Skip to main content
. 2021 Mar 9;17:27. doi: 10.1186/s13007-021-00727-4

Table 3.

Performance of the proposed stomata detection algorithm

Dataset Quality Known to model Num. of stomata Precision (%) Recall (%) F-Score (%)
Gymnosperm 400× Med–High Yes 944 95.87 98.41 97.12
Gymnosperm 100×: low Low Yes 10597 98.89 91.92 95.28
Gymnosperm 100×: high High Yes 7713 98.15 94.30 96.18
Poplar High Yes 5042 98.34 96.11 97.22
Cuticle: low Low Partially 8181 93.46 73.51 82.29
Cuticle: med Medium Partially 2631 94.80 89.43 92.04
Ginkgo High Partially 2802 96.02 82.65 88.84
USNM/USBG: low Low Partially 2569 92.70 70.65 80.19
USNM/USBG: med Medium Partially 16083 95.20 82.31 88.30
Betula nana Low–Med No 683 85.62 75.25 80.06
Eucalyptus Medium No 1088 93.22 83.46 88.07
Ferns: low Low No 964 78.91 51.24 62.14
Ferns: med Medium No 713 90.15 74.47 81.56
Grass Low–Med No 3288 85.20 55.66 67.32
UNSW-2019 Med–High No 2242 91.53 85.77 88.56
Google Images Medium No 1496 97.52 76.34 85.64