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Abstract

A complete picture of how subcortical nodes, such as the thalamus, exert directional influence on large-scale brain network
interactions across age remains elusive. Using directed functional connectivity and weighted net causal outflow on
resting-state fMRI data, we provide evidence of a comprehensive reorganization within and between neurocognitive
networks (default mode: DMN, salience: SN, and central executive: CEN) associated with age and thalamocortical
interactions. We hypothesize that thalamus subserves both modality-specific and integrative hub role in organizing causal
weighted outflow among large-scale neurocognitive networks. To this end, we observe that within-network directed
functional connectivity is driven by thalamus and progressively weakens with age. Secondly, we find that age-associated
increase in between CEN- and DMN-directed functional connectivity is driven by both the SN and the thalamus.
Furthermore, left and right thalami act as a causal integrative hub exhibiting substantial interactions with neurocognitive
networks with aging and play a crucial role in reconfiguring network outflow. Notably, these results were largely replicated
on an independent dataset of matched young and old individuals. Our findings strengthen the hypothesis that the
thalamus is a key causal hub balancing both within- and between-network connectivity associated with age and
maintenance of cognitive functioning with aging.

Key words: directed functional connectivity, healthy aging, multivariate Granger causality, salience network, thalamus,
weighted net causal outflow

Introduction
In the last decade, there has been an enormous interest in study-
ing the coordinated activity in distributed brain areas when
individuals are engaged in internally driven tasks, such as mean-
dering through self-referential thoughts while seemingly at rest,
or more specifically not engaged in a state of goal directed
action and perception (Bressler and Menon 2010; Deco et al.
2011; Raichle 2015). The functional organization (Bressler and
Menon 2010) that dominates the landscape of both resting state

and task activity has been broadly classified into three net-
works based on the correlation patterns estimated from BOLD
time series signals. These networks are known as the default
mode network (DMN)/medial frontoparietal network, salience
network (SN)/midcingulo-insular network, and central execu-
tive network (CEN)/lateral frontoparietal network (Menon and
Uddin 2010; Uddin et al. 2019). The DMN comprises posterior
cingulate cortex (PCC), medial prefrontal cortex (MPFC), and
lateral parietal cortices, and is implicated in self-referential
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mental activities (Uddin et al. 2007, Buckner et al. 2008). The
CEN comprises rostral and caudal bilateral middle frontal cor-
tex (MFC) and bilateral superior parietal cortex (SPC), and is
implicated in decision making and executive functions (Corbetta
and Shulman 2002; Fox et al. 2006). The SN, which comprises
bilateral anterior insula (AI) and caudal, rostral bilateral anterior
cingulate cortices (ACC) is important for detection and mapping
of salient inputs and routing these inputs to control areas for
mediating cognitive control (Menon and Uddin 2010; Uddin
2015).

Interestingly, modification of interconnections within and
between the DMN, CEN, SN is altered in a large number of
psychiatric and neurological disorders, for instance, Alzheimer’s
disease, autism spectrum disorder, attention deficit/hyperactiv-
ity disorder, psychosis, and depression (Woodward and Cascio
2015; Abi-Dargham and Horga 2016). The SN, in addition to
detecting salient stimuli, plays an important role in switching
between the DMN and CEN in task conditions as well as in
the resting state (Sridharan et al. 2008; Uddin et al. 2011). This
enables rapid detection of goal-directed or goal-oriented salient
events from the external environments and facilitation of access
to appropriate cognitive resources towards internal oriented
cognition. Secondly, dynamic functional interactions of the SN
were among the most spatially varied in the brain. Third, SN
nodes maintained a consistently high level of network centrality
over time, indicating that this network is a hub for facilitating
flexible cross-network interactions (Menon and Uddin 2010;
Chen et al. 2016). With the anterior insula as its integral hub, the
salience network assists target brain regions in the generation of
appropriate behavioral responses to salient stimuli subserving
externally driven and internally oriented control and attention
(Menon and Uddin 2010; Uddin et al. 2011). During the perfor-
mance of many tasks, correlation among the nodes of SN in
tandem with CEN increases, while the corresponding correlation
among the DMN nodes decreases.

An important caveat to all the resting brain network studies
is that they mostly concentrate on cortical nodes and ignore
the crucial influence of thalamocortical interactions on whole-
brain network dynamics. The thalamus, a centrally located
relay station for transmitting information throughout the
brain, participates in communication with many associative
brain regions and involves global multifunctional pathways.
Incorporating 10 449 metastudies, Hwang et al. (2017) recently
showed that the thalamus is engaged in multiple cognitive
functions and is a critical integrative hub for functional brain
networks. Cross-sectional studies of normal aging have also
reported smaller thalamic volumes in older than younger adults
(Cherubini et al. 2009; Hughes et al. 2012). Further, several
recent studies have endeavored to unravel changes in the
brain’s structural and functional connectivity with aging and
the cognitive implications of these changes. The vast majority of
these studies have used spatial and temporal correlation across
different brain regions as measure of functional connectivity
to characterize age-related changes in brain’s large-scale func-
tional connectivity patterns (Vij et al. 2018). However, exactly
how normal aging affects thalamic interconnections with other
brain networks and its implication in cognitive changes are not
completely understood, and thus warrant further investigation.
From a methodological standpoint, if the thalamus acts as a
common source to cortical inputs and also receives feedback
from the cortex as proposed by theories such as thalamocortical
dysryhtmia (Llinás et al. 1999; Vanneste et al. 2018), a causality
analysis that ignores thalamocortical contribution to brain

dynamics is of very limited scope, and possibly paints an
inaccurate account of the underlying complexity. Thus, the
primary goal of this study is to test our hypothesis of whether
the thalamus acts as modality selective as well as an integrative
hub in reorganizing both within and between-network causal
outflow among major neurocognitive networks with age.
Secondly, we hypothesize that the within network causal
drive progressively weakens with age (young > old), however,
the between-network drive increases with age (old > young).
Finally, we conjecture that SN still remains at the apex of the
hierarchy by selectively driving DMN and CEN in the absence
of thalamocortical interactions, however, in the presence of
such interactions, the thalamus proper (including first and
second order thalamic nuclei combined) exhibits substantial-
directed functional connectivity with DMN, CEN and causally
drives these networks via SN which subserve role of a key
mediator (connector hub) and facilitate increased internetwork
interactions with age. Our findings may be a first step for
an understanding more general interactions between key
neurocognitive networks and subcortical structures to facilitate
bidirectional causal information processing at the functional
level.

Material and Methods
Participants

About 25 young and 24 elderly individuals participated in
this study after providing written informed consent. The
young group ranged in age from 18 to 33 years (mean
age = 25.7 ±4 years, 13 female) and the elderly group ranged
in age from 55 to 80 years (mean age = 67.99 ±9 years, 18
female). The study was performed under the compliance of laws
and guidelines approved by the ethics committee of Charité
University, Berlin. In the replication cohort, we identified a
group of 24 young (age: 24.58 years; range: 18–31 years; 11
female) and 25 elderly participants (age: 64.8 years; range: 50–
81 years; 18 female) from the publicly available Cambridge Aging
Neuroscience dataset (https://camcan-archive.mrc-cbu.cam.a
c.uk//dataaccess/) who were similar in mean age and gender
distribution to the Berlin dataset.

