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Abstract

Purpose

To evaluate the discrimination of parenchymal lesions between COVID-19 and other atypi-

cal pneumonia (AP) by using only radiomics features.

Methods

In this retrospective study, 301 pneumonic lesions (150 ground-glass opacity [GGO], 52

crazy paving [CP], 99 consolidation) obtained from nonenhanced thorax CT scans of 74 AP

(46 male and 28 female; 48.25±13.67 years) and 60 COVID-19 (39 male and 21 female;

48.01±20.38 years) patients were segmented manually by two independent radiologists, and

Location, Size, Shape, and First- and Second-order radiomics features were calculated.

Results

Multiple parameters showed significant differences between AP and COVID-19-related

GGOs and consolidations, although only the Range parameter was significantly different for

CPs. Models developed by using the Bayesian information criterion (BIC) for the whole

group of GGO and consolidation lesions predicted COVID-19 consolidation and AP GGO

lesions with low accuracy (46.1% and 60.8%, respectively). Thus, instead of subjective clas-

sification, lesions were reclassified according to their skewness into positive skewness

group (PSG, 78 AP and 71 COVID-19 lesions) and negative skewness group (NSG, 56 AP

and 44 COVID-19 lesions), and group-specific models were created. The best AUC, accu-

racy, sensitivity, and specificity were respectively 0.774, 75.8%, 74.6%, and 76.9% among

the PSG models and 0.907, 83%, 79.5%, and 85.7% for the NSG models. The best PSG

model was also better at predicting NSG lesions smaller than 3 mL. Using an algorithm,

80% of COVID-19 and 81.1% of AP patients were correctly predicted.
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Conclusion

During periods of increasing AP, radiomics parameters may provide valuable data for the

differential diagnosis of COVID-19.

Introduction

The disease caused by the SARS-CoV-2 virus that first appeared in Wuhan, China, at the

end of 2019 was named COVID-19 by the WHO on February 11, 2020. As of February 5,

2021, there were 104,370,550 confirmed cases of COVID-19, including 2,271,380 deaths,

reported to the WHO [1]. The early stages of the COVID-19 pandemic coincided with the

cold season in the Northern Hemisphere, when other respiratory infections were also com-

mon. In the Expert Consensus Statement on Reporting Chest CT Findings Related to

COVID-19, it was recommended to mention other etiologies, such as influenza, in the dif-

ferential diagnosis, even for a typical COVID-19 pneumonia radiology result [2]. A late

diagnosis for influenza has been reported to be associated with an increased likelihood of

developing complications and the length of hospital stay [3], especially in the elderly popu-

lation [4]. Although increased admissions with heart failure were reported in late-diagnosed

COVID-19 patients, no significant increases were observed in ICU admissions and mortal-

ity rates [5]. Symptoms of respiratory infection and pulmonary infiltrates with negative

RT-PCR tests have been reported for COVID-19 [6,7] and atypical pneumonia (AP) [8,9]

patients. Sensitivity of RT-PCR for SARS-CoV-2 was reported 89% (95% CI, 81%-94%)

while sensitivity of CT for COVID-19 pneumonia was calculated 94,6% (95% CI, 91.9–

96,4%) according to the pooled data [10]. Despite the high sensitivity of CT, it has been

reported that its specificity was 46% (95% CI, 31.9%-60.7%) only [10]. These data point to

the cases with typical or indeterminate CT findings in the presence of false-negative PCR

results and is a cause of diagnostic confusion [11]. Thus, radiological methods to assist the

decision-making process are of increasing interest [12–14].

Radiomic analysis evaluates the texture, shape and size characteristics of any type of tissue

using the voxels in the cross-sectional images obtained from scans [15]. The methods used to

achieve said analysis have standardization and reproducibility issues; thus, it is not widely used

in daily radiologic work-ups [15,16]. However, an increasing number of publications have

reported the use of radiomic parameters mostly in the evaluation of neoplastic lesions of the

lung [16–19]. Recently, studies evaluating the pneumonic lesions of COVID-19 were added to

these publications. Radiomic parameters have been reported to be effective in assessing the

severity of the disease [20], determining the prognosis [21] and differentiating it from other

AP [22]. In previous radiomics studies on COVID-19, mixed models consisting of radiomic

parameters combined with various clinical and laboratory findings were frequently used.

Although many parameters, such as fever, saturation values, liver function tests and blood cell

count, are used in these models, they are nonspecific for AP. A lesion-based evaluation can

provide valuable information in the evaluating of suspicious cases with a negative PCR test

and indeterminate parenchymal lesions.

The aim of this study was to evaluate the ability of CT radiomics parameters and models to

discriminate COVID-19 and AP lesions without the use of any other clinical or laboratory

data. For this purpose, different models were created and compared using validated results,

and the efficiency of an algorithm based on these models alone, instead of combining with

other clinical and laboratory data, in classifying COVID-19 and AP lesions was evaluated.
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Materials and methods

This retrospective, cross-sectional study was approved by the institutional review board, and

written informed patient consent was waived.

Study population

Inclusion criteria. Ninety-eight consecutive patients who were admitted to our hospital

between May 2019 and April 2020 and diagnosed with AP by multiplex RT-PCR panel for

Adenovirus, Bocavirus, Coronavirus 229E, Coronavirus HKU1, Coronavirus NL63, Coronavi-

rus OC43, Enterovirus, Human metapneumovirus A/B, Influenza A, Influenza A (H1N1),

Influenza B, Mycoplasma pneumoniae, Parainfluenza 1, 2, 3 and 4, Parechovirus, Respiratory

syncytial virus A/B, Rhinovirus (Fast Track FTD Respiratory Pathogens 21 kit, Fast Track

Diagnosis, Luxembourg) or urinary antigen test and 80 consecutive patients diagnosed with

COVID-19 by RT-PCR for SARS-CoV-2 (Bio-Speedy COVID-19 qPCR Detection Kit, Cat

No: BS-SY-WC-305, Bioeksen, Turkey) in April 2020 were evaluated.

In both AP group and COVID-19 group, patients with a positive viral PCR or urinary anti-

gen test and a nonenhanced thorax CT scan before any antiviral treatment, who had no proven

bacterial infection, had no parenchymal findings of other lung diseases, had no finding of

ARDS, were not receiving immunosuppressive therapy or had no documented HIV positivity

were included in the study. It was stipulated that RT-PCR tests for both disease groups be per-

formed for patients diagnosed after March 2020.

Exclusion criteria. Patients were excluded if they presented with no lesions on thorax CT or

smaller than 1 mL, positive results in both PCR test group, atypical findings (cavity, pleural effu-

sion, tree-in-bud pattern), or severe respiratory motion artifacts were exclusion criteria (Fig 1).

As a result, 74 AP and 60 COVID-19 patients finally constituted the study population.

CT acquisition. All thorax CT studies were performed with a 128-detector system (GE

Revolution, General Electric, Milwaukee, WI), from the first rib to the adrenal glands, none-

nhanced, using the following parameters: 100 kV, 110 mAs, body filter, 1.25 mm slice thick-

ness, 512x512 reconstruction matrix, spiral pitch factor 1.375:1, BonePlus convolution kernel,

adaptive statistical iterative reconstruction 70%.

