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Abstract

Antibiotic resistance is an emerging threat to global health. Current treatment regimens for these types of bacterial infections

are becoming increasingly inadequate. Thus, new innovative technologies are needed to help identify and characterize novel
drugs and drug targets which are critical in order to combat multidrug-resistant bacterial strains. Bacterial efflux systems

have emerged as an attractive target for drug design, as blocking their export function significantly increases the potency of
administered antibiotics. However, in order to develop potent and tolerable efflux pump inhibitors with high efficacy, detailed
structural information is required for both the apo- and substrate-bound forms of these membrane proteins. The emergence of
cryo-electron microscopy (cryo-EM) has greatly advanced the field of membrane protein structural biology. It has significantly
enhanced the ability to solve large multi-protein complexes as well as extract meaningful data from a heterogeneous sample, such
as identification of several assembly states of the bacterial ribosome, from a single data set. This technique can be expanded to
solve the structures of substrate-bound efflux pumps and entire efflux systems from previously unusable membrane protein sample
preparations. Subsequently, cryo-EM combined with other biophysical techniques has the potential to markedly advance the field
of membrane protein structural biology. The ability to discern complete transport machineries, enzymatic signal transduction

pathways, and other membrane-associated complexes will help us fully understand the complexities of the membrane proteome.
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Introduction

The widespread prevalence of multidrug-resistant (MDR) bacteria
is an emerging threat to global health. Data released by the
Centers for Disease Control and Prevention show that in the
United States there are more than 2.8 million new cases of
antibiotic-resistant infections each year' with considerably
more worldwide’. With the continual exposure of antibiotics
given in standard treatment regimens, MDR, extensively
drug-resistant (XDR), and totally drug-resistant (TDR) bacte-
rial strains have emerged®*. These drug-resistant strains are
especially problematic in hospital settings, where immuno-
compromised and other high-risk patients are extremely sus-
ceptible to bacterial infections. This is highlighted by a recent
analysis of lungs harvested for use in transplant procedures;
almost 60% of donor lung tissue had bacterial contamination,
and about 5% of those contained MDR strains’. Whereas these
pathogens currently can be eliminated with a tailored antibiotic
treatment, it is well established that hospital-borne MDR bacteria
such as Acinetobacter baumannii®®, Staphylococcus aureus™"',
and Escherichia coli'"™" can develop resistance mutations
through natural evolution, leading to the continual need to
develop new antibiotic treatments. To help combat these super-
bugs, unique antibiotics and potent inhibitors of critical bacterial
survival systems need to be developed. A common method for
identification of new biocides is to conduct a blind screen for
potential compounds from established chemical libraries and
then test them in in situ bacterial systems'®'’. The binding
capabilities of these compounds to their identified targets are
often verified through docking studies and molecular dynam-
ics simulations based upon previously determined protein
structures'®. Thus, the greater the number of high-resolution
structures available for these modeling studies, the better the
odds of identifying potent inhibitors and antibiotics through
rational drug design, as opposed to random hits from a large
chemical screen. Concurrent with this, the development of
innovative biophysical and biochemical methods to produce
high-quality structural data is critical to help identify and
characterize unique targets for drug development.

Targeting efflux pumps to mitigate antibiotic resistance

Drug-resistant infections are the result, in part, of the alarm-
ing frequency in which bacteria can alter their genomes.
Mutations', as well as mobile genetic elements*’!, are mecha-
nisms that allow bacteria to acquire antibiotic resistance. These
genetic changes often decrease the permeability of the outer
membrane of the cell as well as increase the rate at which anti-
biotics are expelled”?, and the latter is principally regulated
through the function of bacterial efflux systems. These efflux
systems are critical for survival by removing harmful agents
detrimental to the cell”®. Additionally, in several infectious
bacteria such as Mycobacterium tuberculosis, these export-
ers are also designed to transport lipid from the interior of
the cell to the outer membrane for membrane biogenesis™.
Among various types of efflux systems, members of
the resistance—nodulation—cell division (RND) superfamily
are the most important in mediating antibiotic resistance in
Gram-negative pathogens®. The traditional architecture of an
RND-type bacterial efflux system consists of an outer membrane

channel protein (OMP), a periplasmic membrane fusion
protein (MFP), and an inner membrane efflux pump (IMP)
(Figure 1A). The canonical structure of the RND-type IMP
consists of 12 transmembrane helices that span the inner mem-
brane of Gram-negative bacteria and several periplasmic domains

