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Abstract

Variation in the gastrointestinal microbiota after hematopoietic cell transplantation has been 

associated with acute graft-versus-host disease (aGVHD). Because antibiotics induce dysbiosis, 

we examined the association of broad-spectrum antibiotics with subsequent aGVHD-risk in 

pediatric patients transplanted for acute leukemia. We performed a retrospective analysis in a 

dataset merged from two sources: (1) Center for International Blood and Marrow Transplant 

Research, an observational transplant registry, and (2) Pediatric Health Information Services, an 

administrative database from freestanding children’s hospitals. We captured exposure to three 

classes of antibiotics used for empiric treatment of febrile neutropenia: (1) broad-spectrum 

cephalosporins, (2) anti-pseudomonal penicillins and (3) carbapenems. The primary outcome was 

grade 2-4 aGVHD; secondary outcomes were grade 3-4 aGVHD and lower gastrointestinal (GI) 

GVHD. The adjusted logistic regression model (full cohort) and time-to-event analysis (sub-

cohort) included transplant characteristics, GVHD-risk factors, and adjunctive antibiotic exposures 

as covariates. The full cohort included 2,550 patients at 36 centers; the sub-cohort included 1,174 

patients. In adjusted models, carbapenems were associated with an increased risk of grade 2-4 
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aGVHD in the full cohort (aOR 1.24, 95%CI 1.02-1.51) and sub-cohort (subHR 1.31, 95%CI 

0.99-1.72), as well as with an increased risk of grade 3-4 aGVHD (subHR 1.77, 95%CI 

1.25-2.52). Early carbapenem exposure (prior to day 0) especially impacted aGVHD-risk. For 

antipseudomonal penicillins the associations with aGVHD were in the direction of increased risk 

but were not statistically significant. There was no identified association between broad-spectrum 

cephalosporins and aGVHD. Carbapenems, more than other broad spectrum antibiotics, should be 

used judiciously in pediatric transplant patients to minimize aGVHD-risk. Further research is 

needed to clarify the mechanism underlying this association.
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INTRODUCTION

Allogeneic hematopoietic cell transplant (HCT) is a potentially curative treatment for high-

risk leukemia. However, graft-versus-host disease (GVHD) is common, and when severe, 

causes significant morbidity and mortality.1-3 The complex pathophysiology of GVHD 

necessitates a multifaceted approach to reduce its impact on HCT outcomes. An emerging 

area of interest is the human microbiota and the disruption of this ecosystem that occurs 

secondary to transplant-related interventions.4 There is growing evidence that more 

pronounced microbiome injury and specific dysbiotic signatures interact with the nascent 

immune system after transplant to promote systemic alloreactivity and the development of 

acute GVHD (aGVHD).5-12

The inevitable period of prolonged neutropenia after HCT places recipients at risk for 

infection. In this setting, a variety of broad-spectrum agents are endorsed by pediatric 

guidelines for treatment of febrile neutropenia.13 These guidelines do not offer a preference 

for a single agent because they are thought to confer similar empiric coverage. However, 

these agents differ in their activity against commensal organisms and thus differentially alter 

the gut microbiome.8, 14 It has been hypothesized that certain antibiotic exposures will result 

in dysbiotic states that increase risk of subsequent GVHD and single center, predominantly 

adult studies have examined the relationship between specific antibiotics and GVHD with 

conflicting results.15-19 However, to our knowledge this association has not been studied 

specifically in pediatric patients or in a large multicenter cohort that allows consideration of 

other factors that may confound the identified associations.

The objective of this study was to assess aGVHD across the classes of broad-spectrum 

antibiotics commonly administered for febrile neutropenia in pediatric patients. Because 

each class uniquely impacts the microbiome, we hypothesized that the risk of aGVHD 

would differ by antibiotic class. Understanding this variation in risk could be used in 

conjunction with hospital antibiograms and individual risk factors for infection to refine 

empiric antibiotic selection with a goal of reducing severe aGVHD.
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METHODS

Study design and setting

We performed a retrospective cohort study using data merged from the Center for 

International Blood and Marrow Transplant Research (CIBMTR) and the Pediatric Health 

Information System (PHIS). The CIBMTR registry contains observational data on patients 

undergoing transplant worldwide.20 Data are collected in two streams: (1) Transplant 

Essential Data includes basic demographic, clinical, and outcomes data on all patients, and 

(2) Comprehensive-Report Form (CRF) data includes additional details on a subset of 

patients.

