information is
available in many of the ROIs, mid-level information was not
detected in any ROI. Significant cross-discrimination between
encoding and recall was also only present at the coarse level
of information. These results suggest distinct representational
structure during encoding and recall and motivate a direct com-
parison between encoding and recall representations at the
sub-ROI level.

Direct Comparison of Encoding and Recall
Discriminability within ROIs

We observed cross-discrimination in some regions (pFS, MPA,
PRC, PHC), but not in others (LO, PPA, OPA, Hip-HB, Hip-T),
providing mixed evidence for shared neural substrates for
encoding and recall across these regions. To further investigate
the relationship between encoding and recall discrimination,
we directly compared discrimination indices across each region.
Because only coarse-level information showed cross-discrimi-
nation in any region, we focused our analyses here on the
coarse discrimination of objects versus scenes. For each ROI, we
computed Spearman’s rank correlations between encoding and
recall discrimination searchlights (see Materials and Methods).
Although some regions showed significant correlations between

encoding and recall discriminability (MPA: median Spearman’s
rank correlation ρ = 0.210, Wilcoxon signed-rank test: Z = 2.52,
P = 0.012; LO: ρ = 0.104, Z = 3.17, P = 0.002; pFs: ρ = 0.200, Z = 2.26
P = 0.024; Hip-HB: ρ = 0.065, Z = 2.09, P = 0.036; PHC: ρ = 0.244,
Z = 3.72, P = 2.01 × 10−4), others did not (PPA: ρ = −0.006, Z = 1.31,
P = 0.189; OPA: ρ = 0.030, Z = 1.28, P = 0.200; Hip-T: ρ = −0.045,
Z = 0.02, P = 0.987; PRC: ρ = 0.168, Z = 1.79, P = 0.074). However,
even in those cases where we found significant effects, the cor-
relations tended to be weak, and every ROI had 22% (5 out of 22)
or more of the participants who showed negative correlations
between encoding and recall. Moreover, the distribution of the
plotted data often revealed an L-shape distribution with greatest
similarity between encoding and recall for the voxels with the
lowest discrimination scores (Fig. 6).

To compare encoding and recall discriminability further, we
focused on the top 10% of searchlights that showed encoding
discriminability and compared their overlap with the top 10% of
searchlights that showed recall discriminability within each ROI
(Fig. 6, see Materials and Methods). If the same voxels perform
encoding and recall discrimination, we should find significantly
higher overlap than chance (approaching 100%). Conversely, if
encoding and recall information comprise distinct sets of voxels,
we should find equal or lower overlap compared with chance
(∼10%, estimated by 100 permuted shuffles). PPA showed sig-
nificantly lower overlap than chance (median = 9.15%, Wilcoxon
rank-sum test: Z = 1.96, P = 0.050), whereas pFs showed signif-
icantly higher overlap (M = 19.14%, Z = 2.05, P = 0.040). All other
regions showed no significantly different overlap than predicted
by chance (MPA: 16.9%; OPA: 11.2%; LO: 14.03%; Hip-HB: 15.6%;
Hip-T: 15.4%; PRC: 13.3%; PHC: 20.2%; all P > 0.10).

These results suggest a limited relationship between
encoding and recall across all visual and memory regions.
pFs shows high overlap and a significant correlation between
encoding and recall searchlights, in addition to significant cross-
discrimination across encoding and recall, suggesting some
shared neural substrate. In contrast, PPA shows no correlation
and significantly low overlap in addition to an absence of cross-
discrimination, suggesting distinct neural substrates between
encoding and recall. The remaining ROIs show mixed evidence,
with relatively low correlations between encoding and recall
and no difference in overlap from chance, suggesting limited
shared information between encoding and recall.