Radiomics parameter calculation. Lesions were manually sampled by two radiologists

(MG, 15 years of experience and BARM, last year of radiology residency) separately using Olea

Sphere 3.0 SP 21 software (Olea Medicals, La Ciotat, France) and the same rules: 1. One indi-

vidual lesion is segmented from one end to the other at a time; 2. If a septal, vascular or bron-

chial structure is totally encased by the lesion, it is included in the segmentation; and 3. If the

septal, vascular or bronchial structure remains on the surface of the lesion, it is not sampled.

Size, Shape, First-order and Second-order (Gray Level Run Length Matrix (GLRLM), Gray

Level Size Zone Matrix (GLSZM), Gray Level Dependence Matrix (GLDM), Gray Level Co-

occurrence Matrix (GLCM) and Neighboring Gray Tone Difference Matrix (NGTDM)) radio-

mic parameters were calculated using the volume of interest (VOI) of the manual segmenta-

tions as previously described [21].

The slices were resampled to a voxel size of 0.8x0.8x1.25 mm3 by using bicubic interpola-

tion for intensity. The number of bins for histogram preparation and gray-level discretization

was set to 64.

Voxel densities were not used as Hounsfield units (HU) but were normalized according to

Eq 1:

f ðxÞ ¼
sðx � mxÞ

sx
ð1Þ
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where f(x) is the normalized voxel density, s is a scaling factor (set to 1), x is the original den-

sity, μx is the mean density calculated from all voxels of the slice in and outside of the segmenta-
tion and σx is the standard deviation.

We mainly worked with negative HU values and avoided adding a fixed positive integer

(voxel array shift) to the measured HU values for the calculation of the total energy parameter,

thus avoiding the volume confounding effect. Neighbor distance was set to 1 mm and exam-

ined 0˚, 45˚, 90˚ and 135˚ from the center voxel isotropically (13 directions). For the depen-

dence matrices, neighboring voxels were considered dependent on the center voxel if both

were equal in gray level.

Statistical analysis. Lesions were classified as ground-glass opacities (GGOs), crazy pav-

ing signs (CPs) or consolidations by the two radiologists (MG and BARM) separately. If there

was inconsistency in the classification, a joint decision was made. All pneumonic lesions pres-

ent in patients were classified, and all classified lesions were used for segmentation, feature

extraction and parameter calculation and statistical evaluation.

GGOs (n = 150), CPs (n = 52) and consolidations (n = 99) groups were evaluated separately

to assess the differences in the parameters as they related to COVID-19 and AP. Since there

were multiple outliers, especially in the parameters correlated strongly with volume, a nonnor-

mal distribution was very often observed in the group comparisons. A logarithmic

Fig 1. Flowchart of the study.

https://doi.org/10.1371/journal.pone.0246582.g001
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transformation was performed, and the T-test was used if the transformed data were normally

distributed. Otherwise, the Kruskal-Wallis and post hoc Mann-Whitney U tests were used.

The First-order parameters were also evaluated for their ability to distinguish between differ-

ent lesion types.

The assumption of linearity for the parameters in the model was evaluated with the Box-

Tidwell procedure. The adequacy of the model parameters in predicting the categorical out-

comes was evaluated with the Hosmer-Lemeshow goodness of fit test, and p>0.05 was evalu-

ated as a good fit. Multicollinearity of the parameters in the models (such as between Range

and Interquartile range or Flatness and Spherical Disproportion) was evaluated by the variance

inflation factor (VIF) of the linear regression test.

Model validation was performed using leave one out cross-validation (LOOCV). For this

purpose, all lesions belonging to the same patient were turned into a separate block and

formed the test group, and the remaining lesions comprised the training group. Thus, valida-

tion was conducted 134 times for the GGO and consolidation group, 86 times for the positive

skewness group (PSG) and 68 times for the negative skewness group (NSG).

Statistical analyses were performed using IBM SPSS v23 (IBM Corp, Armonk, NY), Med-

Calc v14.8.1 (MedCalc Software bvba, Ostend, Belgium), R v4.0.2 (R foundation, Vienna, Aus-

tria) and the XLStat statistical and data analysis add-on 2020.3.1 (Addinsoft, NY, USA) for

Microsoft Excel 16.0.13029. Power analysis was conducted using G�Power 3.1 (Faul, Erdfelder,

Lang, & Buchner, 2007).

Results

Study population

There were 60 COVID-19 (39 male and 21 female; 66.6% and 33.3%, respectively) and 74 AP

patients (46 male and 28 female; 62.2% and 37.8%, respectively) included in the study. The

mean age was 48.25±13.67 (22–83 years) in the COVID-19 group and 48.01 ±20.38 (16–96

years) in the AP group. No significant difference was found in terms of sex (p = 0.573, chi-

square test) or age (p = 0.921, T-test) between the groups.

The AP group consisted of patents with influenza A (n = 17), influenza B (n = 9), adenovi-

rus (n = 10), human coronavirus (HCoV-229E n = 1; HCoV-NL63 n = 2; HCoV-HKU-1

n = 1), metapneumovirus (n = 11), respiratory syncytial virus (RSV) (n = 6), Mycoplasma
pneumoniae (n = 15), and Legionella pneumophila (n = 2).

Pulmonary lesions

There were 153 (50.8%) COVID-19 (1–6 lesions/patient; mean 2.55) and 148 (49.2%) AP lesions

(1–4 lesions/patient; mean 2.00) obtained from the study population (Table 1). The limited

number of segmented lesions used in the study was based on two reasons: (1) Lesions less than

1 mL in volume were not used in the study, and (2) Lesions that merged with each other were

processed as a single lesion. No significant difference was found in the number of GGO lesions

between the COVID-19 and AP groups (p = 0.721, post hoc z-score test), although there was a

significant difference in the number of CP (p = 0.000) and consolidation (p = 0.003) lesions.

The time from documented first high fever or hospitalization to CT scan was slightly higher

in the AP group (7.7 [1–14] days) than in the COVID-19 group (4.4 [1–10] days).

Two authors (MG and BARM) segmented lesions separately using the same rules. Mean

volume (26.855±34.445 mL and 28.211±37.092 mL, respectively) and mean density (0.590

±0.162 and 0.579±173) of the segmentations were compared using Bland Altman analysis and

paired samples T-test and no significant difference was found for calculated mean volume

(p = 0.589) and density (p = 0.154).
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Radiomics parameters

Size, Shape, Location, First-order (Tables 2 and 3) and Second-order (Tables 4 and 5) texture

parameters were evaluated.

Shapes, sizes and locations of the lesions

The volumes of the lesions were spread over a wide range (1.235–165.504 mL in the COVID-

19 group and 1.022–176.192 mL in the AP group) with nonnormal distributions and wide var-

iability (mean 23.565 ± 32.181 mL in the COVID-19 group and 30.756 ± 36.696 mL in the AP

group). However, there was no significant difference in the lesion volume between the

COVID-19 and AP groups (p = 0.084, Kruskal-Wallis test).

The Shape parameters Sphericity, Compactness, Spherical Disproportion, Elongation and

Flatness demonstrated a tendency of the COVID-19 lesions to be more rounded (Table 3).