Outer Membrane
Channel Protein
(OMP)

Periplasmic Membrane
Fusion Protein
(MFP)

Periplasm

Inner Membrane
Efflux Pump
(IMP)

Figure 1. General structure of trimeric RND efflux systems.
(A) The components of a tripartite efflux system (adapted from
Protein Data Bank ID 5066) visualized in side view with the inner
membrane pump (IMP, blue), membrane fusion protein (MFP,
green) and outer membrane protein (OMP, purple). Pictured is the
IMP:MFP:OMP subunit ratio of 3:6:3, which is the most common
assembly pattern. The outer membrane (OM) and inner membrane
(IM) are designated by dashed lines. (B) A magnified view of
one subunit of an RND-type inner membrane pump. Periplasmic
subunits are designated DC (yellow), DN (red), PN1 (light blue),
PN2 (purple), PC1 (orange), and PC2 (green). The transmembrane
(TM) and membrane-associated helices are designated blue. RND,
resistance—-nodulation—cell division.
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that occupy about a third of the length of the periplasmic space
(Figure 1B). Its main function is to capture substrates (antibi-
otics such as tetracyclines, macrolides, and aminoglycosides)
from the outer leaflet of the inner membrane or periplasm
(or both) and transport them to the OMP for export, with the
proton motive force the energy provider to facilitate substrate
translocation®?. A subset of these RND-type inner membrane
pumps is also responsible for the transport of lipids to the outer
membrane to promote membrane biosynthesis and stability.
Therefore, the development of compounds that inhibit these
critical transporters represents a novel and potent strategy to

combat MDR, XDR, and TDR bacterial infections.

Technical and technological advances for membrane
structural biology

To date, most of the structural and functional information
obtained regarding the RND transporters has been from X-ray
crystallographic and biochemical studies. Our knowledge of
the three-dimensional (3D) molecular orientation, assembly
states, and transport mechanisms of this transporter superfamily
has greatly advanced since the first published structure of
AcrB, the IMP from the AcrAB-TolC efflux system?’, almost
20 years ago. Since then, the structures of several similar
yet distinct RND IMPs have been elucidated (Table 1). These
data have substantiated the importance of the IMPs and have
provided valuable information on the binding and transport of
their substrates. Solved IMP structures, in combination with
large in silico chemical libraries, allow docking tools such as
AutoDock Vina®, Schrodinger Glide**’, and UCSF Dock®' to
effectively identify and assess binding capabilities of potential
inhibitory compounds. One limitation, however, of using X-ray
crystallography for 3D protein reconstruction is that the method
requires the production of a static crystal lattice, providing
only a singular snapshot of these IMPs, forcing us to piece

together mechanistic details of substrate transport. To help
overcome this, molecular dynamics simulations such as protein
in atomistic details coupled with coarse-grained environment
(PACE) have been employed. This technique was successful in
modeling conformational changes of AcrB (the critical IMP
from E. coli) upon indole transport and may be an effective tool
to model the transport mechanisms of IMP inhibitors®.

Despite these efforts, the difficulty of producing high-quality
crystals suitable for structural determination of membrane
proteins remains a significant challenge. To solve these struc-
tures via crystallography, investigators typically need to start
with a high concentration of mostly pure protein®. Many times,
the concentrations of isolated membrane proteins from
bacterial or eukaryotic expression systems are insufficient to
produce high-quality well-ordered crystals, while solubiliza-
tion of the cell membrane for protein extraction often leads to
impurities that significantly hinder the crystallization process*.
Historically, a detergent-based buffer has been used to facilitate
removal of membrane proteins from their cellular membrane
environment. This is not a trivial step, as both the type and
concentration of detergent need to be experimentally deter-
mined with the overall goal to extract from the membrane a
soluble protein in its functional state. Often, this trial-and-error
method is unsuccessful. Additionally, detergent-based extrac-
tion eliminates the native lipid bilayer that may be required to
maintain the protein in its native conformation*. As an alterna-
tive, lipid bilayer mimetics such as bicelles®, lipid cubic phase®
and nanodiscs derived from native cell membrane nanoparticle
systems (NCMNS)*, and styrene maleic-acid lipid particles
(SMALPs)* are being developed and successfully employed to
help determine protein structures in their native lipid-associated
state. These detergent-free systems may be beneficial for the
continued study of RND transporters not only with X-ray