Whole-Brain Investigation of Encoding
and Recall Effects

Given the differences we observed between encoding and recall
within ROIs, we conducted follow-up analyses at the whole-
brain level. Looking at a group univariate contrast of objects
versus scenes during encoding (Fig. 7), we confirm that stimulus
class selectivity is strongest in ROIs predicted by the litera-
ture: LO and pFs show high sensitivity to objects, whereas PPA,
MPA, and OPA show high sensitivity to scenes (Epstein and
Kanwisher 1998; Grill-Spector et al. 2001). Interestingly, in EVC,
we observe stronger responses for scenes during encoding and
stronger responses for objects during recall. This may explain
the negatively trending cross-discrimination between encoding
and recall in EVC. However, a group univariate contrast of objects
versus scenes during recall reveals that recall scene selectivity
appears strongest in areas anterior to PPA and MPA, and recall
object selectivity appears strongest in areas anterior to LO and in
EVC. We quantified this observation by comparing the locations
of the peak encoding voxel and the peak recall voxel around each

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa329#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa329#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa329#supplementary-data
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Figure 6. Comparing encoding and recall discriminability within the ROIs. (Top) Example ROIs from a single participant, where each point represents a voxel-centered
spherical searchlight in that ROI and is plotted by the object/scene discrimination index during encoding (x-axis) versus the object/scene discrimination index during

recall (y-axis). The 10% of searchlights showing strongest recall discriminability are colored in blue, whereas the 10% of searchlights showing strongest encoding
discriminability are colored in red. Searchlights that overlap between the two (those that demonstrate both encoding and recall discrimination) are colored in purple.
The patterns in this participant mirror the patterns found across participants—PPA shows low (in this case no) overlap, whereas pFs shows higher overlap. (Bottom)
Histograms for these ROIs showing the participant distribution of the percentage of overlap between the top 10% of encoding discriminating and top 10% of recall

discriminating voxels. The arrow represents the participant’s data plotted above, whereas the dashed red line shows the median overlap percentage across participants.

Figure 7. Whole-brain activation of objects and scenes during encoding and recall. Univariate whole-brain t-statistic maps of the contrast of objects (red/yellow) versus
scenes (blue/cyan) in encoding (left) and recall (right). Contrasts show group surface-aligned data (N = 22), presented on the SUMA 141-subject standard surface brain

(Saad and Reynolds 2012). Outlined ROIs are defined by voxels shared by at least 25% participants from their individual ROI definitions (using independent functional
localizers), with the exception of the pFs and OPA, which were defined by 13% overlap (there were no voxels shared by 25% of participants). The encoding maps
are thresholded at FDR-corrected q < 0.05. For the recall maps, no voxels passed FDR correction, so the contrast presented is thresholded at P < 0.01 for visualization
purposes. Smaller surface maps show unthresholded results.

ROI for every participant. Recall peaks were significantly ante-
rior to encoding peaks across participants bilaterally in PPA [left
hemisphere (LH): Wilcoxon signed-rank test Z = 2.32, P = 0.020;
right hemisphere (RH): Z = 2.65, P = 0.008] and OPA (LH: Z = 2.52,
P = 0.012; RH: Z = 2.91, P = 0.004), and in the left pFs (Z = 2.68,

P = 0.007), left MPA (Z = 2.45, P = 0.014), and right LO (Z = 2.71,
P = 0.007). Even in those hemispheres showing nonsignificant
effects, the same numeric trend was observed, with recall peaks
anterior to encoding peaks. In sum, rather than the peaks of
recalled stimulus class overlapping with those of encoding,
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Figure 8. Whole-brain discrimination analyses for encoding, recall, and cross-discrimination of information. Whole-brain searchlight analyses here show discrimina-

tion of objects versus scenes during encoding (top left), recall (top right), and cross-discrimination (bottom). Brighter yellow indicates higher discrimination indices.
Outlined ROIs are defined using independent stimuli in an independent localizer run. All maps are thresholded at P < 0.005 uncorrected, and unthresholded maps are
also shown. The cross-discrimination searchlight shows regions that have a shared representation between encoding and recall.

the greatest scene–object differences during recall occur in a
spatially separate set of voxels largely anterior to those during
encoding.

