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Abstract

Digital subtraction angiography (DSA) is the main imaging modality used to assess reperfusion 

during mechanical thrombectomy (MT) when treating large vessel occlusion (LVO) ischemic 

strokes. To improve this visual and subjective assessment, hybrid models combining angiographic 

parametric imaging (API) with deep learning tools have been proposed. These models use 

convolutional neural networks (CNN) with single view individual API maps, thus restricting use of 

complementary information from multiple views and maps resulting in loss of relevant clinical 

information. This study investigates use of ensemble networks to combine hemodynamic 

information from multiple bi-plane API maps to assess level of reperfusion. Three-hundred-

eighty-three anteroposterior (AP) and lateral view DSAs were retrospectively collected from 

patients who underwent MTs of anterior circulation LVOs. API peak height (PH) and area under 

time density curve (AUC) maps were generated. CNNs were developed to classify maps as 

adequate/inadequate reperfusion as labeled by two neuro-interventionalists. Outputs from 

individual networks were combined by weighting each output, using a grid search algorithm. 

Ensembled, AP-AUC, AP-PH, lateral-AUC, and lateral-PH networks achieved accuracies of 

83.0% (95% confidence-interval: 81.2%–84.8%), 74.4% (72.0%–76.7%), 74.2% (72.8%–75.7%), 

74.9% (72.2%–77.7%), and 76.9% (74.4%–79.5%); area under receiver operating characteristic 

curves of 0.86 (0.84–0.88), 0.81 (0.79–0.83), 0.83 (0.81–0.84), 0.82 (0.8–0.84), and 0.84 (0.82–

0.87); and Matthews correlation coefficients of 0.66 (0.63–0.70), 0.48 (0.43–0.53), 0.49 (0.46–

0.52), 0.51 (0.45–0.56), and 0.54 (0.49–0.59) respectively. Ensembled network performance was 

significantly better than individual networks (McNemar’s p-value<0.05). This study proved 

feasibility of using ensemble networks to combine hemodynamic information from multiple bi-

plane API maps to assess level of reperfusion during MTs.
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1. INTRODUCTION

Angiographic parametric imaging (API) is a quantitative angiographic tool that uses a digital 

subtraction angiograph (DSA) to semi-quantitatively analyze blood flow through vessels.[1–

6] Time density curves (TDC) are obtained by tracking image intensity at a pixel across the 

sequence (Figure 1). Parametrization of a TDC results in the generation of several 

parameters such as mean transit time, time to peak, peak height (PH) and area under the 

TDC (AUC). Parametrization of TDCs at every pixel in a DSA enables the generation of 

multiple API maps where each map encodes one specific hemodynamic property (Figure 2) 

[7]. Moderate correlation between the imaging biomarkers and blood flow conditions makes 

the interpretation of the individual API maps a challenging task. This challenge may be 

solved by using a hybrid approach, where hemodynamic information encoded in API maps 

is combined with deep learning tools such as convolutional neural networks (CNN). Deep 

learning tools have already been used in the evaluation of neurovascular pathologies, such as 

stroke assessment with Alberta stroke program early computed tomography score 

(ASPECT) [8], identification of neurovascular pathologies [9] and using API to make 

predictions regarding aneurysm treatment success [3, 10]. A challenge to using traditional 

CNNs with API maps is that they cannot fully utilize the connectivity between the multiple 

views and maps to aid in decision making. However, intra-procedurally, clinicians use 

multiple views to make their decision. In addition, different API maps contain 

complementary information regarding hemodynamic properties. Thus, there is a need for a 

tool that enables the utilization of complementary information encoded in different API 

maps from multiple views.

Ensemble learning is a deep learning technique that allows for the utilization of information 

encoded in multiple sources to provide a decision. Each source is used to train a separate 

neural network. A weight is calculated for each network based on the performance of the 

network on the testing set. This weight is indicative of the contribution of the specific 

network to the final decision and is used to combine predictions from each individual 

network to give a final comprehensive prediction. An ensemble of networks performs better 

than single networks as it improves the generalization ability [11]. Such a tool allows for the 

use of information from multiple sources such as different modalities [12]. In this study, we 

aim to test the feasibility of using ensemble networks to combine hemodynamic information 

obtained from two API maps derived from bi-plane angiographic systems (two views), and 

compare the performance with single view individual API map CNNs. One space where 

such a tool may be implemented is the intra-procedural evaluation of reperfusion in acute 

ischemic stroke (AIS) patients.