Receiver operating characteristic (ROC) analysis showed that the Shape and Size parameters

individually had poor sensitivity, specificity and AUC values in discriminating lesions (Table 3).

In the COVID-19 group 105 lesions (68.6%) were located peripherally, 27 lesions (17.7%)

were located centrally and 21 lesions (13.7%) were located diffusely; in the AP group, these

numbers were 60 (40.5%), 27 (18.2%) and 61 (41.2%), respectively. The number of lesions of

each location type were significantly different between the groups (p = 0.000, chi-square test).

In our study group, the cause of the pneumonic lesions was correctly predicted for 64.5% of

the lesions (sensitivity 60.1% and specificity 68.6%) by using their location data (peripheral or

nonperipheral) only.

First-order texture parameters

The First-order texture parameters’ discriminability of the whole group of COVID-19 and AP

lesions was poor (Table 2); however, these parameters were found to be effective in categoriz-

ing pneumonic lesions alone (Table 3). While consolidations yielded negative skewness unless

they had extensive ground-glass halo areas (Fig 2), GGO lesions with a volume greater than 3.0

mL had positive skewness values. GGO lesions smaller than this volume showed negative

skewness, and skewness maps showed that voxels corresponding to enlarged septal or vascular

structures led to a right shift (Fig 3). The mean skewness was found to be significantly different

among GGO, CP and consolidation lesions.

Several parameters were found to be significantly different for GGO and consolidation

lesions between COVID-19 and AP (Table 3), and Range was the only parameter that could

Table 1. Distribution of lesions according to patient groups, lesion types and lobes.

Location COVID (n = 153) Atypical Pneumonia (n = 148) TOTAL

GGO CP Consolidation GGO CP Consolidation

RUL 12 2 7 11 2 12 46

RML 6 2 0 7 0 3 18

RLL 28 17 15 23 4 16 103

LUL 14 9 7 10 4 11 55

LLL 16 8 10 23 4 18 79

TOTAL 76 38 39 74 14 60 301

GGO: Ground glass opacities, CP: Crazy paving, RUL: Right upper lobe, RML: Right middle lobe, RLL: Right lower lobe, LUL: Left upper lobe (including lingular lobe),

LLL: Left lower lobe.

https://doi.org/10.1371/journal.pone.0246582.t001
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discriminate all lesion types in both disease groups and had the best AUC in ROC analysis,

although its specificity was 45.5%.

Second-order texture parameters

The Second-order texture parameters’ discriminability of the COVID-19 and AP lesions was

also poor (Table 4). Only the parameters Large Area Low Gray Level Emphasis and

GLCM-Correlation had AUCs greater than 0.600, although their sensitivity in differentiating

COVID-19 lesions was merely 50%.

None of the Second-order parameters showed a significant difference for the CP lesions

between the COVID-19 and AP groups. However, there were parameters significantly differ-

ent in GGO and consolidation (Table 5).

Table 2. ROC analysis results of size, shape and first order texture parameters to discriminate COVID-19 related lesions from atypical pneumonia.

Parameter COVID-19 (mean ± SD) Atypicala� (mean ± SD) Cut-off Sensitivity (%) Specificity (%) AUC 95% CI

Size and Shape Parameters

Sphericity 0,446±0,110 0,390±0,084 >0,405 60,1 64,3 0,643 0,586–0,698

Compactness 1 0,016±0,006 0,013±0,006 >0,013 60,8 63,6 0,637 0,579–0,692

Compactness 2 0,104±0,079 0,068±0,045 >0,109 36,6 86,7 0,633 0,575–0,688

Elongation 0,685±0,150 0,648±0,144 >0,754 37,9 79,0 0,579 0,520–0,636

Flatness 0,477±0,154 0,412±0,130 >0,493 46,4 74,1 0,614 0,556–0,670

Surface area (cm2) 9,23±9,49 12,45±11,22 �8,35 67,3 51,8 0,600 0,541–0,656

Area/Volume ratio 0,508±0,135 0,532±0,166 �0,638 85,6 21,7 0,529 0,471–0,587

Spherical disproportion 2,385±0,598 2,690±0,594 �2,572 68,0 57,3 0,645 0,588–0,700

Major axis (mm) 53,08±23,52 50,42±26,47 �39,68 41,8 74,8 0,596 0,538–0,652

Minor axis (mm) 35,76±14,61 32,53±14,75 �36,42 69,9 45,5 0,571 0,513–0,628

Least axis (mm) 22,39±10,27 21,63±9,00 �22,66 67,3 45,5 0,512 0,454–0,570

First Order Texture Parameters

Skewness 0,152±0,489 0,114±0,672 >-0,331 85,0 28,0 0,519 0,461–0,577

Kurtosis 3,356±0,961 3,460±1,370 �3,107 53,0 55,0 0,504 0,446–0,563

Energy 9019±11856 17030±22052 �3408 47,0 70,6 0,615 0,557–0,671

Total Energy 8222±10776 16258±22125 �7846 69,3 48,3 0,608 0,550–0,664

Entropy 5,153±0,240 5,136±0,258 >5,135 59,5 53,9 0,527 0,468–0,585

Minimum�� 0,073±0,077 0,058±0,096 >-0,028 92,2 20,3 0,526 0,467–0,584

10th percentile�� 0,354±0,116 0,380±0,142 �0,496 86,9 25,2 0,554 0,496–0,612

90th percentile�� 0,768±0,161 0,857±0,207 �0,889 74,5 49,7 0,637 0,579–0,692

Maximum�� 1,221±0,192 1,344±0,229 �1,342 81,7 50,3 0,672 0,615–0,725

Mean�� 0,561±0,139 0,622±0,179 �0,668 75,8 42,0 0,603 0,544–0,659

Median�� 0,561±0,149 0,625±0,202 �0,742 86,9 31,5 0,590 0,531–0,646

Range�� 1,149±0,199 1,284±0,234 �1,321 86,9 45,5 0,686 0,630–0,739

Interquartile Range�� 0,220±0,057 0,257±0,085 �0,296 92,1 26,6 0,622 0,564–0,677

Standard deviation 0,161±0,035 0,187±0,045 �0,161 50,3 74,8 0,664 0,607–0,717

Mean absolute deviation 0,129±0,030 0,151±0,041 �0,165 89,5 33,6 0,649 0,591–0,703

Robust mean deviation 0,091±0,023 0,107±0,034 �0,121 92,2 28,7 0,630 0,572–0,685

Root mean squared 0,585±0,138 0,651±0,179 �0,657 71,9 47,6 0,612 0,554–0,668

Variance 0,027±0,011 0,037±0,017 �0,027 52,3 72,7 0,666 0,609–0,720

Uniformity 0,035±0,008 0,033±0,006 �0,034 66,7 48,3 0,552 0,493–0,609

�Atypical: Atypical pneumonia group.