PHIS is associated with the Children’s Hospital Association and contains inpatient 

administrative and clinical data from 52 freestanding children’s hospitals in the United 

States (US). Data elements include billing data corresponding to utilization of inpatient 

pharmaceutical agents by day. Inpatient antibiotic capture using PHIS data are highly 

correlated with individual institution medication administration records.21

Study population and cohort assembly

We assembled a cohort of patients aged 1-21 undergoing HCT for acute leukemia (Figure 1). 

The CIBMTR registry was queried for all patients who underwent allogeneic HCT between 

1/1/2004-12/31/2017. In parallel, the PHIS database was screened to identify unique patients 

who underwent HCT using the following admission characteristics: (1) ICD-9/10 discharge 

diagnosis denoting acute leukemia; (2) procedure, clinical service or pharmaceutical code 

consistent with HCT; (3) discharge date from 1/1/2004-3/31/2018; and (4) age less than 22 

years. Analogous to prior studies, patients common to the two sources were merged based 

on date of birth, date of transplant, and sex.22, 23 Ninety percent of PHIS-identified HCT 

recipients were matched to a CIBMTR transplant record based on these criteria. Patients 

without a corresponding CIBMTR match were excluded from this study. The characteristics 

of the final cohort reflect all pediatric patients transplanted for acute leukemia in this time 

period (supplemental table 1).

Patients were further excluded based on CIBMTR data elements denoting an alternative 

transplant indication, active disease, recipient of prior transplant, or uncommon donor. 

Patients who failed to engraft, relapsed prior to engraftment or had incomplete GVHD 

grading were also excluded.

Outcome

The primary outcome for the full cohort was cumulative incidence of grade 2-4 aGVHD as 

reported to CIBMTR on the 100-day follow-up form. For the sub-cohort, additional data 

elements were available including date of aGVHD onset and organ-specific GVHD stage. 

Therefore, the primary outcome for the sub-cohort was time from transplant to grade 2-4 

aGVHD by day +100. Grade 3-4 aGVHD was examined as a secondary outcome. Because 

prior research has identified an increased risk of lower intestinal GVHD (GI GHVD) with 

antibiotic exposure,16, 17 this was included as a secondary outcome in the sub-cohort.
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Exposure

Exposure to three antibiotic groups commonly used for the treatment of febrile neutropenia 

was tracked independently.13 These groups included broad-spectrum cephalosporins 

(cefepime, ceftazidime, ceftaroline, aztreonam), anti-pseudomonal penicillins (piperacillin-

tazobactam, ticarcillin-clauvulanate), and carbapenems (meropenem, imipenem-cilastatin, 

ertapenem). Although a different class, aztreonam was grouped with cephalosporins based 

on a similar mechanism of action and absent anti-anaerobic activity.

The exposure window differed for the full cohort and sub-cohort. For the full cohort we 

captured exposure from the start of conditioning to day +7 to ensure that any antibiotic 

exposure would be antecedent to aGVHD onset. In the sub-cohort, the date of aGVHD onset 

was known for all patients which allowed for consideration of antibiotic exposures in a time-

varying fashion from start of conditioning until one week prior to aGVHD diagnosis.

We anticipated that patients would be exposed to more than one antibiotic group in these 

exposure windows. Therefore, to quantify the risk associated with a single antibiotic group, 

controlling for exposure to other groups, all analytic models included three distinct 

dichotomous variables capturing exposure to each antibiotic group independently.

Covariate Antibiotics

Covariates were evaluated as potential confounders based on a directed acyclic graph (DAG) 

and included in the final models if they were true confounders (i.e. associated with both the 

exposure and outcome).24 The DAG identified that antibiotics beyond those that comprise 

the primary exposure groups would be covariates of interest. These additional antibiotics 

were categorized into four covariate groups: (1) intravenous vancomycin, (2) 

fluoroquinolones, (3) antibiotics with anti-anaerobic activity and (4) antibiotics without anti-

anaerobic activity. The comprehensive list of agents included in these definitions is in 

supplemental table 2. For the full cohort, these were considered as ever/never exposures 

within the exposure window and were time-varying exposures in the sub-cohort.