Data Acquisition

Resting-state fMRI as well as diffusion weighted (dw) MRI data
were collected from 49 healthy participants at the Charité
University Berlin, Germany (Schirner et al. 2015). Each fMRI
dataset amounts to 661 time points recorded at TR = 2 s,
that is, about 22 min. In the same session, EEG was also
recorded, but these data are not used for our current analysis.
No other controlled task was performed. Resting-state BOLD
activity was recorded while subjects were asked to stay
awake with their eyes closed, using a 3 T Siemens Trim Trio
scanner and a 12 channel Siemens head coil (voxel size).
Structural (T1-weighted high-resolution three-dimensional MP-
RAGE sequence; TR = 1900 ms, TE = 2.52 ms, TI = 900 ms, flip
angle = 9◦, field of view (FOV) = 256 mm × 256 mm × 192 mm,
256 × 256 × 192 Matrix, 1.0 mm isotropic voxel resolution),
diffusion-weighted (T2-weighted sequence; TR = 7500 ms,
TE = 86 ms, FOV = 192 mm × 192 mm, 96 × 96 Matrix, 61 slices,
2.3 mm isotropic voxel resolution, 64 diffusion directions), and
fMRI data (2-dimensional T2-weighted gradient echo planar
imaging blood oxygen level-dependent contrast sequence;
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TR = 1940 ms, TE = 30 ms, flip angle = 78◦, FOV = 192 mm ×
192 mm, 3 mm × 3 mm voxel resolution, 3 mm slice thickness,
64 × 64 matrix, 33 slices, 0.51 ms echo spacing, 668 TRs, 7 initial
images were acquired and discarded to allow magnetization to
reach equilibrium; eyes-closed resting-state) were acquired on
a 12-channel Siemens 3 Tesla Trio MRI scanner at the Berlin
Center for Advanced Neuroimaging, Berlin, Germany.

Data Analysis

rs-fMRI Preprocessing
The major preprocessing steps applied to T1 anatomical
images were skull stripping, removal of nonbrain tissue, brain
mask generation, cortical reconstruction, motion correction,
intensity normalization, white matter (WM) and subcortical
segmentation, cortical tessellation generating GM–WM and
GM–pia interface surface-triangulations, and probabilistic atlas-
based cortical and subcortical parcellation. The parcellation
used in this study is Desikan–Killiany parcellation (Desikan
et al. 2006), which consists of 68 ROIs with 34 ROIs in each
hemisphere and several first- and second-order thalamic nuclei
is further aggregated into two thalamic regions known as right
and left thalamus proper in Desikan–Killiany parcellation. For
our present analysis along with 18 cortical regions anchored
in three major neurocognitive networks (see details of node
selection in the next subsection), two thalamic regions, left and
right thalami were included based on this parcellation (in total
20 brain regions). The regional resting-state fMRI time series was
computed for each of the regions-of-interest (ROIs, defined by
the Desikan–Killiany atlas; Desikan et al. 2006, as implemented
in FreeSurfer) by averaging all the voxels within each region at
each time point in the time series.

These regional time series were temporally filtered using
a bandpass filter (0.01 Hz < f < 0.08 Hz) (Li et al. 2015; Yuen
et al. 2019). The empirical BOLD time series signals from ROIs
used in this paper for the estimation of directed functional
connectivity and weighted net causal flow were generated by
using an automated pipeline as described in detail elsewhere
(Schirner et al. 2015).

Selection of Brain Regions from Neurocognitive Networks
To identify RSN activity, a spatial Group ICA decomposition was
performed for the fMRI data of all subjects using FSL MELODIC
(Beckmann and Smith 2004; MELODIC v4.0; FMRIB Oxford Uni-
versity) with the following parameters: high pass filter cut off:
100 s, MCFLIRT motion correction, BET brain extraction, spatial
smoothing, normalization to MNI152, temporal concatenation,
dimensionality restriction to 30 output components. ICs that
correspond to RSNs were automatically identified by spatial
correlation with the 9 out of the 10 well-matched pairs of net-
works of the 29 671-subject Brain Map activation database as
described in (Smith et al. 2009) (excluding the cerebellum net-
work). Subsequently, the three key intrinsic neurocognitive net-
works were identified by spatially matching with pre-existing
templates following widely accepted seven networks resting-
state parcellation proposed by Buckner et al. (2011). Each of the
cortical regions was classified further down to seven parcellated
resting networks (Fig. 1).

In our subsequent analysis, we considered three resting-state
networks, namely the DMN, SN, CEN (node details are provided
in Table 1).

The selection of ROIs for the neurocognitive networks under
investigation was partly data driven and partly literature based.

Figure 1. ROIs selected based on seven networks resting-state parcellation. The
ROIs (circles) related 3 prominent brain networks are overlaid on the spatial
distribution maps derived from group ICA of multiple resting-state networks of

interest, that is, the DMN ROIs, the SN ROIs, and the control network or CEN.

The data driven approach consisted of characterization of age-
associated functional connectivity differences and hub reorga-
nization (see Supplementary Materials and Methods). Large-
scale network hub selection and reorganization is plotted in
Supplementary Figure 1. Based on the resemblance of the hub
nodes (anchored in three neurocognitive networks) that was
identified based on our analysis with frequently reported ROIs
in the literature, we chose for our study inferior parietal lob-
ule (IPL), PCC, and MOF as they constitute core part of DMN
(Andrews-Hanna et al. 2010; Dixon et al. 2017) and consistently
showed activation during mental rumination and self-related
processing, mind wandering. The SN, which comprises the ante-
rior insula and caudal, rostral ACC, is important for detection
of salience events and switching between other large-scale net-
works (Menon and Uddin 2010; Uddin 2015). Bilateral rostral and
caudal middle frontal gyrus (MFG) and superior parietal lobule
(SPL) were selected as nodes of CEN. The core DMN regions
selected in this work consistently showed anticorrelation with
SNs (Fransson 2005; Uddin et al. 2009; Dixon et al. 2017).

For within network analysis, we used the extracted time
series for each of the six ROIs within each respective network.
For between-network analysis, we combined time series of the
six ROIs using principal component analysis to create a single
representative time series of each network (for further details,
please see Supplementary Materials and Methods).

Directed Functional Connectivity
The main objective of the present study is to explore the direc-
tional changes and weighted causal outflow in the well-known
triple resting-state networks across the lifespan and in the
presence of exogenous drive from bilateral thalamus. In order
to estimate directional functional connectivity in the time as
well as frequency domain, we employed multivariate Granger
causality analysis that is particularly suitable for our study (Reid
et al. 2019). While we have specific hypothesis to be tested, we
are not interested in understanding the underlying generative
process or to settle a debate about mixed findings related to age-
associated difference or no difference found in neurovascular
coupling (Geerligs et al. 2015; Grinband et al. 2017). Dynamic
causal modeling (DCM) would have been a more pertinent choice



Reconfiguration of Directed Functional Connectivity Among Neurocognitive Networks with Aging Das et al. 1973

Table 1 Coordinates of selected nodes of three resting-state networks according to Desikan–Killiany (DK) parcellation atlas

Networks Brain regions MNI coordinates (x, y, z)

Left (l) Right (r)

Salience network Insula (−41, 13, −6) (43, 12, −6)
CACC (−2, 21, 27) (3, 21, 27)
RACC (−2, 39, 6) (4, 38, 4)

Central executive network RMFG (−34, 53, 17) (43, 45, 21)
CMFG (−45, 18, 46) (43, 14, 43)
SPL (−25, −62, 63) (17, −65, 59)

Default mode network MOF (−4, 44, −14) (7, 45, −13)
IPL (−47, −70, 31) (48, −67, 29)
PCC (−1, −18, 38) (1, −16, 37)

Figure 2. Flow chart describing major steps employed in our pipeline for estimation of directed functional connectivity and weighted causal outflow analysis using

MVGC.

to investigate the latter research question. A flow chart describ-
ing major steps employed in our pipeline for estimation of
directed functional connectivity and weighted causal outflow
analysis using multivariate Granger causality (MVGC) is high-
lighted in the pipeline Figure 2. In the following section, we
describe these steps in detail.