A searchlight analysis looking at information discriminability
across the brain reports a similar spatial separation (Fig. 8).
During encoding, scenes and objects are most discriminable
in the same regions identified by the independent perceptual
localizer (LO, pFS, PPA, MPA, OPA). However, during recall,
peak discriminability visibly occurs in voxels anterior to these
encoding-based regions. A comparison of the peak voxel
locations between encoding and recall confirmed that recall
was significantly anterior to encoding in several regions (right
PPA: Z = 2.06, P = 0.039; left OPA: Z = 3.20, P = 0.001; left LO:
Z = 2.61, P = 0.009; right LO: Z = 2.06, P = 0.039; left pFs: Z = 2.21,
P = 0.027) and numerically showing the same trend in others
(left PPA, left and right MPA, right OPA). Next, we employed a
cross-discrimination searchlight to identify regions with shared
stimulus representations between encoding and recall. Again,
areas anterior to those most sensitive during encoding showed
highest similarity between encoding and recall representations.
This anterior shift was significant in bilateral PPA (LH: Z = 3.30,
P = 9.83 × 10−4; RH: Z = 2.39, P = 0.017), bilateral OPA (LH: Z = 3.59,
P = 3.34 × 10−4; RH: Z = 3.43, P = 6.15 × 10−4), left pFs (Z = 2.38,
P = 0.017), and right LO (Z = 2.97, P = 0.003) and numerically
showed the same trend in left LO, right pFs, and right MPA.

These results suggest a spatial separation between encoding
and recall with strongest reinstatement occurring outside of
scene- and object-selective regions typically localized in visual
tasks.

Discussion

In this work, we conducted an in-depth investigation of how
and where recalled memory content for complex object and
scene images is represented in the brain. First, we observed
a striking difference in the representational structure between
encoding and recall. Although information in cortex during
encoding reflected multiple levels of information, during recall
we observed clear evidence for coarse-level information (objects
vs. scenes) as well as some fine-level scene information. No
region showed mid-level information during recall (e.g., natu-
ral/manmade for scenes, tool/nontools for objects), even though
such information was often stronger than fine-level information
during encoding. In hippocampus, we only observed coarse-level
discrimination and only during encoding. MTL regions PRC and
PHC also only showed coarse-level discrimination, although this
information was discriminable during both the encoding and
recall periods. Second, a direct comparison between encoding
and recall discriminability within ROIs found only weak correla-
tions that were significant in a limited number of ROIs. When
we further examined just the top discriminating voxels for
encoding and recall, most regions showed no overlap between
them, with only pFs showing higher overlap than chance. Finally,
a whole-brain comparison of encoding and recall discriminabil-
ity revealed that the peaks for recall as well as the strongest
encoding–recall similarity were spatially anterior to the peaks
during encoding. Collectively, our results reveal key spatial and
representational differences between encoding and recalling
stimulus content.
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The ability to decode scenes versus objects during recall is
consistent with several findings showing broad stimulus class
decodability during recall (O’Craven and Kanwisher 2000; Polyn
et al. 2005; Reddy et al. 2010; Boccia et al. 2019). Similarly,
the ability to decode fine-level information of individual scene
categories is consistent with prior work showing decoding of
specific stimulus images (Dickerson et al. 2007; Buchsbaum
et al. 2012; Lee et al. 2012; Kuhl and Chun 2014). In addition,
we replicate several findings observing discriminability of dif-
ferent levels of information during perception (Mahon et al.
2007; Walther et al. 2009; Kravitz et al. 2011; Park et al. 2011).
We did not find discriminability of object size in visual areas
(Konkle et al. 2012) as expected, but this may reflect the range
of sizes we selected, which were not as far apart as in prior
work. We also find a significant ability to decode memory vivid-
ness and future recognition success from many cortical regions
as shown in prior work (Supplementary material S1 and S2;
Brewer et al. 1998; Wais 2008; Dijkstra et al. 2017; Fulford et al.
2018). However, at face value, the limited decoding we find
during recall as well as the low encoding–recall similarity in
category-selective cortex appears to be at odds with prior find-
ings. We discuss each of these issues in turn in the paragraphs
below.

Although we were able to discriminate coarse-level informa-
tion in most areas and fine-level information in some areas
during recall, we found no evidence for recall of mid-level infor-
mation in any region. Prior work has primarily focused on these
coarse and fine levels, and this absence of mid-level information
suggests that imagery-based representations in cortex do not
contain more information that generalizes across categories.
Participants may be recalling limited image features, sufficient
for fine-level classification of some specific image categories
(e.g., retinotopic features shared across exemplars of a category)
and sufficient for classification at the coarse level of scenes
versus objects (given large differences between their features).
However, the representations during recall may not contain
more abstract information, such as features shared by items
at a similar mid level (e.g., size, function, qualities of a scene).
This pattern of results is reflected not only in many category-
selective areas, but also in EVC, which is unlikely to represent
these more abstract features.