�� Standardized data. Figures were not given in Hounsfield unit.

https://doi.org/10.1371/journal.pone.0246582.t002
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Models for lesion estimation

Logistic regression probabilistic models were developed since no individual parameter showed

good discriminability. A total of 18 First and Second-order parameters discriminated both

GGO and consolidation (Tables 3 and 5) lesions, and no parameters other than Range could

discriminate CP lesions between COVID-19 and AP. Thus, models focusing on GGOs and

consolidations were built. These 18 parameters were merged with the Shape and Size parame-

ters with AUCs greater than 0.600 (Table 2) as well as the Location parameter; thus, a total of

23 parameters were used to generate the models. The parameters were logarithmically trans-

formed to prevent the model from being influenced by outliers and the skewness values of the

parameters.

All possible three- and four-parameter combinations were studied for candidate models.

No more than four parameters were used to build the models to prevent overfitting. The

Bayesian information criterion (BIC) estimator was used to select the best among the candi-

date models

The group consisting of all consolidation and GGO lesions was the largest group and

included 134 patients and 249 lesions; the best three- and four-parameter models that pre-

dicted both types of lesion showed modest sensitivity and specificity for both the training and

test sets (Models 1 and 2, Table 6). Further evaluation of the subgroups revealed that the accu-

racy for COVID-19 consolidations were 46.1% with Model-1 and 56.4% with Model-2.

Table 3. Level of statistical significance (p values) of the first order texture parameters between the pneumonic lesion types of whole study population and between

the same type lesions of COVID-19 and atypical pneumonia groups.

Parameter Pneumonic Lesion Comparison Comparison of COVID-19 and Atypical Pneumonia

GGO and Cons. GGO and CP CP and Cons. GGO Consolidation CP

Skewness 0,000 1 0,000 1 0,000 1 0,007 2 0,288 2 0,396 2

Kurtosis 0,000 2 0,000 2 0,643 2 0,940 2 0,642 2 0,567 2

Energy 0,000 2 0,045 2 0,000 2 0,265 2 0,000 2 0,526 2

Total Energy 0,000 2 0,027 2 0,003 2 0,353 2 0,001 2 0,821 2

Entropy 0,015 1 0,000 1 0,260 1 0,175 2 0,051 2 0,203 2

Minimum 0,024 2 0,070 2 0,548 2 0,440 2 0,678 2 0,158 2

10th percentile 0,000 2 0,209 2 0,000 2 0,772 2 0,241 2 0,880 2

90th percentile 0,000 1 0,000 1 0,000 1 0,014 2 0,000 2 0,795 2

Maximum 0,000 1 0,000 1 0,984 1 0,000 3 0,000 3 0,086 3

Mean 0,000 1 0,000 1 0,000 1 0,373 3 0,003 3 0,781 3

Median 0,000 1 0,000 1 0,000 1 0,750 3 0,002 3 0,781 3

Range 0,000 1 0,000 1 0,962 1 0,000 3 0,000 3 0,042 3

Interquartile Range 0,000 2 0,000 2 0,948 2 0,002 3 0,000 3 0,625 3

Standard deviation 0,000 1 0,000 1 0,808 1 0,000 3 0,000 3 0,423 3

Mean absolute deviation 0,000 2 0,000 2 0,889 2 0,001 3 0,000 3 0,503 3

Robust mean deviation 0,000 2 0,000 2 0,873 2 0,001 3 0,000 3 0,597 3

Root mean squared 0,000 1 0,000 1 0,000 1 0,203 3 0,001 3 0,785 3

Variance 0,000 2 0,000 2 0,738 2 0,000 3 0,000 3 0,474 3

Uniformity 0,166 1 0,000 1 0,030 1 0,357 2 0,027 2 0,203 2

1.Results of ANOVA.

2. Results of Mann Whitney test.

3. Results of T-test.

GGO: Ground glass opacities, Cons: Consolidation, CP: Crazy paving.

https://doi.org/10.1371/journal.pone.0246582.t003
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Table 4. ROC analysis results of second order texture parameters in discrimination of COVID-19 from atypical pneumonia.

Parameter COVID-19 (mean ± SD) Atypical� (mean ± SD) Cut-off Sensitivity (%) Specificity (%) AUC 95% CI

Gray Level Run Length Matrix

Short run emphasis 0,96801±0,00662 0,96654±0,00617 >0,96590 66,0 51,8 0,578 0,520–0,635

Long run emphasis 1,14102±0,03274 1,15699±0,07290 �1,14780 66,0 51,8 0,580 0,522–0,637

Gray level non-uniformity 1190,53±1397,49 881,20±1334,74 �1086,81 83,0 37,8 0,592 0,534–0,648

GLNUN 0,03302±0,00645 0,03410±0,00741 �0,03300 60,1 53,9 0,545 0,487–0,603

Run length non-uniformity 23506,4±34546,5 30076,7±34116,6 �26708,3 79,1 37,8 0,588 0,529–0,644

RLNUN 0,91802±0,01652 0,91258±0,02332 >0,91380 66,0 51,1 0,578 0,519–0,635

Run Percentage 0,95683±0,00918 0,95325±0,01550 >0,95460 66,7 51,8 0,579 0,520–0,636

Gray Level Variance 84,942±26,894 93,279±39,923 �125,813 93,5 17,5 0,527 0,469–0,585

Run variance 0,04822±0,01149 0,05508±0,03371 �0,05080 66,0 52,5 0,581 0,523–0,638

Run entropy 5,4190±0,2048 5,4232±0,2248 >5,4034 62,1 51,8 0,508 0,450–0,566

Short run LGLE 0,00409±0,00345 0,00441±0,00418 �0,00120 2,61 90,9 0,510 0,451–0,568

Short run HGLE 864,31±343,07 918,48±383,84 �601,51 27,45 84,7 0,536 0,478–0,594

Long run LGLE 0,00476±0,00438 0,00520±000499 �0,00460 68,6 39,9 0,521 0,462–0,579

Long run HGLE 1032,74±610,32 1018,60±406,67 �1396,87 83,0 27,9 0,540 0,482–0,598

Gray Level Size Zone Matrix

Small area emphasis 0,73030±0,02891 0,73069±0,02926 >0,72590 57,5 53,2 0,523 0,463–0,580

Large area emphasis 11,203±15,588 21,896±34,501 �8,336 64,1 55,2 0,598 0,540–0,655

Gray level non-uniformity 416,24±580,31 524,29±580,31 �490,43 80,4 37,8 0,585 0,526–0,641

GLNUN 0,02914±0,00431 0,02905±0,00465 �0,02930 62,1 50,4 0,501 0,442–0,559

Size zone non-uniformity 6710,49±9451,04 8376,19±9173,09 �5542,69 68,6 46,9 0,591 0,533–0,648

SZNUN 0,49444±0,39484 0,49509±0,04116 >0,48730 57,5 53,2 0,521 0,462–0,579

Zone Percentage 0,55550±0,07183 0,54358±0,07541 >0,54180 60,8 52,5 0,559 0,501–0,617

Gray Level Variance 100,27±24,43 106,38±34,39 �135,39 92,8 18,9 0,517 0,458–0,575

Zone variance 7,4490±12,2950 15,6470±24,2230 �5,4620 68,6 50,4 0,599 0,541–0,656

Zone entropy 6,8400±0,1761 6,8651±0,1637 �6,7820 39,2 71,3 0,533 0,474–0591

Small area LGLE (x10-3) 4,0882±3,9304 3,9978±3,0079 >2,0311 77,1 33,6 0,527 0,469–0,586