Other Covariates

Additional baseline covariates were considered including age (1-2y, 2-10y, 11-15y, 16-21y), 

sex, race (Caucasian, non-Caucasian), transplant year (2004-2006, 2007-2009, 2010-2013, 

2014-2017), disease status (CR1, CR2, >CR2), conditioning regimen (myeloablative with 

total body irradiation (TBI), myeloablative without TBI, reduced intensity), graft source 

(bone marrow, peripheral blood, cord blood), donor (matched related donor, matched 

unrelated donor, mismatched unrelated donor, haploidentical), GVHD prophylactic approach 

(calcineurin inhibitor-based, ex vivo cell manipulation, other including post-transplant 

cyclophosphamide; receipt of thymoglobulin/alemtuzumab), performance score (Karnofsky 

performance score ≥ 90, < 90), donor/recipient sex concordance, blood type compatibility, 

and recipient cytomegalovirus serostatus.. In addition, receipt of granulocyte colony 

stimulating factor was included using the approach to antibiotic capture in the two cohorts. 

Finally, given the potential that severe illness or inflammation could generate confounding 

by indication (i.e. severe clinical illness influences both antibiotic selection and the 

likelihood of developing aGVHD),25, 26 we evaluated the surrogate variable of intensive care 
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unit (ICU)-level care based on a composite variable that combines pharmacy, clinical and 

procedure codes suggestive of organ failure.27-29

Primary analyses

Standard descriptive statistics were used to characterize the study cohort by demographic 

and transplant-related variables according to the three primary exposure antibiotic groups 

and compared using chi-square tests. For comparative analyses in the full cohort, logistic 

regression models were employed to estimate the odds ratio (OR) and 95% confidence 

intervals (CIs) comparing cumulative incidence of grade 2-4 aGVHD by antibiotic exposure. 

To ensure early mortality did not bias results, a second logistic regression model was fit to 

evaluate the direction and strength of association between antibiotic groups and death 

without aGVHD.

For analyses in the sub-cohort, Fine and Gray sub-distribution hazards models were used to 

estimate sub-hazard ratios (subHRs) and corresponding 95%CIs comparing time to aGVHD 

considering death without aGVHD as a competing risk. Cumulative incidence curves of 

aGVHD were estimated based on the fitted model.

To construct the multivariable models, the initial list of potential confounders were identified 

based on a DAG, as described above. All covariate antibiotics were included in the final 

models. For each non-antibiotic covariate, the association with exposure and was assessed 

through univariate analyses. Those covariates that demonstrated associations with both the 

exposure and outcome were included in the final multivariate models. Robust variance 

estimates were employed to account for potential clustering at the hospital level (i.e. center 

effect). Specifically, generalized estimation equations were used for logistic regression as 

implemented in SAS Proc Genmod,30 and the Huber-White sandwich estimate was used for 

the Fine and Gray models as implemented in Stata stcrreg.31, 32

Sensitivity analyses

Several a priori planned sensitivity analyses were performed. To explore the hypothesis that 

associations would be dependent T-cells presence in the graft, we repeated the analyses 

excluding patients who underwent ex vivo T-cell depletion or had received alemtuzumab or 

thymoglobulin. Additionally, we repeated the full-cohort analysis decomposing the exposure 

window to (1) conditioning start to the day of transplant and (2) day of transplant to day +7. 

To assess for a dose response in antibiotic duration, we evaluated antibiotic exposure as a 

categorical variable: no exposure, 1-3 days (empiric use pending culture results), and >3 

days.

Analyses were performed using SAS (v9.4, SAS Institute, Inc., Cary, NC) and STATA (v15, 

StataCorp LLC, College Station, TX).

Human subjects oversight

The National Marrow Donor Program Institutional Review Board approved this study and 

oversaw the merger of PHIS and CIBMTR data.
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RESULTS

Study population and patient characteristics

A total of 2,550 pediatric patients from 36 centers were included in the full cohort. Of those, 

1,174 patients from 35 centers had CRF-level data and composed the sub-cohort. Table 1 

shows patient characteristics by antibiotic exposure for the full cohort. The majority of 

patients (80.9%) were exposed to at least one of the three primary antibiotic groups in the 

exposure window; 360 (14.1%) received more than one antibiotic group in the exposure 

window. Among those exposed, the median duration of exposure was 7 days (range: 2-21) 

for cephalosporins, 5 days (range: 1-18) for penicillins and 5 days (range: 1-19) for 

carbapenems. Co-administration of antibiotics from the primary exposure and covariate 

groups are shown in supplemental table 2.

In the full cohort, 36.6% (95%CI 34.7-38.5%) of patients had grade 2-4 aGVHD. One 

hundred eight (4.2%) died before day +100 without aGVHD. The outcomes were similar in 

the sub-cohort: the cumulative incidences of grade 2-4 and grade 3-4 aGVHD at day +100 

were 35.6% (95%CI 32.8-38.4%) and 14.1% (95%CI 12.1-16.2%), respectively. GVHD 

occurred at a median of 28 days post-HCT (range: 9-100 days) and late aGVHD was rare 

(1.2%). No patients were lost to follow-up.