In terms of encoding–recall similarity, our results also appear
to be inconsistent with some previous findings of sensory rein-
statement, in which the neurons or voxels sensitive during
encoding have been reported to show the same patterns during
recall (Wheeler et al. 2000; Danker and Anderson 2010; Buchs-
baum et al. 2012; Johnson and Johnson 2014; Tompary et al.
2016; Schultz et al. 2019). In several visual- and memory-related
regions, we observed limited overlap between the subregions
with peak encoding and those with peak recall information,
with the strongest encoding–recall similarity in more anterior
regions. However, some studies do report encoding–recall sim-
ilarity within scene- and object-selective cortex (O’Craven and
Kanwisher 2000; Johnson and Johnson 2014), which may be
attributable to key methodological differences from the cur-
rent study. First, as noted above, we targeted recollection of
stimulus content rather than individual items. Although scene-
and object-selective regions may maintain item-specific visual
information during both encoding and recall, our results suggest
a difference in representations during encoding and recall at
more generalized levels of information. Second, we employed an
item-based recall task, rather than associative tasks commonly
used to study recall (Ganis et al. 2004; Zeidman, Lutti, et al.

2015a; Xiao et al. 2017; Jonker et al. 2018). This allowed us to
ensure that information we decoded was not related to other
factors such as decoding a cue or association. One potentially
interesting question for future work is how strength of the
memory representation (e.g., reported vividness) or task may
modulate the degree of overlap between encoding and recalled
representations.

Our findings suggest a posterior–anterior gradient within
cortical regions, in which recalled representations extend ante-
rior to encoding or perceptual representations. These results
agree with recent research showing that regions involved in
scene memory are anterior to those involved in scene percep-
tion, with the possibility of separate perception and memory
networks (Baldassano et al. 2016; Burles et al. 2018; Chrastil
2018; Silson, Steel, et al. 2019a; Steel et al. 2020). This anterior
bias for recall may reflect top-down refreshing of a memory
representation in contrast to the largely bottom-up processes
that occur during perception (Mechelli et al. 2004; Johnson et al.
2007; Dijkstra et al. 2019). Indeed, recent work using electroen-
cephalography has identified a reversal of information flow
during object recall as compared with encoding (Linde-Domingo
et al. 2019). Alternatively, other research has suggested a gra-
dient within the neocortex that reflects a split of conceptual
information represented anterior (or downstream) to perceptual
information (Peelen and Caramazza 2012; Borghesani et al. 2016;
Martin 2016). Although recent work shows highly detailed visual
content within recalled memories (Bainbridge et al. 2019), it is
possible recalled memories may be more abstracted and concep-
tual compared with their encoded representations. This recalled
memory could thus contain less mid-level perceptual informa-
tion or be abstracted into a different representation, explain-
ing why we can decode memory strength but not fine-grained
perceptually defined distinctions (e.g., natural vs. manmade)
during recall. Collectively, our results support these two possible
accounts for anterior–posterior gradients of memory/percep-
tion or conceptual/perceptual information in the brain, in con-
trast with other accounts claiming an identical representation
between encoding and recall.

The current work also provides further support for a
content-independent role of the hippocampus in memory.
During encoding, we observe broad content selectivity in the
hippocampus, as has been observed in other recent work
claiming a perceptual role for the hippocampus (Zeidman,
Mullally, et al. 2015b; Hodgetts et al. 2017). However, we do not
observe strong evidence of any other content representations
during encoding or recall; the hippocampus does not show
sensitivity to more fine-grained information, and during recall,
it does not even show differences at the broadest distinction of
objects versus scenes. These results lend support for the notion
that the hippocampus is largely content independent (Davachi
2006; Danker and Anderson 2010; Liang et al. 2013; Schultz
et al. 2019), with individual item decoding in previous work
possibly driven by decoding of indexes within the hippocampus
connected to fuller representations in the neocortex, or a
coding of memory strength (Teyler and Rudy 2007; Jonker et al.
2018). In fact, although stimulus content during recall is not
discriminable, we find that memory strength is decodable
from the hippocampus, mirroring similar results finding
memory strength but not content representations in the
hippocampus for oriented gratings (Bosch et al. 2014). There
is also evidence to suggest that the hippocampus may require
longer delays (e.g., several hours to a week) to develop decodable
representations of memory content (Tompary and Davachi 2017;