Multivariate Granger Causality Analysis

If we consider two variables X and Y that evolve over time, Y is
said to G-cause X if the past values of Y contain information that
helps predict the future of X over and above information in the
past values of X alone (Granger 1969; Geweke 1982, 1984; Barnett
and Seth 2014; Stramaglia et al. 2014; Barnett et al. 2018). This
can be tested by constructing a univariate autoregression model
of X and checking whether or not the lagged values of Y add any

explanatory power to the model. However, neural signals from
multiple brain regions are expected to show joint dependencies,
thus necessitating the multivariate analysis. For instance, let
Xt, Yt, Zt be the time series of 3 nodes in a network. If there are
joint dependencies between Xt, Yt, Zt and if we calculate uncon-
ditional Granger causality between X and Y, spurious causalities
may occur due to the common dependency on Z. Thus, to
eliminate the possibility of spurious causalities between two
time series, MVGC analysis was performed to assess the causal
influence between nodes of the SN, CEN, and DMN based on
the methods described in Barrett et al. (2010), Barnett and Seth
(2014), and Seth et al. (2018). Group level analysis was performed
with ROIs defined as variables, time points as observations,
and subjects as trials. In MVGC, spurious systematic differences
across brain regions in hemodynamic lag can potentially lead
to spurious estimations of connectivity (Rangaprakash et al.
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2018) and those connectivity and causality at the group level are
eliminated by conditioning out the common dependencies (Seth
et al. 2018). Thus, to test the G-causality from Y to X, one needs to
consider the full and reduced regressions of the following form:

Xt =
∑p

k=1
Axx,k Xt−k +

∑p

k=1
Axy,k Yt−k +

∑p

k=1
Axz,k Zt−k +εx,t (1)

Xt =
∑p

k=1
A′

xx,k Xt−k +
∑p

k=1
A′

xz,k Zt−k + ε′
x,t (2)

Here p is the model order, A is the regression coefficient, and
ε the residuals. In full regression (1), the dependence of X on
the past values of Y, given its own past values and the past
values of Z is incorporated in the coefficients Axy,k. If there is
no conditional dependence of X on the past values of Y, this
coefficient becomes zero. This leads to the reduced regression
equation (2). Therefore, the null hypothesis of zero causality is:

H0 : Axy.1 = Axy.2 = · · · = Axy.p = 0 vs.H1 : at (3)

least one Axy.k �= 0 for k = 1, · · · , p

The G-causality value quantifies the degree to which the
full regression model is a better candidate compared with the
reduced regression to model Xt. An appropriate measure for the
model comparison or prediction error in directional connectivity
between selected pairs of nodes is the logarithm of the ratio
of their likelihood values. The joint likelihood of the var model

is L =
∣∣∣�

−(m−p)
2

∣∣∣ (where |�| = the generalized variance of the

model, m = total number of nodes, p = estimated model order).
The conditional G-causality from Y to X in equations (1) and (2)
is defined as:

Fy→x = ln
∣∣∣∣
Σ ′

xx

Σxx

∣∣∣∣ (4)

where cov(εx,t) = Σxx, cov(ε′
x,t) = Σ ′

xxare the error variances of
the full model and reduced model, respectively. Although three
time series were considered in the above example, in general,
vector autoregressive (VAR) modeling is employed for each time
t deals with a n-dimensional vector space with column vector
U represents a multivariate time series signal. Therefore, a pth
order VAR model can be represented using the similar notations
as above in equations (1) and (2) as:

Ut =
p∑

k=1

Ak Ut−k + εt (5)

We employed the MVGC toolbox (Barnett and Seth (2014))
to perform the connectivity analysis. Joint likelihood L was
calculated for each model order p up to the maximum model
order. In practice, given empirical time series data, the model
order p should be selected based on some theoretical crite-
rion. The value of p should be sufficiently large to capture the
predictive variation, but very large values of p are also not
desirable, because they will induce over-fitting in the model. The
order of the VAR model used for computation of the influence
measure was selected using the Bayesian information criterion
(BIC; Barnett and Seth (2014)). The model with lowest BIC was
chosen. The choice of lowest BIC values resulted in a model
order of p = 2, 3 in most cases while estimating within and
between-network directed functional connectivity. Correspond-
ing VAR model parameters, VAR model coefficients, and covari-
ance matrices were estimated for the estimated model order.
Using the reverse solution of the Yule Walker equations (Barnett

and Seth 2014), the autocovariance sequences were calculated.
For Granger causal estimation, VAR parameters were calculated
for both the full and reduced regressions. Granger causality
value was calculated using (4). Significance was tested using
nonparametric analysis and F-tests as employed in Uddin et al.
(2011) and Barnett and Seth (2014). Empirical null distributions
of the influence of one node on another based on F-values
and their differences were estimated nonparametrically using
bootstrapping and surrogate analysis with null hypothesis of
no causal interactions between the brain regions. Since multi-
ple causalities were tested simultaneously, false discovery rate
(FDR) correction was used to adjust for multiple hypotheses. The
main strength of MVGC is that using the multiple equivalent
representation of a VAR model by regression parameters, the
autocovariance sequence, one is able to compute G-causality
with the simultaneous estimation of full and reduced regression.
This increases the power of statistical tests as well as model
estimation accuracy.

Network Analysis
We estimated and quantified the following metrics to further
characterize the networks in the young and elderly cohorts: (1)
out-degree, number of causal outflow connections from a node
in the network to any other node; (2) in-degree, number of causal
in-flow connections to a node in the network from any other
node; and (3) (out–in) degree, difference between out degree and
in degree, a measure of the net causal outflow from a node. This
permitted comparison with previously reported causal outflow
measures in large-scale brain networks (Sridharan et al. 2008;
Uddin et al. 2011).

We calculated the weighted net (Granger) causal flow. The
main differences from previous work were that we employed
here weighted net causal flow of a node, which was defined
as the weighted (out–in) degree instead of what was previ-
ously employed and described above. This decision was made
to account for the fact that unweighted estimates actually may
lead to incorrect inferences about causal structure. Weighted
out-degree of a node is the sum of the strength (i.e., Granger
causal indices) of significant causal connections from the node
to all the other nodes in the network. Likewise, weighted in-
degree of a node is the sum of the strength of significant causal
connections to that node from remaining nodes in the network.
For example, weighted net causal outflow of node X, say �xcan
be expressed using the following formula:

�x = (
Fx→y + Fx→z

) − (
Fy→x + Fz→x

)
(6)

provide all F values are significant. Nonsignificant F-values
should be instead replaced by zero. Similarly, one can calculate
�y, �z. Though F values are positive, weighted net causal values
can be positive as well as negative. Positive � for a particular
node implies higher causal influence of that node on the other
nodes of the network, whereas negative � signifies that the
particular node is more causally driven by other nodes of the
network (in other words more inflow). These net causal outflow
measures are used to characterize the hub of any causal flow
network and redefine the role of hubs with age-associated
alterations. In this definition, the node with the highest net
causal outflow in a network is considered to be the hub of that
particular network.