Comparison of aGVHD risk

Table 2 presents the adjusted model for the full cohort. Exposure to carbapenems, compared 

to no carbapenem use, in the window from conditioning to day +7 was associated with an 

increased risk of grade II-IV aGVHD (aOR 1.24, 95%CI 1.02-1.51, p=0.035). The estimated 

risk associated with penicillins was similar, but not statistically significant, and there was no 

association between cephalosporins and aGVHD. No antibiotic group was associated with 

death without aGVHD.

Demonstrative cumulative incidence curves from the adjusted models in the sub-cohort are 

shown in Figure 2; details of the corresponding model are presented in supplemental table 3. 

Again, carbapenem exposure was associated with increased aGVHD (adjusted subHR 1.31, 

95%CI 0.99-1.72, p=0.059). In this model, there was no identified association between 

penicillins or cephalosporins and aGVHD. When assessing grade 3-4 aGVHD the point 

estimate of risk for carbapenems increased (adjusted subHR 1.77, 95%CI 1.25-2.52, 

p=0.001; supplemental figure 2). The point estimate of the hazard between carbapenems and 

lower GI GVHD was similar to any aGVHD but was not statistically significant (adjusted 

subHR 1.27, 95%CI 0.91-1.78, p=0.163; table 3).

Sensitivity analyses

Sensitivity analyses revealed a consistent association between carbapenem exposure and 

aGVHD (table 3). Specifically, the measure of association in the T-replete cohort (N=1,608) 

was similar to the full cohort. In addition, carbapenem exposure prior to day 0 was more 

strongly associated with aGVHD than exposure from transplant to day +7. These additional 

analyses demonstrated a consistent absence of association between cephalosporins and 
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aGVHD. With regards to penicillins, point estimates were frequently in the direction of 

increased risk but never reached statistical significance.

When we applied the categorical definitions of no exposure, 1-3 days or >3 days, the point 

estimates of association after adjustment did not suggest a dose response for any of the 

antibiotic classes (supplemental table 4). The confidence around these point estimates were 

limited by lower patient numbers in each exposure category.

DISCUSSION

In this large, nationally representative cohort of patients transplanted for acute leukemia at 

pediatric hospitals, we identified an association between carbapenem use and aGVHD, 

particularly severe aGVHD. The use of a pediatric cohort from 36 US institutions allowed us 

to account for varying transplant and GVHD-prophylaxis approaches and institution-specific 

antimicrobial prescribing practices that may confound the association between antibiotics 

and aGVHD. While retrospective analyses cannot definitively establish causality, the 

consistency of this association despite varying analytic approaches suggests that a causal 

association may exist. In contrast, there was no association identified between broad-

spectrum cephalosporins or antipseudomonal penicillins and aGVHD. Based on the growing 

body of literature implicating the microbiome in the development of GVHD, we hypothesize 

that the identified association is mediated through antibiotic-induced dysbiosis of the 

microbiome that promotes GVHD.

These results must be considered in the context of previous analyses performed in 

predominantly adult settings. A single-center US study examining antibiotic use in 857 

adults undergoing T-cell replete transplants identified a similar association between exposure 

to imipenem-cilastatin between day −7 and day +28 and 5-year GVHD related mortality.15 

That analysis also identified an association between piperacillin-tazobactam and increased 

GVHD. Single-center studies in Japan16 and Korea17 identified that carbapenems were 

associated with an increased risk intestinal GVHD only, and a large cohort of 1,178 adults 

and 36 children found that both carbapenems and piperacillin-tazobactam were associated 

with increased intestinal/liver GVHD.19 Conversely, a distinct Japanese study found that 

exposure to fourth generation cephalosporins, and not piperacillin-tazobactam or 

carbapenems, between day −14 and day +14 was associated with increased GVHD, although 

the unadjusted point estimate for carbapenem exposure was in the direction of increased risk 

(HR 1.36).18 These studies have also sought to identify the specific microbiome changes that 

underly the identified associations conjecturing that loss of bacterial diversity, alterations in 

taxonomic composition, or change in butyrate gene abundance may play a causal role.
15, 17, 19

There are several possible explanations for differences in our study results compared to 

some of the prior adult cohorts. In addition to modest differences in antibiotic definitions 

and exposure windows, antibiotic-induced microbiome changes in children – particularly 

young children – may differ from adults due to their immature gut microbiota and frequent 

prior antibiotic exposures.33 In addition, geographic and racial differences in intestinal 

microbiota composition may differentially modulate the association between antibiotics and 
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GVHD.34 Although precedent for geographic variation in treatment response has been 

shown in patients with melanoma,35 this is a less likely contributor as new data suggest that 

at the time of HCT microbiota composition is similar across regions.7 Finally, in contrast to 

prior publications, our analyses controlled for multiple antibiotic exposures including to 

adjunctive and prophylactic antibiotic groups. This analytic approach reflects the common 

clinical scenario of patients receiving a wide range of antibiotics in this period of profound 

immunocompromise; accounting for exposure to these other antibiotics in the same time 

window is imperative to isolate the impact of a given antibiotic group on GVHD risk.