Large vessel occlusions (LVO) cause AISs and account for up to 46% of all AIS cases [13–

15]. LVO AISs are the second leading cause of death after coronary artery disease killing 
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more than 130,000 Americans each year [16]. Treatment of such AISs involve recanalization 

of the blockage using treatments like mechanical thrombectomy (MT) or intravenous 

thrombolysis with recombinant tissue-type plasminogen activators [17]. Currently, intra-

procedural assessment of each level of reperfusion during MT is achieved through subjective 

visual assessments of cerebral DSAs, commonly by providing a score on the modified 

thrombolysis in cerebral infarction (mTICI) scale [18, 19]. This leads to internal 

inconsistencies [20] as well as inclusion of bias by operators [21].

In previous studies, we have shown feasibility of using ensemble networks to assess level of 

reperfusion using either multiple view single API maps [22] or multiple API maps from a 

single view [23]. In this study, we aim to use ensemble networks to combine hemodynamic 

information obtained from both views of a bi-plane angiographic system as well as from 

multiple API maps to provide a robust tool that automatically assesses the level of 

reperfusion in AIS patients undergoing a MT.

2. MATERIALS AND METHODS

Patient data was collected and analyzed at a single center, and was within the scope of a 

research protocol approved by the institution’s Institutional Review Board. DSAs were 

retrospectively collected from 223 patients with anterior circulation LVOs undergoing MT to 

treat an AIS. From each patient, multiple DSAs were collected pre-, post- and intra-

procedurally, resulting in a total of 525 DSAs. Presence of motion artifacts in DSAs, and 

occlusions in the posterior circulation resulted in 142 cases being excluded, thus 383 cases 

were used for analysis. For each case considered, anteroposterior (AP) and lateral view 

DSAs were collected.

Two experienced neuro-interventionalists analyzed the AP and lateral view DSAs for each 

case and assigned a label. Any disagreements in labels were resolved by consensus decision. 

Operators labeled the data independently of each other, were not involved in the procedure, 

and were blinded to the API maps and clinical outcomes. Each case was labeled on the 

mTICI scale which includes the following 6 categories: no perfusion (grade 0), partial 

perfusion beyond initial occlusion but not in distal arteries (grade 1), partial perfusion less 

than 50% (grade 2a), partial perfusion more than 50% but less than 100% (grade 2b), 

complete but delayed perfusion (grade 2c) and complete perfusion (grade 3) [24]. These 

measures were taken to prevent inclusion of bias in the labels used to train the network.

Assessment of reperfusion during MT is generally conducted based on the level of tissue 

perfusion during the capillary phase of the DSA [19, 25]. In order to limit the overlapping 

structures from arterial and venous phases of the DSA, each DSA was temporally cropped to 

only include the capillary phase and exclude arterial and venous phases. TDCs were created 

at each pixel and then the peak height and area under each TDC were calculated to obtain 

PH and AUC maps, respectively. Four datasets were created, AP-AUC, AP-PH, lateral-AUC, 

and lateral-PH maps. The overall workflow of the study is displayed in Figure 3.

Development of CNNs were done using Keras [26]. The architecture development was an 

iterative process based on optimizing the accuracy of classifying API maps as having 
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insufficient reperfusion (mTICI 0,1,2a) or sufficient reperfusion (mTICI 2b,2c,3). The final 

architectures used are displayed in Figure 3. The network architecture was kept the same for 

each of the 4 datasets. Following the guidelines proposed by Radiology [27], and in order to 

prevent overfitting of the model, each dataset was split into a training set (70%, 268 cases), a 

validation set for hyperparameter tuning during training (10%, 39 cases), and a testing set 

(20%, 77 cases). In addition, a 20-fold Monte Carlo Cross Validation (MCCV) [28] was 

used to ensure network robustness and that the results obtained were not due to a specific 

training testing split.