Table 1. Solved structures of the inner membrane protein component of the RND-type

of bacterial efflux system.

Organism Inner membrane
protein
Escherichia coli AcrB
Pseudomonas aeruginosa  MexB
E. coli CusA
Cupriavidus metallidurans — ZneA
Neisseria gonorrhoeae MtrD
Campylobacter jejuni CmeB
Burkholderia multivorans HpnN
Acinetobacter baumannii  AdeB
Mycobacterium smegmatis MmpL3

Year Protein Data BankID Method
2002  1IWG*” X-ray
2006 2DHH* X-ray
2009 2V50% X-ray
2010 3KO074', 3KSS*', B3KSO*'  X-ray
2013 4KOE*, 4K0J* X-ray
2014  4AMT1% X-ray
2020 6VKS*, BVKT* Cryo-EM
2017 5LQ83*, 5T00* X-ray
2017  BKHN?, 5KHS*® X-ray
2019 60WS* Cryo-EM
2019 60R2%* X-ray
2019  B6AJF* X-ray

Cryo-EM, cryo-electron microscopy; RND, resistance—nodulation—cell division.
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crystallography but also with additional methods such as
cryo-electron microscopy (cryo-EM)*, X-ray free-electron
laser (XFEL)*!, and other biophysical techniques*.

Emergence of cryo-electron microscopy as a
powerful tool to study membrane complexes

X-ray structures essentially portray a protein in a rigid confor-
mation, bound by the energetics and constraints of the crystal
lattice. These constraints can introduce structural artifacts,
particularly for protein-ligand interactions and for the spatial
orientation of multi-protein assemblies™. Owing to these and
other limitations, how and where substrates bind the RND IMPs
and how complete RND transporter systems assemble can be
difficult to structurally observe solely on the basis of X-ray
crystallography. The emergence of single-particle cryo-EM
has provided us with a promising alternative and allows many
of the limitations of X-ray crystallography to be surpassed.
Improved electron detectors and image processors have empow-
ered cryo-EM to develop from a technique that provides
“blob-like” low-resolution structures to the ability to compete
with X-ray crystallography by solving high-resolution struc-
tures of large protein complexes in their native conformation®-*.
In single-particle cryo-EM, images of individual proteins or
protein complexes are collected and processed to generate 3D
reconstructions®. There are at least two major advantages:
(1) The amount of protein required for cryo-EM is substantially
less than that for X-ray crystallography. This eliminates many
of the problems often encountered when trying to produce large
quantities of recombinant protein. (2) Cryo-EM has the ability
to visualize more than one conformational state in a sample.
Since proteins and protein complexes greater than 100 kDa
are well suited for this technique, this makes RND transport-
ers ideal protein targets for this method. This is highlighted by
the seminal work detailing the structural assembly of the E. coli
AcrAB-TolC* and the Pseudomonas aeruginosa MexAB-OprM°’
tripartite transport systems by cryo-EM. Cryo-EM also has the
potential to detect substrates bound at multiple locations during
the transport process, through the capture of intermediate states.
Indeed, we recently used cryo-EM to solve the structure of the
A. baumannii IMP component of the AdeABC efflux transporter,
AdeBY.