It is not clear why carbapenems have been more consistently associated with aGVHD-risk in 

our study and others whereas other antibiotics with anti-anaerobic properties and a similar 

potential to impact the gut microbiome such as antipseudomonal penicillins and 

metronidazole demonstrate more varied results. We hypothesized that residual confounding 

by indication could explain this persistent association, as carbapenems are more frequently 

used in the setting of significant inflammation. However, our analyses did not identify an 

association between need for ICU-level resources and GVHD-risk. Moreover, half of 

patients who received a carbapenem (249/488) did not also receive a cephalosporin or 

penicillin, arguing against the notion that carbapenems were used only for escalation of care.

It is additionally possible that carbapenem use was related to presence of drug resistant 

bacteria. Colonization with drug resistant bacteria has been associated with GVHD in other 

settings.5 However, drug resistant infections are still rare in children, particularly relative to 

rates of GVHD,36 and empiric therapy decisions and prior infections tend to drive 

carbapenem use, rather than selection directed at current resistant pathogens.23, 37 

Nevertheless, because the CIBMTR and PHIS databases lack the rationale for antibiotic 

selection, we cannot definitively exclude the possibility that drug resistant bacteria mediate 

the association between carbapenems and aGVHD. Similarly, Clostridium difficile is 

associated with both antibiotic exposure and aGHVD and could not be investigated 

specifically as a mediator of the identified association.38, 39 Further investigation should 

explore these possibilities.

Interpreting our findings in the context of recent microbiome analyses may help elucidate 

the mechanism underlying this association. Distinct from penicillins, carbapenems decrease 

the abundances of Clostridia and Bacteroides species relative to other anaerobic commensal 

species.15, 40, 41 Potentially this specific imbalance, rather than more general ablation of 

diversity expected with other anti-anaerobic agents, can promote allo-reactivity. Carbapenem 

exposure may also predispose to an increase in the fecal abundance of Enterococcus, 

Pseudomonas and Candida species.41, 42 Of these, an expansion of Enterococcus has 

recently been associated with increased GVHD and could be contributing to the identified 

association.9, 43 Ultimately prospective clinical trials of antibiotic selection with 

comprehensive microbiome correlates such as NCT03078010 and NCT02641236 may help 

determine if antibiotic modifications can decrease severe aGVHD without increasing 

infection risk.

In considering the association between carbapenems and aGVHD, it is important to 

understand the relevance of exposure duration. Simms-Waldrip et al. found that children 
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with GVHD had higher cumulative antibiotic days and anti-anaerobic antibiotic days than 

children without GVHD.40 Similarly, in an analysis specific to intestinal GVHD, 

carbapenems and cephalosporin exposure beyond seven days was most predictive of GVHD, 

albeit with low sensitivity.16 In our analyses, longer duration of carbapenem exposure did 

not further increase aGVHD risk. This is consistent with translational study data 

demonstrating that even short exposures to antibiotics can significantly disrupt the gut 

microbiota.41, 44, 45

However, the sensitivity analyses did suggest that the timing of exposure was important. Pre-

transplant, as opposed to post-transplant, carbapenem exposure was more strongly 

associated with aGVHD. This finding is commensurate with evidence in adults that 

initiation of broad-spectrum antibiotics prior to the day of transplant is associated with 

decreased microbial balance, more depletion of Clostridia and subsequently increased rates 

of GVHD-related mortality.46 These findings raise an important question about the safety of 

carbapenem exposure further antecedent to the transplant admission. Antibiotics alter the gut 

microbiota for weeks to months after exposure47, 48 and repeated exposure to the same 

antibiotic can cause persistent change in commensal bacterial composition.45 As such, adults 

have evidence of microbiome disruption even prior to the HCT admission.7 Therefore, it is 

reasonable to hypothesize that carbapenem use during pre-transplant leukemia-directed 

therapy may further predispose to GVHD after transplant. Exposures prior to the transplant 

admission were beyond the scope of this study so additional investigation is necessary to 

further test this hypothesis.