The networks are ensembled by combining outputs from each contributing network into one 

final output, Figure 3. The combination can be done using different techniques, such as 

averaging, which assumes equal contribution to the task at hand from each source, thus the 

outputs from each network are averaged to provide a final output [29]. However, in most 

cases, each source does not have an equal contribution to the task at hand, and thus each 

network output needs to be weighted differently. The weights are decimal values between 0 

and 1, and are treated like a percentage, such that the sum of the weights for each network 

equals one. The weights were calculated using two methods; grid search [29], and 

differential evolution directed optimization [30]. Grid search is a simple, but exhaustive 

method to finding the optimal weights where a course grid of values from 0 to 1 with a step 

size of 0.1 is generated, a cartesian product is used to generate all possible combinations of 

weights for each network. These weights are forced to sum up to one by calculating the sum 

of the absolute weight values (L1 norm) and dividing each weight by that value. Each 

combination of weights is tested, and the best performing weight combination is chosen as 

the final weights to be used for the classification task. The differential evolution directed 

optimization process is a stochastic method to find the global minimum of the loss function. 

The optimization was implemented using SciPy [31] and the algorithm is from Storn and 

Price [32]. A total of 10000 iterations were used with a tolerance of 1E-7. The loss function 

used in the optimization process was 1 - Matthews correlation coefficient (MCC). MCC is 

used in machine learning models to evaluate quality of binary classifications [33]. It has 

proven to be advantageous, as it takes into account class imbalance and uses every factor in 

the confusion matrix (true positives, false positives, true negatives and false negatives) [34]. 

Once the weights were calculated, the output from the final dense layer of each network was 

multiplied by the weight for the network, and the sum of the weighted outputs from each 

network was the final level of perfusion prediction.

The ensemble network was evaluated using accuracy, receiver operating characteristic 

(ROC) curves, sensitivity, specificity, and MCC. Each metric was averaged over the 20-fold 

MCCV. Sub group analysis was done using each of the four networks (AP-AUC, AP-PH, 

lateral-AUC, and lateral-PH) independently and each of the three ensembling techniques 

(averaging, grid search, and differential evolution directed optimization). Two-tailed 

McNemar’s p-test values were calculated in order to evaluate significance of any 

performance differences (p<0.05).
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3. RESULTS

Each API map was created and normalized in 250 ms, each network took an average of 9 

minutes to train, the ensembled weights were calculated in approximately 700 ms, and a 

single case can be classified in approximately 0.6 ms. Results including classification 

accuracy, area under the ROC curve (AUROC), MCC, sensitivity, and specificity from the 

four individual networks, as well as the ensembled network, are displayed in Table 1. The 

results indicate that best performance is achieved when using an ensembled network with 

weights obtained using either the grid search or differential evolution directed optimization 

methods.

Two-tailed McNemar’s test were conducted between each of the subsets in order to evaluate 

significance of any performance differences, these are displayed in Table 2. Grid weighted 

and differential evolution optimization weighted networks perform significantly better than 

the averaged network or any of the individual networks (AP-AUC, AP-PH, lateral-AUC, and 

lateral-PH maps networks). There is no significant difference in performance between the 

grid weighted and differential evolution optimization weighted networks.

Results of analysis on one specific case from the testing set are displayed in Figure 4. Using 

just the independent networks we see that the correct classification was obtained by the AP-

AUC, AP-PH, and lateral-AUC maps, but not the lateral-PH map. This shows 

misclassifications can occur by a single network independently, however, when information 

from both views and multiple maps are combined using an ensemble network, the tool is 

able to correctly classify the case into the appropriate group. In each CNN classification 

table, the green highlight indicates the network classification.

4. DISCUSSION

In this study, we established two main findings. First, we demonstrated that the performance 

of assessing reperfusion in patients undergoing MT to treat an AIS using ensemble 

networks, to incorporate hemodynamic information from multiple API maps and imaging, is 

significantly better than using just a single API map from a single view. Second, we 

established that each single view map has a different contribution to the final decision, and 

using either grid searched or differential evolution optimization weighting, significantly 

outperforms simply averaging the outputs from each network.