To compare the net flow of different nodes between young
and old age groups, we generated 100 samples of Granger causal-
ity index matrices via nonparametric bootstrap sampling. For
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the purpose of comparison, we constructed the distribution of
weighted net causal outflow based on the significant causal
connections (P < 0.05, FDR corrected for multiple comparisons).
The distribution of weighted net causal outflow was calculated
for different nodes within and between networks, and Wilcoxon
signed rank tests were performed to test the significant differ-
ences in the net causal outflows for the different age groups.

Code Accessibility

All codes used for fMRI data analysis, causality estimation,
and generation of manuscript figures are freely available from
GitHub Cognitive Brain Dynamics Lab repository (URL below)
and also upon reasonable request from the corresponding
author, https://github.com/dynamicdip/CBDL_Granger_causa
l_AGING_fMRI.

Results
Age-Associated Within- and Between-Network Causal
Connectivity Causal Connectivity Among Major
Neurocognitive Networks

Within Network-Directed Functional Connectivity in Young Versus
Elderly
We used MVGC analysis (Barnett and Seth 2014) to investigate
causal interactions between the six network nodes in the three
well studied neurocognitive networks. In the CEN, we extracted
time series from six nodes (see Fig. 1), namely lRMFG, rRMFG,
lCMFG, rCMFG, lSPL, and rSPL. The strength of the directed
interaction from the rRMFG (driver node in a network) to the
rCMFG (follower node in a network) was highest among all
causal interactions for both the groups (Fig. 3A,D). There were
no bidirectional interactions in the CEN. Interestingly, we did
find rostro-caudal directed interactions in the CEN. Further-
more, there were substantial unidirectional drive from anterior
regions of the CEN to the posterior regions along the anterior–
posterior axis. We found significant directed functional connec-
tivity (P < 0.01, FDR corrected) from the lRMFG to the lCMFG, and
the lSPL for young individuals (restricted to a single hemisphere)
(Fig. 3D). On the other hand, for the elderly group, significant
directed functional connectivity was from the rRMFG to the
lSPL (between two hemispheres) and rSPL (in addition to the
rCMFG) (Fig. 3A). In contrast to DMN, a greater number of inter
hemispheric connections were found in elderly individuals in
the CEN (Fig. 3A).

To further investigate the network properties, we quantified
weighted net causal outflow for the six nodes within CEN. The
lRMFG and rRMFG (bilateral rostral areas in the Frontal Gyrus)
acted as a causal outflow hub for young and elderly groups
respectively. The majority of the identified causal outflows were
significantly different for all the six nodes (P < 0.01). With the
exception of lRMFG and rRMFG, all nodes had negative causal
outflow (causal inflow) for young individuals (Fig. 4A). In con-
trast, in the elderly group, other than rRMFG, only lCMFG had
small positive outflow. All the remaining nodes of the CEN
had causal inflow. We have further estimated directed FC and
weighted causal outflow for the CEN using BOLD signals of
shorter duration (8 min 40 s resting-state data) and found quali-
tatively similar results confirming modality selective role of tha-
lamus in mediating resting-state causal interactions (see Sup-
plementary section and Supplementary Fig. 2 for more details).

Next we proceed with analysis of the SN which comprise
of six nodes (see Fig. 2), namely lInsula, rInsula, lcACC, rcACC,

lrACC, and rrACC. For within network analysis, quantitative
comparison of MVGC analysis at the group level revealed
a smaller number of significant directed causal influences
compared with DMN and CEN. There was significant directed
influence from lInsula to the lCACC, and the lRACC in young
and elderly groups (Fig. 3B,E). Additionally, in the young group,
significant directed influences were found from the rInsula to
the rCACC and from the lRACC to the lInsula. One interesting
find is that rInsula drives the rCACC in the young group but not
in elderly group (Fig. 3E).

Weighted net causal outflow based on (out–in degree) anal-
ysis revealed lInsula as a major causal outflow hub in the SN
for both age groups, but between group differences were also
significant. In the elderly group, the causal outflow significantly
reduced compared with young (old < young, P < 0.01, FDR cor-
rected). Furthermore, rInsula had a small causal outflow in both
groups, and the group differences were statistically significant
(P < 0.01) and opposite of what is observed for the lInsula. The
causal outflow from rInsula is significantly increased for the
elderly group. lRACC had positive outflow for the young group
and was significantly different for the elderly group (Fig. 4A,B).
All the remaining nodes of ACC had negative outflow (causal
inflow) for both groups. Causal outflows/inflows were signifi-
cantly different (P < 0.01) for all the nodes.

We next applied MVGC analysis on the extracted time series
for each of the six DMN nodes (see Fig. 1) for both young and
elderly group to quantify the age effects in the dominant direc-
tion of influence (P < 0.05, FDR corrected). While in the younger
group, MVGC analysis revealed significant directed causal
connectivity from the lMOF (a driver as well as driven node)
to the lIPL (bidirectional connectivity), lPCC (unidirectional)
(follower nodes), and rMOF (a driver node) to the rIPL, rPCC, lMOF
(interhemispheric-directed functional connectivity), and lIPL
to rIPL (interhemispheric connectivity) as shown in Figure 3F,
in elderly individuals, such bidirectional and interhemispheric
causal connectivity was not present. Moreover, we see a reversal
in the directed causal connectivity lIPL driving both lMOF and
lPCC, and interhemispheric causal connectivity between lIPL
to rIPL was completely absent (Fig. 3C), suggesting an age-
associated decrease in causal drive within DMN nodes. This
age-associated decrease in the causal drive within DMN nodes
were also observed with resting-state BOLD signals with a
shorter time duration and plotted in Supplementary Figure 3
(see Supplementary Materials and Methods).

Next, we estimated weighted net causal outflow or weighted
(out–in) degree in both young and elderly group. Based on the
100 bootstrap samples, the distribution of weighted net causal
outflow was calculated for each of the 6 nodes in DMN. For
the young cohort, rMOF acted as a causal outflow hub among
the nodes in DMN and was significantly different between the
two groups (Mann–Whitney U test P value < 0.001), whereas rIPL
acted as causal outflow hubhub for elderly group but acted as
causal inflow hub for younger group (Fig. 4C,D). rPCC and lPCC
both acted as causal inflow hubs receiving more drive from
other nodes in the DMN for both young and elderly and were
statistically significantly different in young group compared
with old (Mann–Whitney test P value < 0.001). Interestingly,
lPCC showed a reduction in causal inflow from young to
old (young > old) while opposite was observed for the rPCC
(old > young). Taken together, these results based on within
network weighted causal flows (out-in degree) suggest an age-
associated decrease in causal drive and suggests decline in
within network DMN functional connectivity.

https://github.com/dynamicdip/CBDL_Granger_causal_AGING_fMRI
https://github.com/dynamicdip/CBDL_Granger_causal_AGING_fMRI
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Figure 3. Directed functional connectivity between the nodes of three resting-state networks. Directed functional connectivity between (A) 6 key nodes of CEN, (B) 6
key nodes of SN, (C) 6 key nodes of DMN for elderly group. (D) 6 key nodes of CEN, (E) 6 key nodes of SN, (F) 6 key nodes of DMN for young group.