Several additional limitations deserve mention. While judicious use of antibiotics is always 

reasonable, extrapolation of our findings to other transplant indications should be done with 

caution. Patients receiving an HCT for non-leukemia indications will have distinct pre-

transplant exposures and microbiota disruption at baseline that could result in differing 

degrees of antibiotic and GVHD association. Secondly, the PHIS database does not capture 

outpatient antibiotics. However, because the primary exposures are administered 

intravenously and the exposure window is early post-transplant, uncaptured exposures 

should be infrequent. Thirdly, we cannot exclude confounding by indication due to 

engraftment syndrome necessitating antibiotics and increasing risk for aGVHD.49 However, 

given the early exposure window (prior to day +7) for the full cohort, engraftment syndrome 

is unlikely the impetus for the majority of antibiotic exposures. Finally, this study does not 

capture acid blockade, antifungal and antiviral medications, diet or nutritional status, all of 

which have the potential to impact microbiome composition.50-52 We expect that these will 

be non-differential across antibiotic exposure classes and therefore will not alter our findings 

however these are important avenues for future investigation.

While these are retrospective data with inherent limitations, these data suggest that it may be 

prudent to minimize carbapenem exposure when possible for patients undergoing transplant 

for leukemia at pediatric hospitals in the US. Limited carbapenem use is already a core 

antimicrobial stewardship recommendation for vulnerable and hospitalized populations.53 

However, these recommendations are founded on concerns for driving further antimicrobial 

resistance. These data add to growing evidence that antibiotic choice may modify other 
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important clinical outcomes.6, 15, 54-57 Additional studies are indicated to determine if 

antibiotic selection, and specifically carbapenem use, can be targeted to decrease aGVHD.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Carbapenems are associated with acute graft-versus-host disease (aGVHD) in 

pediatric patients

• No association exists between broad-spectrum cephalosporins and aGVHD; 

antipseudomonal penicillins demonstrated an inconsistent association

• Pre-transplant carbapenems may especially impact aGVHD risk

• More research is needed to define the mechanism underlying this association
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Figure 1: 
Depiction of cohort development

Elgarten et al. Page 16

Transplant Cell Ther. Author manuscript; available in PMC 2022 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2: 
Model-based estimated cumulative incidence curves of grade 2-4 acute GVHD for those 

exposed and not exposed to an antibiotic group prior to GVHD diagnosis in pediatric 

patients with acute leukemia undergoing HCT in the sub-cohort
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Table 1:

Demographic characteristics by exposure

Cephalosporins Penicillins Carbapenems

No 
exposure Exposed p value No 

exposure Exposed p 
value

No 
exposure Exposed p 

value

Overall 1232 
(48.3%)

1318 
(51.7%)

1947 
(76.4%)

603 
(23.7%)

2062 
(80.9%)

488 
(19.1%)

Age

  1-2y 116 (43.0%) 154 
(57.0%)

0.260

191 
(70.7%) 79 (29.3%)

0.100

214 
(79.3%) 56 (20.7%)

<.001

  3-10y 506 (48.1%) 546 
(51.9%)

803 
(76.3%)

249 
(23.7%)

891 
(84.7%)

161 
(15.3%)

  11-15y 344 (49.7%) 348 
(50.3%)

542 
(78.3%)

150 
(21.7%)

550 
(79.5%)

142 
(20.5%)

  16-21y 266 (49.6%) 270 
(50.4%)

411 
(76.7%)

125 
(23.3%)

407 
(75.9%)

129 
(24.1%)

Sex

  Male 731 (48.5%) 776 
(51.5%)

0.810

1139 
(75.6%)

368 
(24.4%)

0.270

1213 
(80.5%)

294 
(19.5%)

0.570

  Female 501 (48.0%) 542 
(52.0%)

808 
(77.5%)

235 
(22.5%)

849 
(81.4%)

194 
(18.6%)

Race

  White 952 (47.8%) 1040 
(52.2%)

0.800

1546 
(77.6%)

446 
(22.4%)

0.039

1594 
(80.0%)

398 
(20.0%)

0.035

  Non-white 159 (47.0%) 179 
(53.0%)

245 
(72.5%) 93 (27.5%) 287 

(84.9%) 51 (15.1%)

Disease

  AML 542 (52.7%) 487 
(47.3%)

<.001

801 
(77.8%)

228 
(22.2%)

0.150

828 
(80.5%)

201 
(19.5%)