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa329#supplementary-data
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Lee et al. 2019), and so a similar experiment conducted with
longer delays between study and test (e.g., days) may find
decodable stimulus content from the hippocampus. These
results in the hippocampus also serve as an interesting
counterpoint to our findings in PRC and PHC within the MTL.
Although these regions also do not show any mid- or fine-
grained information, they show significant discrimination of
coarse-level information during encoding, recall, and cross-
discriminable representations between the two phases. These
results support prior findings of category selectivity within
these regions (Murray and Richmond 2001; Buckley and
Gaffan 2006; Staresina et al. 2011) as well as work suggest-
ing similar representations between perception and recall
(Schultz et al. 2019).

The current study combining nested categorical structure for
real-world images and an item-based recall approach allows us
to observe different levels of stimulus representations across
the brain; however, there are limitations to this methodology
that could be addressed in future work. In particular, the lim-
ited information and null findings during recall could partly
reflect a lack of power, reflecting the weaker signals during
recall compared with encoding. However, from a combination of
our results, we think issues of power alone cannot explain our
findings. First, several regions during encoding show stronger
mid-level discriminability than fine-level discriminability (e.g.,
PPA, pFs, and MPA for natural/manmade). However, these same
regions show significant fine-level discriminability but not mid-
level discriminability during recall, suggesting that the nature of
the information present during recall is different, not just dimin-
ished. Second, our ability to decode recall vividness from most
visual regions suggests decodable patterns of information are
present during recall (Supplementary material S1 and S2). Third,
our analyses uncovering separate peaks of encoding and recall
also suggest that significant recall discriminability does exist,
but in regions somewhat distinct from these perceptually based
ROIs. Finally, the current sample size (N = 22) and number of
trials (192 stimuli) fall in the higher range compared with related
studies (e.g., Lee et al. 2012: N = 11; Johnson and Johnson 2014:
N = 16; Schultz et al. 2019: N = 16). The current study could serve
as a useful benchmark for power analyses for future studies.
Another limitation of our current study is our inability to assess
discriminability for individual images—our current methodol-
ogy was designed to allow us to powerfully test stimulus con-
tent divorced from memory for individual items. Future studies
should investigate whether individual item representations are
identical between encoding and recall, even if more general con-
tent representations are not. Such findings could have meaning-
ful implications on the nature of representations during recall,
suggesting the imagery for an individual item is vivid enough
to be item specific, but results in a limited level of abstraction.
Another question for future research will be a deeper examina-
tion of the different factors influencing encoding–recall simi-
larity for each ROI. Although the conjunction of our results in
addition to the whole-brain analyses suggests a clear difference
between encoding and recall, high encoding–recall correlations
or low overlap in isolation could be attributed to alternate expla-
nations. For example, high correlations between encoding and
recall could be due to anatomical influences on voxel activity.
On the other hand, at chance overlap between encoding and
recall could be due to high noise within an ROI. Finally, it will
be important to see whether these newly defined anterior recall
regions show more fine-grained representations of stimulus
content during recall and whether there may be region-specific

differences (e.g., the MPA in particular has been a key target for
comparisons of scene perception and scene recall; Burles et al.
2018; Chrastil 2018; Silson, Gilmore, et al. 2019b).

Examining item-based recall and representations of memory
content in the brain has ultimately unveiled a rather complex,
nuanced relationship of encoding and recall, with strongest
encoding–recall similarity occurring largely anterior to scene-
and object-selective visual cortex. In the study of memory, it
is important to examine not only how we remember, but also
what we are remembering, and this study reveals that the way
in which this content is manifested may vary greatly between
encoding and recall.
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Supplementary material can be found at Cerebral Cortex online.
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