Figure 4. Weighted net causal outflow for within-network directed functional connectivity analysis. (A) Weighted net causal outflow in nodes of the central executive
network. (B) Weighted net causal outflow in nodes of the salience network. (C) Weighted net causal outflow in nodes of default mode network. Weighted net causal

outflows were significantly different in few nodes in each of the three RSN young and elderly group (P < 0.05 is indicated by “∗” P < 0.01 is indicated by “∗∗,” no
significant difference is indicated by “NS”).
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Figure 5. Directed functional connectivity between the nodes of three resting-state networks and the thalamus. (A) Directed functional connectivity between six key

nodes of CEN, (B) six key nodes of SN, (C) 6 key nodes of DMN for elderly group in presence of thalamic nodes. (D) Directed functional connectivity between 6 key nodes
of CEN, (E) 6 key nodes of SN, (F) 6 key nodes of DMN for elderly group in presence of thalamic nodes for young group in presence of thalamic nodes.

Reconfiguration of Within-Network Directed Functional
Connectivity Associated with Age and Thalamocortical
Interactions
In elderly group, all the connections except rRMFG-rlSPL
remained significant (P < 0.05, FDR corrected) in the analysis
including the thalamus. The connections between rRMFG–lSPL
were mediated by the lThal. Some significant unidirectional
causal connectivity was emerging from both the thalami,
between lthal-lRMFG and rthal-lRMFG. In the CEN, we found
frontal cortex was specifically driven by both left and the right
thalamus in the left hemisphere. For both young and elderly
groups, right and left thalamus were driving bilateral RMFG in
the respective opposite hemispheres. Bilateral SPL was driven
by rostral and caudal MFG in the elderly. Moreover, there were
significant rostro-caudal interactions in the young as well
as elderly group, but the direction of influence was reversed
(Fig. 5A,D). For the young group, all the connections without
thalamus were also found significant after inclusion of the
thalamus (Fig. 5), which demonstrates that the overall patterns
did not change by incorporating thalamo-cortical interactions.
Rather, the evidence suggests that thalamic influence is
absolutely critical to understand the variance of the prediction-
errors for the estimation of directed functional connectivity
in the triple resting networks. Additionally, the left thalamus
exhibited directed functional connectivity among the following
nodes of CEN: the lRMFG, the lCMFG, and the rRMFG (Fig. 5D).
Right thalamus was the driver node and lRMFG was the follower
node in the younger group.

Net Granger causal outflows were significantly changed after
inclusion of thalamus for both the young and elderly groups. The
effects of the thalamus were greater in the younger individual’s
weighted (out–in degree) net causal values (Fig. 6A). The left
thalamus acted as a causal outflow hub for both the groups, as
expected from the above results. However, the weighted causal
outflow in the left thalamus was higher in the young group
compared with the elderly group. We found significant group

differences in weighted causal flow analysis for all the eight
nodes (P < 0.01).

Among the three resting-state networks, the SN was least
affected after inclusion of thalamus. No changes were found in
causal structure after inclusion of thalamus in elderly individu-
als (Fig. 5B). In young individuals, significant causal connections
were found from the lThal-lInsula connections (P < 0.01, FDR
corrected) and from the rThal–rInsula connections (P < 0.01, FDR
corrected) (Fig. 5E). No significant changes were found in the
net causal outflow pattern in both the groups. Left thalamus
exhibited positive outflow, higher in the case of older individuals
(P < 0.05). Right thalamus received marginally small negative
outflow (inflow) for both groups (Fig. 6A,B).

Next, we studied causal interactions between thalamus
and the DMN. We observed significant reconfiguration in
the directed functional connectivity pattern found in the
elderly individuals. On performing MVGC analysis on DMN
after addition of thalami, some of the earlier significant
causal connections disappeared while some thalamo-cortical
causal connections emerged as important connections for
both the age groups (Fig. 5C,F). The reversal of unidirectional
connectivity between rIPL–rMOF follows a posterior–anterior
gradient and anterior–posterior gradient, as seen previously
in the connections rMOF–rIPL. Posterior–anterior directional
connectivity continued to be the strongest in elderly group
without taking into account thalamic interactions (Fig. 5C).
Other than that, MVGC revealed significant causal connections
from the rMOF to the rPCC, from the rThal to the lIPl, from the
lIPL to the rThal, from the rThal to the lMOF for elderly people
(Fig. 5C). In the presence of thalamo-cortical causal interaction,
directed functional connectivity between the left hemispheric
nodes were largely absent in elderly. For the young group, the
effect of the thalamus was more pronounced compared with the
elderly group (young > old) (Fig. 5F). Instead of the connection
from the lMOF to the lPCC, the connection from the lThal to the
lPCC emerged as the strongest connection after the inclusion
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Figure 6. Weighted net causal outflow for within-network directed functional connectivity analysis. (A) Weighted net causal outflow in nodes of the central executive
network and two thalamic regions (left, right). (B) Weighted net causal outflow in nodes of the salience network and two thalamic regions (left, right). (C) Weighted

net causal outflow for default mode network and two thalamic regions (left, right). Weighted net causal outflows were significantly different in nodes in each of the
three RSNs for young and elderly group (P < 0.05 is indicated by “∗,” P < 0.01 is indicated by “∗∗,” no significant difference is indicated by “NS”).

of the thalami (though the lMFCOF to the lPCC connection also
remained significant). In addition, other significant connections
were from the lMOF to the lIPL, from the lThal to the lMOF, from
the lThal to rThal, from the lThal to the rPCC, from the rThal to
the lMFC, from the rThal to the rMFC, from the rMFC to the rPCC,
and from the rMFC to the rIPC (Fig. 5F), suggesting substantial
effects of thalamus in reorganizing within-network causal drive
this network, and also revealing the effect is the strongest in the
younger group compared with the elderly.

Net Granger causal outflows were significantly changed
after accounting for cortico-thalamic causal interactions, in
particular, for the young group. Among the two thalami, the left
thalamus emerged as a causal outflow hub for the young group,
exhibiting substantial drive to the cortical nodes in the DMN Pat-
terns in the weighted net causal outflows remained unchanged
in elderly group (Fig. 6C). Right hemispheric IPL continued to be
causal outflow hub for elderly group were significantly different
(P < 0.01, FDR corrected) from the young group, even after
accounting for thalamo-cortical interactions. Causal outflows
were significantly different in both groups (P < 0.01). Overall, we
found stronger weighted causal outflow and increase causal
drive from the thalamus among key nodes (left and right
IPL, left and right PCC) of the DMN network associated with
aging.

Reconfiguration of Between-Network Directed
Functional Connectivity Associated with Age and
Thalamocortical Interactions
Next, we asked in what specific way the between-network inter-
actions in the three neurocognitive networks are reconfigured
by age and cortico-thalamic interactions. To address this sys-
tematically, we employed principal component analysis (PCA) to
combine the time series from each of the resting-state networks
(CEN, SN, and DMN). We took the first principal component of
all nodal time series of a network that resulted in maximum
explained variance of the signal. Subsequently, we performed
MVGC among three nodes derived from the first principal com-
ponent of each cortical RSNs at the group level. Each of these
three principal nodes for all subjects combined in both young
and elderly groups were representative nodes of CEN, SN, and
DMN respectively.