Small area HGLE 641,65±230,14 676,65±234,09 �456,78 26,1 87,4 0,546 0,487–0,603

Large area LGLE 0,04461±0,09193 0,08423±0,18103 �0,01420 48,4 69,9 0,611 0,553–0,667

Large area HGLE 3,8300±0,3120 4,0520±0,7410 �4,1680 91,5 27,3 0,546 0,487–0,603

Gray Level Dependence Matrix

Small dependence emphasis 0,48389±0,06201 0,47551±0,06548 >0,5037 41,8 72,7 0,561 0,503–0,619

Large dependence emphasis 5,9591±1,4232 6,5414±2,1320 �6,3424 71,2 49,0 0,587 0,529–0,644

Gray level non-uniformity 935,11±1420,84 1283,38±1515,39 �1138,71 82,4 38,5 0,594 0,536–0,651

Dependence non-uniformity 7298,03±10526,77 9013,57±10131,83 �8895,23 79,7 39,7 0,584 0,526–0,641

DNUN 0,28855±0,04086 0,27925±0,04861 >0,27260 65,4 49,0 0,573 0,514–0,630

Gray level variance 92,904±40,013 83,956±27,032 �124,49 92,8 18,1 0,527 0,469–0,585

Dependence Variance 1,3980±0,3689 1,6304±0,7358 �1,4604 64,7 56,6 0,598 0,539–0,654

Dependence entropy 7,0767±0,1866 7,1179±0,2015 �6,9314 24,2 88,1 0,538 0,479–0,596

Small dependence LGLE 0,002497±0,00181 0,002499±0,00238 >0,00070 96,7 10,5 0,525 0,466–0,583

Small dependence HGLE 432,60±176,85 440,46±157,71 �299,44 30,1 85,3 0,521 0,462–0,579

Large dependence LGLE 0,02631±0,04705 0,03021±0,04296 �0,0227 77,8 37,1 0,575 0,516–0,632

Large dependence HGLE 5302,01±2507,58 8395,02±16774,12 �6592,00 81,7 32,9 0,533 0,474–0,590

Gray Level Co-occurrence Matrix

Contrast 79,343±24,509 78,981±27,491 >77,212 52,9 60,1 0,523 0,464–0,581

Correlation 0,47346±0,09845 0,50980±0,11269 �0,46600 50,3 69,9 0,609 0,551–0,665

Maximum probability (x10-3) 5,1548±2,9506 5,5979±6,0588 �3,9018 50,3 62,9 0,567 0,508–0,624

(Continued)

PLOS ONE A CT radiomics analysis of COVID-19 and atypical pneumonia lesions

PLOS ONE | https://doi.org/10.1371/journal.pone.0246582 March 10, 2021 9 / 21

https://doi.org/10.1371/journal.pone.0246582


Similarly, both models had low accuracy for AP-related GGO lesions (60.8% and 54.1%,

respectively). The high accuracy in predicting AP-related consolidation lesions (90% and

83.3%) and COVID-19-related GGO lesions (82.9% and 81.5%), which both constituted 54.6%

of the lesions, appeared the models more successful than they actually were.

Since low accuracy affected the consolidation and GGO subgroups in the single model

approaches, we decided to study them separately. In our study, there were only a few pure con-

solidations (7 COVID-19, 6 influenza, 6 adenovirus and 1 Legionella pneumophila-associated

lesions), and almost all lesions were including both ground-glass and consolidation areas which

posed a classification problem. We concluded that separating the lesions according to their

skewness values would eliminate the need for a subjective decision-maker; thus, the lesions

were grouped into the PSG (n = 149) and NSG (n = 100) according to their skewness values.

The PSG included 78 lesions (52.3%) from 49 patients with AP and 71 (47.7%) lesions from

37 COVID-19 patients. While 142 of these lesions were GGOs, 7 were consolidations with

wide ground-glass halo. The best models for PSG lesion prediction always included the param-

eters GLCM-Contrast and Range. The BIC analysis showed that the best 3-parameter model

was obtained by adding Sphericity (Model-3, Table 6). Higher values of the parameters

GLCM-Contrast and Range increased the likelihood of the lesion being identified as an AP

lesion; in contrast, a higher value for the Sphericity parameter increased the likelihood of the

lesion being identified as a COVID-19 lesion. There were 20 COVID-19 and 11 AP lesions

with the Sphericity value was greater than 0.500, and Model-3 correctly predicted 17 (85.0%)

COVID-19 and 8 (72.7%) AP lesions, showing that the model had no tendency to classify the

most rounded lesions as COVID-19. In the cross-validation study, Model-3 had the best sensi-

tivity, specificity and accuracy for PSG lesions (Table 6).

When the parameters evaluating the shape of the lesion were not used during model crea-

tion, the best model included the Lesion location parameter (Model-4, Table 6). Such models

Table 4. (Continued)

Parameter COVID-19 (mean ± SD) Atypical� (mean ± SD) Cut-off Sensitivity (%) Specificity (%) AUC 95% CI

Autocorrelation 906,23±370,89 954,55±428,98 �632,95 28,1 81,1 0,527 0,468–0,585

Cluster prominence (x103) 17,822±25,716 25,484±24,242 �33,817 94,1 25,2 0,567 0,509–0,625

Cluster shade 211,56±1730,93 89,101±3981,97 >-3072,76 99,4 14,0 0,502 0,443–0,560

Cluster tendency 230,030±82,402 267,822±134,992 �319,011 86,9 28,7 0,552 0,494–0,610

Difference average 6,7681±1,1229 6,6504±1,1580 >6,7933 51,0 63,6 0,550 0,492–0,608

Difference entropy 4,1817±0,2246 4,1648±0,2158 >4,1974 52,3 60,8 0,542 0,483–0,600

Difference variance 31,743±9,224 32,813±10,519 �22,196 37,9 72,7 0,519 0,461–0,577

IDMN 0,98251±0,00518 0,98265±0,00563 �0,97880 52,3 61,5 0,526 0,467–0,584

IDN 0,911045±0,01294 0,912721±0,01319 �0,9098 48,4 67,8 0,557 0,499–0,615

Inverse variance 0,152834±0,02489 0,160731±0,02848 �0,15430 60,1 57,3 0,593 0,535–0,650

Neighboring Gray Tone Difference Matrix

Coarseness (x10-3) 1,34299±1,69595 0,93792±1,14415 >1,04190 34,6 76,9 0,562 0,503–0,619

Contrast 0,2137±0,0911 0,2174±0,1139 >0,1844 57,5 51,1 0,513 0,454–0,571

Busyness 2,0291±3,8506 2,2528±3,0269 �2,5093 85,0 30,0 0,581 0,522–0,637

Complexity 7544,73±1387,75 7451,53±1219,89 >8067,22 41,2 75,5 0,542 0,483–0,600

Strength 1,6840±1,8716 1,5113±1,8949 >1,1493 44,4 65,0 0,542 0,483–0,599

� Atypical: Atypical pneumonia group, GLNUN: Gray Level Non-uniformity Normalized, RLNUN: Run Length Non-uniformity Normalized, LGLE: Low Gray Level

Emphasis, HGLE: High Gray Level Emphasis, SZNUN: Size Zone Non-uniformity Normalized, DNUN: Dependency Non-uniformity Normalized, IDMN: Inverse

Difference Moment Normalized, IDN: Inverse Difference Normalized.

https://doi.org/10.1371/journal.pone.0246582.t004
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Table 5. Level of statistical significance (p values) of the second order texture parameters between the same type lesions of COVID-19 and atypical pneumonia

groups.