0.680

  ALL 690 (45.4%) 831 
(54.6%)

1146 
(75.4%)

375 
(24.7%)

1234 
(81.1%)

287 
(18.9%)

Disease status

  CR1 626 (51.2%) 597 
(48.8%)

0.005

926 
(75.7%)

297 
(24.3%)

0.470

1016 
(83.1%)

207 
(16.9%)

0.006

 ≥CR2 606 (45.7%) 721 
(54.3%)

1021 
(76.9%)

306 
(23.1%)

1046 
(78.8%)

281 
(21.2%)

Donor

  Matched related 411 (58.0%) 298 
(42.0%)

<.001

566 
(79.8%)

143 
(20.2%)

0.015

586 
(82.7%)

123 
(17.4%)

0.200

  Matched 
unrelated 396 (48.2%) 425 

(51.8%)
603 

(73.5%)
218 

(26.6%)
672 

(81.9%)
149 

(18.2%)

  Mismatched 
unrelated 334 (43.3%) 438 

(56.7%)
579 

(75.0%)
193 

(25.0%)
604 

(78.2%)
168 

(21.8%)

  Haploidentical 58 (41.1%) 83 (58.9%) 110 
(78.0%) 31 (22.0%) 116 

(82.3%) 25 (17.7%)

  Missing 33 (30.8%) 74 (69.2%) 89 (83.2%) 18 (16.8%) 84 (78.5%) 23 (21.5%)

Graft source

  Bone marrow 849 (55.0%) 696 
(45.1%)

<.001

1156 
(74.8%)

389 
(25.2%)

0.002

1273 
(82.4%)

272 
(17.6%)

0.001
  Peripheral blood 149 (36.9%) 255 

(63.1%)
336 

(83.2%) 68 (16.8%) 334 
(82.7%) 70 (17.3%)
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Cephalosporins Penicillins Carbapenems

No 
exposure Exposed p value No 

exposure Exposed p 
value

No 
exposure Exposed p 

value

  Cord blood 234 (38.9%) 367 
(61.1%)

455 
(75.7%)

146 
(24.3%)

455 
(75.7%)

146 
(24.3%)

GVHD 
prophylaxis

  CNI-based 1139 
(50.1%)

1136 
(49.9%)

<.001

1714 
(75.3%)

561 
(24.7%)

0.003

1823 
(80.1%)

452 
(19.9%)

0.008  Ex vivo cell 
manipulation 51 (31.7%) 110 

(68.3%)
136 

(84.5%) 25 (15.5%) 145 
(90.1%) 16 (9.9%)

  Other 42 (36.8%) 72 (63.2%) 97 (85.1%) 17 (14.9%) 94 (82.5%) 20 (17.5%)

Conditioning

  Myeloablative 
with TBI 732 (43.8%) 939 

(56.2%)

<.001

1282 
(76.7%)

389 
(22.3%)

0.570

1356 
(81.2%)

215 
(18.9%)

0.580  Myeloablative 
without TBI 397 (60.2%) 262 

(39.8%)
492 

(74.7%)
167 

(25.3%)
524 

(79.5%)
135 

(20.5%)

  Reduced 
intensity 89 (52.4%) 81 (47.7%) 129 

(75.9%) 41 (24.1%) 140 
(82.4%) 30 (17.7%)

Receipt of Thymoglobulin/
Alemtuzumab

  No 835 (48.9%) 874 
(51.1%)

0.430

1333 
(78.0%)

376 
(22.0%)

0.005

1408 
(82.4%)

301 
(17.6%)

0.005

  Yes 397 (47.2%) 444 
(52.8%)

614 
(73.0%)

227 
(27.0%)

654 
(77.8%)

187 
(22.2%)

Intensive care unit resource 
utilization

  No 1170 
(48.5%)

1245 
(51.6%) 0.570

1860 
(77.0%)

555 
(23.0%) <.001

1972 
(81.7%)

443 
(18.3%) <.001

  Yes 62 (45.9%) 73 (54.1%) 87 (64.4%) 48 (35.6%) 90 (66.7%) 45 (33.3%)

Receipt of growth 
factors

  No 830 (53.0%) 735 
(47.0%)

<.001

1187 
(75.9%)

378 
(24.2%)

0.450

1292 
(82.6%)

273 
(17.4%)

0.006

  Yes 402 (40.8%) 583 
(59.2%)

760 
(77.2%)

225 
(22.8%)

770 
(78.2%)

215 
(21.8%)