In between-network analysis, SN exhibited stronger causal
influence on both DMN and CEN (SN > DMN and SN > CEN)
in both young and old groups (Fig. 7A,B). Directed functional
connectivity and causal strengths were significantly stronger in
old groups compared with young (P < 0.01, FDR corrected). Fur-
thermore, with age, both CEN and SN exerted stronger directed
functional connectivity with DMN (P < 0.01, FDR corrected) and
internetwork connectivity between SN and CEN got significantly
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Figure 7. Directed functional connectivity between three resting-state networks in absence and presence of the thalamus. (A) Directed functional connectivity between
three nodes representing three RSN, SN, DMN, CEN for old population. (B) Results for directed functional connectivity between three nodes representing three RSN for
young population. (C) Directed functional connectivity between three nodes representing three RSN and fourth node representing the thalamus for old population. (D)

Directed functional connectivity between three nodes representing three RSN and fourth node representing the thalamus for young population.

stronger with age (P < 0.01, FDR corrected). With thalamocor-
tical interaction (Fig. 7C,D), there was presence of bidirectional
interactions between thalamus and SN (in the young group)
and in turn SN mediated directed functional connectivity with
both DMN and CEN. As in the absence of thalamocortical inter-
actions DMN had greater directed functional connectivity with
SN compared with CEN in the young group. In the older group,
we found that thalamus is the key driver which exhibit greater
(old > young) directed functional connectivity with SN and in
turn, SN exhibits stronger directed functional connectivity with
CEN and DMN both. Taken together these results confirms our
hypothesis of overall stronger directed functional connectivity
strength in the old group compared with the young group, sug-
gesting an age-associated increase in between-network directed
functional connectivity mediated by SN, however, when thala-
mocortical interactions are taken into consideration then tha-
lamus emerges as key integrating hub driving causally neu-
rocognitive networks CEN, DMN via SN, which subserve the
role of a key mediator (connector hub) and facilitate increased
internetwork interactions.

Next, we estimated the weighted net Granger causal outflow
among three neurocognitive networks. We found among the
three cortical RSNs, the SN was a causal outflow hub driving

both DMN and CEN. Network causal outflows (in–out degree)
were statistically significantly different between young and
elderly groups (P < 0.01, FDR corrected) (Fig. 8A). Further, we
repeated between-network analysis, with the second principal
component of all nodal time series of a network. No significant
directed functional connectivity was found, confirming the fact
that the first principal component sufficiently explained all the
variabilities present in the time series of the three networks.

The weighted net causal outflows were significantly affected
after taking into account thalamocortical interactions. We find
evidence for the thalamus acting as a causal outflow hub
(old > young) for the elderly group (Fig. 8A). Interestingly, SN
and CEN dynamics were completely antagonistic with each
other based on weighted causal outflow in the presence of
cortico-thalamic interactions. DMN also exhibited greater causal
inflow with respect to age. While SN received highest weighted
causal outflow for young group (young > old, P < 0.01, FDR
corrected) CEN received highest causal inflow for elderly group
(old > young) (Fig. 8B). Unlike the within-network results, in
between-network analysis, causal outflows were greater in the
elderly group with or without accounting for thalamocortical
causal interactions confirming our hypothesis that there is an
age-associated increase in internetwork causality and thalamus
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Figure 8. Weighted net causal outflow for between-network directed functional connectivity analysis. (A) Weighted net causal outflow in three RSN. (B) Weighted net

causal outflow in three RSN and the thalamus. Weighted net causal outflows were significantly different in few nodes in each of the three RSN young and elderly
group (P < 0.01 is indicated by “∗∗,” no significant difference is indicated by “NS”).

plays the key role of an integrative hub in organizing causal
information outflow among major neurocognitive networks.
Analysis with resting-state BOLD signal of shorter duration
confirmed these results were not influenced by the long scan
duration (Supplementary Figs 4 and 5, see Supplementary
Materials and Methods for details).

Overall, thalamo-cortical interactions alter the directed func-
tional connectivity patterns and causality between the triple
networks. However, the thalamus also received feedback causal
influences and driven by both the SN and CEN particularly in the
young group, and in the elderly group, DMN was driven strongly
by the influence of SN which was driven by thalamus. Hence,
the weighted net causal outflows for the elderly group were
affected accounting for substantial thalamo-cortical interac-
tions. However, this is hardly surprising given that left thalamus
in particular emerged as an important causal hub node in medi-
ation of crucial thalamo-cortical interactions with respect to age.
Taken together, within-network thalamic drive progressively
weakens with age, and stronger directed functional connec-
tivity was found in the young group between thalamo-cortical
connections. On the contrary, in the elderly group, between-
network directed functional connectivity was far less dissimilar
accounting for thalamo-cortical interactions.

Replication Analysis
We identified a group of 24 young and 25 elderly participants
from the publicly available Cambridge Aging Neuroscience
dataset (https://camcan-archive.mrc-cbu.cam.ac.uk//dataacce
ss/) in the age range of 18–80 years who did not differ in mean
age, gender distribution from Berlin dataset (see methods). Using
this new dataset for independent validation, we conducted
identical directed functional connectivity and weighted causal
outflow analyses for each of the 3-core neurocognitive resting-
state networks of interest. In the replication analysis, the 6 nodes
for CEN included bilateral caudal MFG (rCMFG, lCMFG), rostral
MFG (rRMFG, lRMFG) and superior parietal lobule (rSPL, lSPL).

We found several significant overlaps in the within-network
causality results between the connections between rRMFG–lSPL
and lRMFG–rSPL and these connections were mediated by both
the lThal and rThal, respectively. Some significant unidirec-
tional causal connectivity was emerging from both the tha-
lami, between lthal–lRMFG and rthal–lRMFG (P < 0.05, FDR cor-
rected). In the CEN, we found frontal cortex was specifically
driven by both left and the right thalamus in the left hemi-
sphere as was observed in the original data. For both young
and elderly groups, right and left thalamus were driving bilateral
RMFG in the respective opposite hemispheres. Bilateral SPL was

https://camcan-archive.mrc-cbu.cam.ac.uk//dataaccess/
https://camcan-archive.mrc-cbu.cam.ac.uk//dataaccess/
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Figure 9. Directed functional connectivity between the nodes of three resting-state networks and the thalamus in the replication analysis. Directed functional
connectivity between (A) key nodes of CEN, (B) key nodes of SN, (C) key nodes of DMN for elderly group in presence of thalamic nodes (blue). (D) Directed functional

connectivity between key nodes of CEN, (E) key nodes of SN, (F) key nodes of DMN for young group in presence of thalamic nodes.

driven by rostral and caudal MFG in the elderly. There were
some differences as well. While there were significant rostro-
caudal interactions as in the original data, but this time it
was only present for the elderly and not for the young. There
was interhemispheric-directed functional connectivity between
bilateral parietal lobule which was absent from the Berlin data.
In replication analysis, we discovered in the elderly group rSPL
(a driver node) was having significant directed functional con-
nectivity (P < 0.05, FDR corrected) with lSPL (a follower node).
Significant connections (P < 0.05, FDR corrected) emerged from
left and right thalami both in the young and old groups. However,
the number of causal connections between thalamus and CEN
nodes were greater in the younger cohort (Fig. 9A,D).