In order to utilize information encoded in multiple API maps from different views, we 

trained each single view API map (AP-AUC, AP-PH, lateral-AUC, and lateral-PH) on a 

separate network and ensembled their outputs to provide a single final classification using 

different techniques (averaging, grid searched weights, and differential evolution 

optimization weights). Since each of the input maps were the same size and the vasculature 

dictating the level of reperfusion within each map were the same size, we used the same 

network architecture for each of the four maps. A 20-fold MCCV was used to ensure the 

robustness of results. In each fold of the MCCV, the data was split into a training set (70%, 

268 cases), validation set for hyperparameter tuning during training (10%, 39 cases), and a 

testing set (20%, 77 cases) to ensure none of the networks were overfit. The results in 
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assessing the level of reperfusion on the independent testing set for each of the four 

individual networks, as well as the ensembled networks are given in Table 1. Networks 

ensembled with grid searched or differential evolution optimization weights outperformed 

the other networks in every metric. MCC values were greater than 0.6, and this indicates 

strong positive relationship between the classifications and the ground truth labels [35, 36].

The two-tailed McNemar’s test was conducted to evaluate significance of difference in 

performance between the subgroups. The p-values are displayed in Table 2. It is observed 

that the ensemble networks with grid searched and differential evolution optimization 

weights significantly outperform all of the individual map networks as well as the average 

ensemble network (p-value < 0.05). There is no significant difference in performance 

between grid searched and differential evolution optimization networks (p-value > 0.05).

Previous studies have been conducted to automatically assess the level of reperfusion using 

API maps, however, these either only used two API maps from a single view [23] or used 

single API maps from two views [22]. These studies reported accuracies of 79.6% and 

81.0%, AUROCs of 0.85 and 0.86, and MCCs of 0.59 and 0.62, respectively. With an 

average accuracy of 83.0%, AUROC of 0.86, and MCC of 0.66, the method used in this 

study performed better than those in the previous studies. This method also incorporates 

additional information and thus is potentially more robust in assessing level of reperfusion in 

patients undergoing a MT to treat an AIS.

There were limitations to this study. First, we are limited to only demonstrating a technical 

feasibility of our method due to the size of our monocentric dataset. Second, we are only 

classifying cases as having sufficient (mTICI 2b,2c,3) or insufficient (mTICI 0,1,2a) 

reperfusion, instead of classifying each case into the specific mTICI class. This was done 

due to the low number of cases per mTICI grade (mTICI 0 – 82, mTICI 1 – 5, mTICI 2a – 

82, mTICI 2b – 140, mTICI 2c – 48, mTICI 3 – 26) which leads to a drastic decrease in 

performance. These two limitations may be addressed by collecting additional cases from 

multiple centers. Lastly, we are currently only using PH and AUC maps, other maps such as 

time to peak may be used as they contain additional information that may aid in providing a 

finer classification instead of just two classes.

Such a tool that uses multiple sources of information to assess level of reperfusion can be a 

valuable resource for neuro-interventionalists. Instead of having to rely on the potentially 

subjective visual assessment of angiograms, this tool can intra-operatively assess the level of 

reperfusion and aid the clinician. In addition, this study proves that quantitative angiographic 

information can be used with such deep learning techniques to make decisions and aid 

clinicians. This opens the door to making decisions on other treatment outcome scales and 

for other endovascular interventions such as aneurysm treatment outcome predictions. This 

tool can also be used as a training tool for medical students instructing them how to score 

angiograms on the mTICI scale.
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5. CONCLUSION

In this technical feasibility study, we developed an ensemble neural network that uses 

different quantitative angiographic information from multiple views to automatically assess 

the level of reperfusion in patients undergoing a MT to treat an AIS. Best performance was 

achieved when using the grid search technique to calculate weights of each contributing 

map, as it achieved an accuracy of 83.0%, AUROC of 0.86, MCC of 0.66, sensitivity of 