Days to 
neutrophil 
engraftment, 
median

20 (7-65) 20 (8-98) 0.001 20 (7-98) 21 (10-65) <.001 20 (7 - 98) 21 (10-61) <.001

Cephalosporins: cefepime, ceftazidime, aztreonam; Penicillins: piperacillin-tazobactam, ticarcillin-clauvulanate; Carbapenems:meropenem, 
imipenem-ilastatin, doripenem AML Acute Myeloid Leukemia; ALL Acute Lymphoblastic Leukemia; CR Clinical Remission; CNI Calcineurin 
Inhibitor; GVHD Graft versus Host Disease; TBI Total Body Irradiation
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Table 2:

Multivariable model evaluating exposures between conditioning start and day +7 with grade II-IV acute 

GVHD in the full cohort

aOR 95% CI p value

Primary Exposure Variables

  Cephalosporins (ref: none) 1.05 0.83-1.32 0.710

  Penicillins (ref: none) 1.24 0.93-1.66 0.140

  Carbapenems (ref: none) 1.24 1.02-1.51 0.035

Covariates included in model

  Other antibiotics without anti-anaerobic coverage (ref: none) 1.03 0.84-1.26 0.780

  Other antibiotics with anti-anaerobic coverage (ref: none) 1.08 0.89-1.30 0.430

  Fluoroquinolones (ref: none) 1.12 0.85-1.49 0.410

  Vancomycin (ref: none) 1.01 0.82-1.22 0.960

  Receipt of thymoglobulin/alemtuzumab (ref: none) 0.69 0.52-0.90 0.008

  Receipt of growth factors (ref: none) 1.19 0.89-1.61 0.250

  Graft source (ref: bone marrow) 0.044

   Peripheral blood 1.49 1.09-2.04 0.014

   d 0.83 0.55-1.26 0.380

  Conditioning (ref: myeloablative with TBI) 0.056

   Myeloablative with no TBI 0.75 0.61-0.92 0.007

   Reduced intensitity 1 0.72-1.40 0.990

  Donor (ref: matched related) 0.002

   Matched unrelated 1.13 0.92-1.40 0.240

   Mismatched unrelated 1.83 1.47-2.28 <.001

   Haploidentical 0.99 0.71-1.40 0.970

  GVHD Prophylaxis (ref: calcineurin inhibitor based) 0.084

   ex-vivo T cell depletion 0.61 0.40-0.95 0.027

   Other 1.05 0.64-1.74 0.840

GVHD Graft versus Host Disease; aOR adjusted Odds Ratio; CI Confidence Interval; TBI Total Body Irradiation
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Table 3:

Summary of secondary outcomes and sensitivity analyses

Cohort 
characteristics Measures of Association

Cephalosporins Penicillins Carbapenems

Outcome Exposure Window T Cell 
Content

aOR/subHR
(95% CI) p value aOR/subHR

(95% CI) p value aOR/subHR
(95% a) p value

Grade II-IV 
aGVHD

Conditioning to day 
+7 Any 1.05 

(0.83-1.32) 0.710 1.24 
(0.93-1.66) 0.140 1.24 

(1.02-1.51) 0.035

Time to grade 
II-IV aGVHD

Conditioning to 
GHVD onset Any 1.09 

(0.73-1.63) 0.660 1.02 
(0.67-1.54) 0.940 1.31 

(0.99-1.72) 0.059

Time to grade 
III-IV aGVHD

Conditioning to 
GHVD onset Any 0.90 

(0.55-1.49) 0.700 1.52 
(0.87-2.66) 0.140 1.77 

(1.25-2.52) 0.001

Time to grade 
II-IV lower GI 
aGVHD

Conditionng to 
GHVD onset Any 0.82 

(0.57-1.17) 0.267 1.25 
(0.81-1.95) 0.316 1.27 

(0.91-1.78) 0.163

Grade II-IV 
aGVHD

Conditioning to day 
+7 T-replete 1.20 

(0.90-1.60) 0.220 1.41 
(0.99-2.01) 0.054 1.33 

(1.00-1.76) 0.046

Grade II-IV 
aGVHD

Conditioning to day 
0 Any 1.01 

(0.82-1.23) 0.590 1.10 
(0.76-1.58) 0.620 1.45 

(1.05-2.02) 0.026

Grade II-IV 
aGVHD Day 0 to day +7 Any 1.07 

(0.85-1.35) 0.590 1.12 0.84-1.49 0.450 1.17 
(0.96-1.42) 0.120

aOR adjusted Odds Ratio; subHR sub Hazard Ratio; aGVHD acute Graft Versus Host Disease; GI Gastrointestinal
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