Bilateral rostral anterior cingulate (rrACC, lrACC), caudal
anterior cingulate (rcACC, lcACC), and insula (rIns, lIns) were
defined as the nodes of the SN. We observed directed functional
connectivity between bilateral insula (driver) and caudal ACC

(driven by Insula). We also found a difference while bilateral
insula was driven by thalamus in the young group in the original
data, this connection was absent for the old group. In the
replication analysis, this connection did not disappear in the
old group (Fig. 9B,E). In both datasets, the number of connections
decreases significantly in the old group compared with young.

In the DMN, the nodes selected were bilateral medial
orbitofrontal (lMOF, rMOF), IPL (lIPL, rIPL), and PCC (lPCC,
rPCC). In the younger group, MVGC revealed extensive causal
connections between all the DMN nodes (Fig. 9F), which was
missing in the older group. In both data, we found there is
significant overlap between anterior–posterior interactions and
the connections also exhibited hemispheric asymmetry in the
older group.

The younger cohort exhibited a greater number of causal
interactions than the older group (Fig. 9C,F), suggesting an age-
related decrease in within DMN causal drive. Significant causal
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connections (P < 0.05, FDR corrected) emerged from left and
right thalami both in the young and old groups. However, the
number of causal connections between thalamus and DMN
nodes was greater in the younger cohort (Fig. 9F). We also found
similarity in directed functional connectivity between bilateral
IPL and bilateral MOF and missing lIPL–lMOF connections in
original and replication analysis. In the replication data, we also
discovered reversal of anterior–posterior directed connections
between MOF and IPL associated with age as was found in the
original data. There was a difference, rIPL was driven by rMOF
in the original data and this directional functional connectivity
reversed in older group. In the replication data, rIPL was driven
by lMOF and not by rMOF and the directionality was similarly
reversed in the older group as was found in the original data.

To represent the information of all the nodes in a particular
network for a between-network analysis, the time series of all
the nodes in each of the resting-state network were combined
by employing a PCA (see Methods). All causal connections were
found significant.

Between-network directed functional connectivity showed
significant overlap between SN, CEN, DMN connections in the
young and old group in both data. In the young group, we
discovered that SN (a driver network) exhibits strongest direc-
tional functional connectivity with both DMN (a follower net-
work) and CEN (a follower network). Also, CEN drives DMN
network causally and exhibits directed functional connectivity.
In both replication data as well as original data, SN emerged
as the key driver network exhibiting stronger directional func-
tional connectivity with DMN and CEN associated with age.
The number of directed functional connectivity as well strength
increases with age which is an overlapping finding for both orig-
inal and replication data (stronger between-network directed
functional connectivity and increased internetwork causal out-
flow in neurocognitive networks with age; Fig. 10A,B). Finally,
thalamo-cortical interactions did not necessarily alter any of
the directed functional connectivity patterns between the neu-
rocognitive networks; however, displayed directed connections
only between CEN and thalamus in the older cohort (Fig. 10C).
This was the main difference with original analysis, where
we discovered other connections such as thalamus–SN, DMN–
thalamus, and others. On the other hand, for both original and
replication data in the young group, we found presence of over-
whelmingly large number of bidirectional functional connec-
tivity of neurocognitive resting-state networks with thalamus
compared with elderly (Fig. 10D).

Discussion
In the present study, we employ MVGC and weighted network
causal outflow analysis to probe within- and between-network
causal relationships among three key intrinsic resting-state
brain networks with the hope of facilitating more biologically
meaningful interpretations of brain signatures of healthy
aging by taking into consideration the role of the thalamus
as both a modality selective and an integrating hub. Based
on our results, the thalamus exhibits both modality specific
as well as integrator role in organizing causal information
flow among large-scale neurocognitive networks. Based on
within-network analysis, we have found that the thalamus
acts in a modality selective manner by causally driving both
CEN, DMN but less influencing SN. We also found that with
age within-network causality diminishes perhaps suggesting
weaker functional connections between the thalamus and those

Figure 10. Directed functional connectivity between three resting-state networks

in absence and presence of the thalamus for the replication analysis. (A) Directed
functional connectivity between three nodes representing three RSN, SN, DMN,
CEN for old population. (B) Results for directed functional connectivity between

three nodes representing three RSN for young population. (C) Directed functional
connectivity between three nodes representing three RSN and fourth node rep-
resenting the thalamus for old population. (D) Directed functional connectivity
between three nodes representing three RSN and fourth node representing the

thalamus for young population.

networks. However, there is a role reversal when it comes
to mediating causal flow for the internetwork interactions.
Here, we found thalamus emerges as a key integrative hub
by strongly driving SN and subsequently, SN mediates causal
information flow between DMN, CEN possibly maintaining
hierarchy of information flow. Finally, we establish that the
between-network causal drive increases with age (old > young)
and mediated by both thalamus and SN, establishing the
enhanced role of SN with age and dual role of the thalamus
as a network driver.

Every cortical region receives feedforward projections from
the thalamus and in turn sends outputs to one or multiple
thalamic nuclei (McFarland and Haber 2002; Obeso et al. 2008).
Thalamo-cortical projections relay nearly all incoming infor-
mation to the cortex as well as mediate corticocortical com-
munication (Sherman and Guillery 2002). Thus, deeper insight
into brain functional characterization requires knowledge of the
organization and properties of thalamo-cortical interactions. A
recent study by Hwang et al. (2017) showed the thalamus as
an integrative hub for functional networks. A handful of stud-
ies also observed disrupted thalamic resting-state functional
networks in brain injury and schizophrenia (Tang et al. 2011;
Wang et al. 2015). Also, it has been widely reported that thalamic
volume significantly decreases with aging (Walhovd et al. 2005;
Cherubini et al. 2009; Zheng et al. 2018). Goldstone et al. (2018)
further investigated the association of thalamic functional con-
nectivity with sensory and motor areas and relationship with
behavioral performance of elderly individuals. However, there
is a knowledge gap in terms of how thalamo-cortical interac-
tions sculpt causal drive and how they reconfigure directed
functional connectivity in major neurocognitive networks with
aging. This knowledge-gap is surprising given that lifespan-
associated behavioral performance and flexibility in principle is
governed by large-scale functional brain network reorganization
and whole brain dynamics at fast and slow time scales (Naik
et al. 2017; King et al. 2018; Sahoo et al. 2020).

Previous evidence suggests that there is substantial sub-
cortical–cortical causal interactions during maturation and
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development (Menon and Uddin 2010; Uddin et al. 2011). Hence,
focusing primarily on cortical networks and nodes in these
analyses paints an incomplete understanding. Overall, we
found significant dynamic reconfiguration of between- and
within-network directed functional connectivity and weighted
causality significantly alters with aging and in particular
thalamo-cortical interactions are taken into account. After
inclusion of the thalamus in the between-network analysis,
we observed that the thalamus acts as a causal outflow
hub, driving all three network nodes in both age groups. In
contrast, in within-network analysis, the influence of the
thalamus in reorganizing within-network causality is much
more prominent in the younger age group compared with the
older group. In the DMN, the left thalamus comes out as a causal
outflow hub for the young group, while patterns in the net
causal outflows were unchanged in the older group compared
with what was observed in the absence of thalamo-cortical
interactions. While considering thalamo-cortical interactions,
within-network analysis in the CEN revealed that the left
thalamus acts as a causal outflow hub for both the groups;
however, the causal outflow strength was significantly greater
in the younger compared with the older group. Finally, we
also demonstrate how thalamo-cortical interactions play a
crucial role in mediating within-network interactions among the
specific neurocognitive networks in a modality selective fashion
and the effects are particularly stronger in the younger group
compared with elderly. Taken together this further suggests
an age-associated thalamo-cortical decline in maintenance of
within-network causality.