Parameter GGO CP Consolidation

Gray Level Run Length Matrix

Short run emphasis 0,024 1 1,000 1 1,000 1

Long run emphasis 0,010 1 1,000 1 0,146 1

Gray level non-uniformity 0,016 1 1,000 1 0,088 1

GLNUN 0,250 1 0,276 2 0,029 2

Run length non-uniformity 0,120 1 1,000 1 0,600 1

RLNUN 0,012 1 1,000 1 0,169 1

Run Percentage 0,011 1 1,000 1 0,151 1

Gray Level Variance 0,210 2 0,073 2 0,872 2

Run variance 0,009 1 1,000 1 0,136 1

Run entropy 0,088 2 0,100 2 0,241 2

Short run LGLE 0,895 1 0,372 1 0,753 1

Short run HGLE 0,752 2 0,941 2 0,857 2

Long run LGLE 0,766 1 0,304 1 0,596 1

Long run HGLE 0,960 1 0,941 2 0,529 2

Gray Level Size Zone Matrix

Small area emphasis 0,036 1 0,430 2 0,025 2

Large area emphasis 0,137 1 0,343 1 0,000 1

Gray level non-uniformity 0,473 1 0,480 1 0,006 1

GLNUN 0,260 2 0,080 2 0,798 2

Size zone non-uniformity 0,276 1 0,585 1 0,533 1

SZNUN 0,011 2 0,406 2 0,022 2

Zone Percentage 0,011 2 0,484 2 0,000 1

Gray Level Variance 0,041 1 0,089 1 0,636 1

Zone variance 0,228 1 0,418 1 0,000 1

Zone entropy 0,583 2 0,408 2 0,018 2

Small area LGLE 1,000 1 1,000 1 1,000 1

Small area HGLE 0,329 2 0,206 2 0,429 2

Large area LGLE 1,000 1 1,000 1 0,000 1

Large area HGLE 0,054 1 1,000 1 0,572 1

Gray Level Dependence Matrix

Small dependence emphasis 0,019 2 0,513 2 0,002 1

Large dependence emphasis 0,087 2 0,616 2 0,001 1

Gray level non-uniformity 1,000 1 1,000 1 0,061 1

Dependence non-uniformity 1,000 1 1,000 1 0,402 1

DNUN 0,014 2 0,392 2 0,001 2

Gray level variance 0,293 1 1,000 1 1,000 1

Dependence Variance 0,220 2 0,603 2 1,000 1

Dependence entropy 0,911 2 0,265 2 0,395 1

Small dependence LGLE 1,000 1 0,691 2 0,831 2

Small dependence HGLE 1,000 1 0,242 2 0,021 2

Large dependence LGLE 0,017 2 1,000 1 0,143 1

Large dependence HGLE 0,899 1 0,622 2 1,000 1

Gray Level Co-occurrence Matrix

Contrast 0,004 1 0,209 2 0,008 2

Correlation 1,000 1 0,430 2 0,001 2

(Continued)
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tended to classify peripheral lesions as COVID-19 lesions and nonperipheral lesions as AP

lesions more often. In our study, Model-4 correctly classified 48.6% peripheral and 87.8% non-

peripheral AP lesions and 86.5% peripheral and 36.8% nonperipheral COVID-19 lesions.

The inclusion of Sphericity and lesion location to build a four-parameter model yielded a

model with slightly lower sensitivity, specificity and accuracy (Model-5, Table 6). This model

correctly predicted 48.6% peripherally located AP lesions, similar to Model-4 (case-by-case

estimates were not exactly the same), and 82.7% peripheral COVID-19 lesions.

The best 4-parameter model according to the BIC analysis included the Interquartile range

and Lesion location parameters (Model-6, Table 6). This model had the same sensitivity with

Model-3 (case-by-case estimates were not exactly the same) and the second-best specificity

and accuracy after Model-3. The VIF for Interquartile range and Range was calculated as

1.006.

Five out of 7 consolidations with wide ground-glass halos (5 AP and 2 COVID-19) were

correctly predicted and the same 1 AP and 1 COVID-19 lesions could not be correctly pre-

dicted by all of the positive skewness models.

As a result, the best accuracy was achieved with Model-3, and the score for a lesion was cal-

culated as:

PSG Score ¼
1

1þ e� ð12;617þ3;267�log10ðSphericityÞ� 7;497�log10ðRangeÞ� 5;918�log10ðGLCM� ContrastÞ
ð2Þ

The NSG included 56 (56%) AP lesions in 39 patients and 44 (44%) COVID-19 lesions in 29

patients. The NSG was primarily composed of consolidations (92 lesions). There were 8 GGO

Table 5. (Continued)

Parameter GGO CP Consolidation

Maximum probability 1,000 1 0,565 2 0,245 1

Autocorrelation 0,620 2 0.210 2 0,920 2

Cluster prominence 0,026 1 1,000 1 1,000 1

Cluster shade 0,170 1 0,625 2 1,000 1

Cluster tendency 0,171 1 0,138 2 1,000 1

Difference average 0,001 2 0,258 2 0,000 2

Difference entropy 0,000 2 0,239 2 0,007 1

Difference variance 0,000 1 0,078 2 0,358 1

IDMN 0,004 1 0,152 2 0,003 2

IDN 0,003 2 0,248 2 0,000 2

Inverse variance 0,071 2 0,441 2 0,000 1

Neighboring Gray Tone Difference Matrix

Coarseness 0,806 2 0,526 2 0,013 2

Contrast 0,053 2 0,219 2 1,000 1

Busyness 0,287 2 0,468 2 0,008 2

Complexity 0,002 2 1,000 1 0,001 2

Strength 0,575 2 0,394 2 0,044 2

� Atypical: Atypical pneumonia group.

1. Kruskal Wallis and post-hoc Mann Whitney test.

2. T-test.

GLNUN: Gray Level Non-uniformity Normalized, RLNUN: Run Length Non-uniformity Normalized, LGLE: Low Gray Level Emphasis, HGLE: High Gray Level

Emphasis, SZNUN: Size Zone Non-uniformity Normalized, DNUN: Dependency Non-uniformity Normalized, IDMN: Inverse Difference Moment Normalized, IDN:

Inverse Difference Normalized.

https://doi.org/10.1371/journal.pone.0246582.t005
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lesions (7 COVID-19 and 1 AP) in the group, and their mean volume was 2.144 mL (1.286–

2.773 mL).

The models for NSG prediction did not include Shape or Location parameters. Two texture

parameters, GLCM-Inverse Difference Normalized (IDN) and the First-order parameter

Mean Absolute Deviation (MAD), formed the basis of NSG estimation.