0.90, and specificity of 0.74. This study has demonstrated the ability to combine 

hemodynamic information incorporated in multiple quantitative angiographic maps and 

views to assess the level of reperfusion during MT procedures. The improvement in 

performance was significant, and opens the door to using such tools for other endovascular 

interventions.
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Figure 1: 
Parametric Imaging time-density curve
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Figure 2: 
Example of a peak height (PH) angiographic parametric imaging map created from a digital 

subtraction angiograph (DSA)
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Figure 3: 
Overall workflow of the study.
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Figure 4: 
An example case showing the anteroposterior (AP) and lateral view peak height (PH) and 

area under the time density curve (AUC) maps, the predictions from their respective 

networks, the weights given to each network, and the final ensembled classification after 

using the weights. The weights were obtained using the differential evolution optimization 

method.
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Table 1:

Performance of each individual neural network (AP-AUC, AP-PH, lateral-AUC, and lateral-PH) and the 

ensembled networks (averaging, grid search, and differential evolution directed optimization) in classifying the 

respective case based on the level of reperfusion as defined by the mTICI scale. Performance is displayed in 

the form of average accuracies, AUROCs, MCCs, sensitivities, and specificities along with their standard 

deviations and 95% confidence intervals. The best results are in bold.

Metric

Reperfusion level assessment: mTICI 0,1,2a versus mTICI 2b,2c,3

AP AUC AP PH Lateral AUC Lateral PH Averaged Grid Weights
Differential 

Evolution Directed 
Optimization

Accuracy 74.4 ± 5.4 
(72.0, 76.7)

74.2 ± 3.3 
(72.8, 75.7)

74.9 ± 6.3 
(72.2, 77.7)

76.9 ± 5.9 
(74.4, 79.5)

78.3 ± 5.1 
(76.1, 80.5)

83.0 ± 4.2 
(81.2, 84.8)

82.7 ± 4.5 (80.7, 
84.7)

AUROC 0.81 ± 0.05 
(0.79, 0.83)

0.83 ± 0.04 
(0.81, 0.84)

0.82 ± 0.05 
(0.8, 0.84)

0.84 ± 0.05 
(0.82, 0.87)

0.86 ± 0.04 
(0.84, 0.88)

0.86 ± 0.05 
(0.84, 0.88)

0.86 ± 0.05 (0.84, 
0.88)

MCC 0.48 ± 0.11 
(0.43, 0.53)

0.49 ± 0.07 
(0.46, 0.52)

0.51 ± 0.12 
(0.45, 0.56)

0.54 ± 0.11 
(0.49, 0.59)

0.56 ± 0.10 
(0.5, 0.61)

0.66 ± 0.08 
(0.63, 0.70)

0.66 ± 0.09 (0.62, 
0.70)

Sensitivity 0.78 ± 0.08 
(0.75, 0.81)

0.78 ± 0.1 
(0.74, 0.83)

0.78 ± 0.13 
(0.72, 0.84)

0.84 ± 0.1 
(0.79, 0.88)

0.83 ± 0.10 
(0.80, 0.87)

0.90 ± 0.09 
(0.87, 0.93)

0.89 ± 0.08 (0.86, 
0.93)

Specificity 0.70 ± 0.10 
(0.65, 0.74)

0.69 ± 0.12 
(0.64, 0.75)

0.71 ± 0.13 
(0.65, 0.77)

0.68 ± 0.14 
(0.62, 0.75)

0.72 ± 0.10 
(0.67, 0.76)

0.74 ± 0.09 
(0.70, 0.78)

0.74 ± 0.09 (0.70, 
0.78)
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Table 2:

Two-tailed McNemar’s test p-values between each subgroup.

AP AUC AP PH Lateral AUC Lateral PH Averaged Grid Searched 
Weights

Differential Evolution 
Directed Optimization 

Weights

AP AUC - 0.95 0.03 0.03 4.66E-06 6.70E-18 4.15E-17

AP PH - - 0.59 0.02 9.42E-06 6.13E-20 4.28E-18

Lateral AUC - - - 0.03 0.17E-05 4.44E-20 8.57E-19

Lateral PH - - - - 0.13 2.24E-14 2.34E-13

Averaged - - - - - 3.19E-12 1.36E-11

Grid Searched 
Weights

- - - - - - 0.49

P-values less than 0.05 are indicated in bold and signify presence of significant difference in performance.
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