The question of segregated and integrated brain dynamics is
fundamental and pertinent with regards to alteration and recon-
figuration of brain network dynamics with aging. Hence, we
focused on the decreased causal segregation of brain networks
(i.e., increased internetwork directed functional connectivity),
two features which can be considered a hallmark of the aging
process. According to the dedifferentiation hypothesis of cogni-
tive aging, age-related impairments in cognitive function arise
from reduced distinctiveness of neural representations (Li et al.
2001). Historically, the concept of dedifferentiation was intro-
duced by Baltes and colleagues (1980) to account for age-related
increases in the correlation between levels of performance on
different cognitive tasks. At the neural level, numerous brain-
imaging studies have shown that the aging brain adapts by
exhibiting more global activation compared with younger indi-
viduals while performing a cognitive/motor task (Cabeza 2002;
Reuter-Lorenz 2002; Serrien et al. 2007; Seidler et al. 2010). In
line with these finding, at the network level, several studies have
found a decrease in within-network functional connectivity and
an increase in between-network functional connectivity in RSNs
with aging (Andrews-Hanna et al. 2007; Ferreira and Busatto
2013; Betzel et al. 2014; Geerligs et al. 2015; Ferreira et al. 2016;
Ng et al. 2016). More specifically, younger individuals display
increase in both the number and the strength of weighted causal
within the nodes of DMN, CEN, and SN and the causal outflow
strength increases compared with elderly (young > old) when
thalamic interactions are further taken into account. At the
between-network level, we find that causal strengths are signif-
icantly higher in the older individuals compared with the young,
thus further substantiating the dedifferentiation hypothesis.
Moreover, the present study also uncovers several novel obser-
vations. We observed the reversal of direction of causal con-
nections in DMN between rMOF and rIPL with aging (change in
directionality along anterior–posterior gradient), age-associated

changes in the causal outflow in key nodes of DMN and CEN
networks, and reconfiguration of weighted causal outflow hubs.
This is in line with shifting hubs and default executive coupling
hypothesis associated with healthy aging process (Naik et al.
2017; Spreng and Turner 2019). For future studies, it would be
very interesting to see, by employing a similar methodology
on a larger sample size including various stages of the adult
lifespan, whether a clear trend emerges in directed functional
connectivity patterns.

The role of the SN in mediating switching between DMN
and CEN is well established (Sridharan et al. 2008; Menon and
Uddin 2010; Goulden et al. 2014). In agreement with previous
observations, we find the SN exerts strong causal influence on
both DMN and CEN in both age groups. In between-network
analysis, the SN is found to act as a causal outflow hub among
the three RSNs. Interestingly, the causal influence of SN on
both DMN and CEN increases with aging. An increase in the
between-network causality in the older group emerges as a
general trend in our analysis. This is a counterintuitive result as
within network analysis actually revealed significant evidence
for thalamic decline with age. However, it seems higher neu-
rocognitive networks such as SN, CEN, DMN establish stronger
between-network directed connections with the thalamus in
the old group. Our study also reveals the salience network’s
role as a mediator of switching between DMN and CEN and
establishes greater between-network directional connectivity in
elderly compared with young (old > young). This finding is in
line with the extant literature (Menon and Uddin 2010; Uddin
et al. 2011; Bonnelle et al. 2012) and also provides confirmatory
evidence of the pivotal role played by the SN for flexible switch-
ing as one of the major causal outflow hub. Among the 3 resting-
state networks, the SN remains least affected after inclusion
of the thalamus. We did not find substantial reconfiguration
in SN with thalamo-cortical interactions in elderly individuals.
Also, the reconfigurations of this network were minimal in the
young group. The net causal outflow pattern also did not change
after taking thalamo-cortical interactions into account for both
the groups. This could be related to the underlying decline in
cortico-thalamic connectivity with aging. These findings are
in concurrence with the observations made by the previous
studies (Cao et al. 2014; Wang et al. 2015; Sakaki et al. 2016;
Xiao et al. 2018) that in contrast to the DMN and CEN, within-
network connectivity is preserved or increased in SN with aging.
Our result suggests that this preservation of causal connectivity
patterns within SN may be crucial for aging and could be driven
by thalamus.

We performed a replication analysis with an independent
dataset controlling for age, gender, and some of the major find-
ings with the original dataset were largely replicated. In within-
network analysis, we observed greater number of causal con-
nections and higher strengths in the younger group compared
with older individuals are consistent with our findings with
the original dataset. The effect of thalamo-cortical interactions
was also revealed within-network directed functional connec-
tivity diminishes in older individuals confirming our original
hypothesis. Notably, we also found some specific differences
between original and replication analysis. These differences
may be attributed to site variability, sample size, individual
variability in the samples and data acquisition parameters. For
example, an obvious difference is the duration of resting-state
scan and acquisition. They are certainly not identical in the 2
datasets (22 min for the Berlin data and 8 min 40 s for the CAM-
CAN replication cohort). This observation prompted us to carry
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out further analysis with BOLD resting data of shorter dura-
tions. We found qualitatively complete agreement with reported
directed functional connectivity and weighted causal outflow
results and age-associated alterations using shortened datasets
(Supplementary Materials).

We acknowledge several limitations of our study that
should be addressed in future work. First, the thalamus is a
heterogenous structure composed of several nuclei, each of
which sends distinct afferent inputs to cortical regions as well
as being driven by cortical outputs. Thus, probing the influence
of different nuclei of thalamus on reorganization of within-
and between-network causality of different RSNs would help
to better describe the complex neurophysiological processes
taking place in the brain with aging. Theses analyses will require
higher resolution fMRI data acquisition. Subsequently, analysis
presented here could be extended to other subcortical regions
to understand how cortical–subcortical connectivity impacts
the cognitive performance and flexibility across age. Second,
the hierarchical causal architecture among neurocognitive
networks is an ongoing debate that can be resolved in the
future using a DCM approach. Future studies using diffusion-
weighted imaging can delimit the model space for optimizing
maximum-likelihoods associated with specific directional
functional connectivity. Finally, we acknowledge that the
sample size in both groups are small, and it would be better
to carry out analysis on larger lifespan cohort consist of data
representing various stages of adult lifespan to gain insight
onto the age-associated trends in causal outflow patterns.

In conclusion, the results of the present study demonstrate
that directed functional connectivity and weighted causal anal-
ysis can provide critical insights regarding within- and between-
network information flow across the lifespan over and above
insights already provided by existing functional connectivity
studies. This study firmly establishes that the bilateral thalamus
presents itself in a dual position carrying out modality specific
as well as an integrative hub role in driving causal informa-
tion flow among prominent neurocognitive networks associated
with healthy aging. This conclusion encourages future research
to explore the influences exerted by subcortical structures on
cortical networks and their cognitive and clinical implications.

Supplementary Material
Supplementary material is available at Cerebral Cortex online.
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