In the BIC analysis, the lowest-scoring 3-parameter model was formed by adding Spherical

Disproportion to the above 2-parameter model (Model-7, Table 6) and the lowest-scoring

4-parameter model was formed by adding the Flatness parameter to this 3-parameter model

(Model-8, Table 6). However, IDN and MAD were the only statistically significant parameters

in the models. When the Spherical Disproportion parameter was changed with Sphericity

(p = 0.072) or Lesion location (p = 0.386), these parameters were also unable to create a

Fig 2. Frequency distribution plot (histogram) of COVID-19-related lesions. (a) ground glass opacity, (b) crazy paving, and (c) consolidation. Note that the histogram

of the consolidation is right-skewed and (d) mean skewness value is negative.

https://doi.org/10.1371/journal.pone.0246582.g002
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statistically significant covariate. Moreover, in the cross-validation study, the case-by-case

results of Model 7 and Model 8 were exactly the same.

Accordingly, the NSG score for Model-7 is depicted in Eq 3:

NSG Score ¼
1

1þ e� ð� 24;338� ð5;290�log10ðSpherical DisproportionÞþ18;715�log10ðMADÞþ276;037�log10ðIDNÞÞ
ð3Þ

Five out of 8 GGO lesions smaller than 3 mL that produced negative skewness values were

correctly predicted by the NSG models. On the other hand, Model 3 of PSG was able to

accurately predict all lesions. The Sphericity of the AP GGO lesion (from a patient diag-

nosed with RSV) was 0.362, while the COVID-19-related GGO lesions had a Sphericity

between 0.550–0.669.

The net benefit provided by the highest accuracy PSG and NSG models (Model-3 and

Model-7, respectively) was evaluated with decision curve analysis, using all possible threshold

probabilities. While the PSG model did not differ from an approach in which all lesions were

evaluated as COVID-19 for low threshold probabilities, it had a higher net benefit for the inter-

mediate and high threshold (0.21–0.82) probability range (Fig 4A). On the other hand, the

NSG model provided higher net benefit at all threshold probabilities (Fig 4B).

Case-by-case evaluation

The results of Model-3 and Model-7, which had the highest accuracies in the cross-validation,

were evaluated on a case-by-case basis. Regardless of the number of segmentations, the model

was considered unsuccessful for a patient who had one falsely predicted lesion.

Fig 3. GGO smaller than 3 mL. (a) Gray scale CT image and (b) Skewness map of a 2.6 mL GGO lesion showed that high density septal components lead a right-shift.

https://doi.org/10.1371/journal.pone.0246582.g003
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In the PSG, 10 AP (2 single and 8 multiple lesions) and 13 COVID-19 (10 single and 3 mul-

tiple lesions) patients were falsely predicted by Model-3. The remaining 39 AP (79.6%) and 24

COVID-19 patients (64.9%) were correctly predicted.

In NSG, 6 AP (4 single and 2 multiple lesions) and 4 COVID-19 (2 single and 2 multiple

lesions) patients were falsely predicted by Model-7. The remaining 33 AP patients (84.6%) and

25 COVID-19 patients (86.2%) were correctly predicted.

Some exchanges were made between the groups. A total of 20 patients (14 AP, 6 COVID-19)

had both NSG and PSG lesions at the same time. Five of these patients (1 AP, 4 COVID-19)

were falsely predicted by the PSG model, while the NSG model correctly predicted them all.

Table 6. Model comparison in COVID-19 and atypical pneumonia prediction.

Model Features Training Set Test Set

No Parameters p value Odds Ratio�(95% CI) AUC Specificity % Sensitivity % Accuracy % Specificity % Sensitivity % Accuracy %

GGO & consolidation

1 Standard deviation 0.000 0.446 (0.320–0.620) 0.778 71.6 71.3 71.5 73.9 70.4 72.3

Spherical disproportion 0.005 0.643 (0.471–0.878)

Lesion location 0.000 2.802 (1.578–4.977)

2 GLCM Contrast 0.002 0.087 (0.019–0.402) 0.797 71.6 75.7 73.5 67.2 73.0 69.9

Difference Average 0.004 8.426 (1.991–35.668)

Range 0.000 0.457 (0.325–0.642)

Lesion location 0.000 2.922 (1.629–5.242)

PSG

3 GLCM Contrast 0,000 0.372 (0.216–0.641) 0.774 76.9 77.5 77.2 76.9 74.6 75.8

Range 0,005 0.043 (0.005–0.382)

Sphericity 0,038 1.500 (1.004–2.240)

4 GLCM Contrast 0.001 0.417 (0.249–0.699) 0.795 69.2 74.7 71.8 69.2 73.2 71.1

Range 0.001 0.4025 (0.003–0.230)

Lesion location 0.003 3.046 (1.491–6.898)

5 GLCM Contrast 0,000 0.378 (0.220–0.650) 0.802 71.8 74.7 73.2 67.9 71.8 69.8

Range 0,009 0.045 (0.004–0.452)

Sphericity 0,038 1.553 (1.025–2.352)

Lesion location 0,005 2.993 (1.385–6.465)

6 GLCM Contrast 0.000 0.204 (0.086–0.485) 0.806 73.1 76.1 74.5 70.5 74.6 72.5

Range 0.000 0.323 (0.175–0.598)

Interquartile Range 0.033 2.431 (1.073–5.510)

Lesion location 0.002 3.365 (1.539–7.356)

NSG

7 IDN 0.000 0.183 (0.083–0.406) 0.907 87.5 79.5 84.0 85.7 79.5 83.0

Mean absolute deviation 0.000 0.114 (0.035–0.364)

Spherical disproportion 0.124 0.591 (0.302–1.155)

8 IDN 0.000 0.186 (0.084–0.410) 0.910 85.7 87.1 85.0 85.7 79.5 83.0

Mean absolute deviation 0.000 0.117 (0.037–0.373)

Spherical disproportion 0.174 0.623 (0.315–1.233)

Flatness 0.304 1.384 (0.744–2.571)

� Odds ratio values were obtained using standardized parameters to allow comparison. GGO: Ground-glass opacities, PSG: Positive skewness group, NSG: Negative

skewness group, GLCM: Gray Level Co-occurrence Matrix, IDN: Inverse Difference Normalized.

https://doi.org/10.1371/journal.pone.0246582.t006
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In contrast, 1 AP and 4 COVID-19 patients presented with a total of 8 GGO lesions with a

volume less than 3 mL. The NSG model incorrectly predicted the AP patient and 1 COVID-19

patient, while PSG correctly predicted them all.

According to these results, we reached two basic rules and a simple algorithm for patient

evaluation: (1) If a patient has both PSG and NSG lesions, the prediction should be made using

NSG lesion(s) and NSG model; and (2) A lesion with a volume of less than 3 mL should be

evaluated with the PSG model. Using an algorithm based on these rules, our final accuracy was

80% for COVID-19 and 81.1% for AP (Fig 5).

Power analysis

An a priori power analysis was performed for independent samples t tests to determine the

sample size of the COVID-19 and AP groups. The parameters used for this purpose were two

tails, Cohen’s d = 0.5, alpha = 0.05 and targeted power = 0.80, and the total sample size was cal-

culated as 128.

During the study, the COVID-19 group consisted of 60 cases and the AP group consisted of

74 cases (total n = 134) and the power was calculated as 0.82 with post hoc analysis.

Discussion

A total of 89 radiomic parameters, including Lesion location, Size, Shape, First-order and Sec-

ond-order texture parameters, were evaluated, and none could individually differentiate

COVID-19 from AP with sufficient sensitivity and specificity. For this reason, a method based

on the estimation of lesions was adopted by creating models with logistic regression analysis.

Although 24 parameters were significantly different between COVID-19 and AP-related GGO

and consolidations, none of the parameters, except Range, could differentiate CP lesions

Fig 4. Decision curve analysis of the models with highest accuracy. (a) PSG Model-3, and (b) NSG Model-7 None (thick line): Net benefit if all patients were accepted as

atypical pneumonia, All (thin line): Net benefit if all patients were accepted as COVID-19, Model (dashed line): Net benefit if patients were managed according to model.

Note that PSG model was not superior to manage all patients as COVID-19 in lower threshold probabilities.

https://doi.org/10.1371/journal.pone.0246582.g004
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between the two disease groups. Thus, we focused on creating models that predicted GGOs

and consolidations.

In our study, a one-model-for-all-lesions approach resulted in false estimates in the GGO

and consolidation subgroups. Fang et al. reported a single model that could differentiate

COVID-19 and influenza with high AUCs [22]. However, their model was not composed of

radiomic parameters alone but also included parameters such as mediastinal lymphadenopa-

thy and pleural effusion that are rarely reported for COVID-19 [2].

The models that predicted PSG (predominantly GGO) lesions always included the parame-

ters GLCM-Contrast and Range. GLCM-Contrast represents the local gray-level variations

within the lesion, and wrinkled images or images with edges have high values [23]. Range is

the difference between the highest and lowest voxel densities in the lesion. As the values of

Fig 5. An algorithm to predict pneumonic lesions with dedicated logistic regression models. AP Atypical

pneumonia, PSG Positive skewness group, NSG Negative skewness group, Number of,� Falsely predicted patients,

and� Correctly predicted patients. Note the distribution of 20 patients with both types of lesions that black circled in

PSG and white circled in NSG model predictions.

https://doi.org/10.1371/journal.pone.0246582.g005
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these two parameters increased, the possibility of the model classifying the lesion as an AP

lesion also increased. The incorporation of these two parameters allowed the models to predict

round or peripheral AP lesions with good specificity. The Expert Consensus Statement on

COVID-19 reporting describes a typical COVID-19 lesion as a peripheral, bilateral, round

GGO lesion [2]. Our study results for GGO lesions are consistent with the statement, as we

found that Sphericity and Lesion location were prominent parameters. In the training and vali-

dation sets, the model with the highest accuracy contained the Sphericity parameter. On the

other hand, models with standardized parameters showed that the Lesion location parameter

had the highest odds ratio. Coronaviruses other than SARS-CoV-2 and influenza virus lead to

peripheral involvement more often than other AP viruses [2,24–26]. In our study, the propor-

tion of peripheral lesions in the AP group (excluding CP lesions) was 47%, and the models

with the Lesion location parameter misclassified AP lesions slightly more often than the model

with the Sphericity parameter. Although successful on the positive class side (COVID-19), the

low number of true negatives (AP) explains the low accuracy achieved in the location-based

models despite their high AUCs.

In the NSG (predominantly consolidations), neither shape nor location had a significant

effect on the models’ performance. It has been reported that as COVID-19 progresses, round

GGO lesions tend to evolve into patchy GGO lesions and consolidations [26]. Consolidation

has been reported in up to 64% of influenza-related pneumonias [25,27], and lobar and segmen-

tal consolidations are known to develop in pulmonary infections associated with influenza

virus, adenovirus and human coronaviruses other than SARS-CoV-2 [28]. The NSG models

were based on the parameters IDN and MAD. IDN measures local homogeneity, and larger val-

ues indicate a more homogeneous texture on a local scale [23]. The parameter MAD measures

the distribution of voxels, and after the parameters SD, Range and IR, another parameter evalu-

ating the voxel distribution was included in a model. It was found that despite the wider gray

scale distribution of the voxels of the AP-related consolidations, as we also found for the GGOs,

their local homogeneities were also greater than those of COVID-19-related consolidations.

Positively skewed COVID-19 GGO lesions with a volume of less than 3 mL were distinctly

spherical, while one AP GGO lesion had a low sphericity. Thus, while NSG models were not

successful for small volume lesions, Model 3 accurately predicted all lesions. Although spheri-

cal lesions in measles and varicella-zoster virus-related pneumonia have already been

described [28], the shape-related features of small AP lesions should be investigated in future

studies.

In this study, no parameter other than a radiomic feature was included in the models. Addi-

tionally, AP patients with tree-in-bud and pleural effusion were not included in the study;

thus, the discriminability between same-category COVID-19 pneumonia and AP-associated

lesions was investigated. The NSG models, which consisted mostly of consolidations, showed

higher accuracy than the PSG models, which included mainly GGO lesions. It was seen that a

higher net benefit could be obtained through our models according to a theoretical condition

in which all lesions were evaluated as COVID-19 or AP lesions. Moreover, with the algorithm

described in our study, an accuracy of 80% was achieved for both the COVID-19 pneumonia

and AP groups without using any data other than radiomic parameters.

Reproducibility is the main problem of radiomics studies [16]. Although there are suggested

methods to compensate for device and protocol-related differences [29], the images were

obtained from the same device and protocol in our study. Additionally, the voxel densities

were implemented as normalized values, not directly as Hounsfield units. Although some soft-

ware can discriminate healthy and diseased parenchymal areas at the lung scale for processing

all individual lesions as one large composite lesion [20], predicting different lesion types with a

single model led to false negativity in our study. The lesions were manually segmented with
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simple rules, and we showed that there was no significant difference between the segmenta-

tions of the different observers.

This study has some limitations. First, there were a few serologically diagnosed AP patients

in the retrospective screening. Additionally, the mean number of lesions detected per patient

was lower than that among COVID-19 patients. Since it is necessary to work with balanced

groups to demonstrate the effectiveness of the models, the largest possible AP group was cre-

ated, and then the number of COVID-19 patients required was determined according to the

results of a power analysis. Thus, our sample size was relatively small. Second, the time

between the onset of symptoms and the CT scan was slightly longer in the AP group, and the

number of consolidations recorded in this group was also higher. Since each patient’s CT

examination obtained prior to antiviral treatment was included in the study, any follow-up

films were not used. Finally, an effective model for CP lesions could not be developed with the

methods that we used to calculate the radiomics features. In the future, we aim to develop effi-

cient models by using series containing more AP-associated CP lesions and different calcula-

tion methods.

In conclusion, using lesion-dedicated models consisting of only radiomics parameters and

an algorithm that combined the appropriate lesion type for the correct model, we showed that

COVID-19- and AP-associated GGO lesions and consolidations could be predicted with good

accuracy. Our validation studies showed that roundness and peripheral location were the

strongest parameters for associating a GGO lesion with COVID-19, although both were found

ineffective in predicting a lesion in the consolidation stage.
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Methodology: Mutlu Gülbay, Bökebatur Ahmet Raşit Mendi, Hürrem Bodur.
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