The ability to solve protein—antibiotic complexes

Through cryo-EM, we also determined two structures of the
gonococcal MtrD transporter. We were able to elucidate how
this multidrug efflux transporter specifically interacts with
substrates in a more straightforward manner as we did not
need to optimize crystallization conditions suitable for crys-
tallizing MtrD bound with drugs. In Neisseria gonorrhoeae,
the causative agent of the sexually transmitted infection
gonorrhea, the multiple transferable resistance efflux system,
MuCDE, exports a wide variety of diverse antimicrobial
agents from the cell, and its expression is a major contributor to
B-lactam and macrolide resistance®. The inner membrane efflux
transporter, MtrD, is responsible for the recognition and trans-
port of substrates in concert with the periplasmic MFP MtrC
and OMP MtE. Therefore, targeting MtrD is a viable strategy
to increase the potency of antibiotics in order to eliminate

gonococcal infection. Cryo-EM was used to successfully deter-
mine structures of the MtrD efflux transporter, carrying a
mosaic-like sequence, in the presence of bound antibiotics*.
These structures enabled us to identify important residues for
drug recognition, and several of these residues were independ-
ently verified in vivo®, as well as modes of MtrD-drug inter-
actions. The drug molecules were found to bind deeply at the
distal drug-binding site in the periplasmic domain of MtrD
(Figure 2A). Important residues that stabilize antibiotic-MtrD
binding were identified (Figure 2B) and a mechanism of
substrate transport was able to be postulated. It is likely that
antibiotics enter the channel from the periplasmic cleft created
by domains PC1 and PC2, then sequentially bind the proximal
and distal binding sites. These binding sites guide substrate

Periplasm

Inner Membrane

Figure 2. Antibiotic-bound cryo-EM structure of the Neisseria
gonorrhoeae RND-type inner membrane pump, MtrD (adapted
from Protein Data Bank ID 6VKS). (A) o-helices (blue), B-sheets
(wheat), and loops (gray) depict the overall secondary structure of
MtrD. A hydrolyzed, decarboxylated ampicillin molecule (green)
is bound deep within the cavity formed by the orientation of the
periplasmic domains PC1, PC2, PN1, and PN2. The inner membrane—
periplasm lipid boundary is represented by a dashed line. (B) A
magnified view of the ampicillin-binding region. Important amino
acid side chains involved in substrate recognition/stabilization are
shown in orange. Amp, hydrolyzed, decarboxylated ampicillin; cryo-
EM, cryo-electron microscopy; RND, resistance-nodulation—cell
division.
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movement through the channel and the eventual release to the
OMP for export from the cell. Through this cryo-EM structural
approach coupled with genetic studies, we also identified that
the conserved charged amino acids R714 and E823 are criti-
cal for the recognition of macrolides and provide -clinical
non-susceptibility to azithromycin (azithromycin and ceftriaxone
are recommended as the first choice for dual treatment of
gonorrhea®). Interestingly, a global meta-analytical approach
was used to analyze 4,852 clinical isolates. The study found
that mutations at positions 714 and 823 of MtrD in these
isolates led to azithromycin resistance well above the
Clinical and Laboratory Standards Institute (CLSI) azithromycin
non-susceptibility threshold®!, confirming our hypothesis that
amino acid changes at MtrD positions 714 and 823 could lead to
clinically significant levels of azithromycin non-susceptibility
resistance. Because of the high quality of the structural data,
we were also able to detail the proton transfer process within
the proton relay network, which provides the proton motive force
to power up this multidrug efflux transporter. Taken together,
these structural studies allowed the correlation of spontaneous
resistance mutations within MtrD to specific locations within
the protein and can aid in the design of new and more effec-
tive inhibitory compounds to obstruct the principal multidrug
efflux mechanism in N. gonorrhoeae.

Cryo-electron microscopy as a tool to study the membrane
proteome

The purification of membrane proteins to near homogeneity
can be a difficult and laborious process. This is especially chal-
lenging when trying to express eukaryotic membrane proteins
using either current cell culture systems or non-eukaryotic

expression methods. These purifications can lead to dilute,
impure samples. Although low concentration and purity
are not necessarily detrimental for reconstructing small
(<500 kDa) water-soluble protein complexes®, they are often
roadblocks for obtaining high-quality crystals of larger com-
plexes, especially those that associate with the membrane. In
many cases, cryo-EM is able to help overcome these homo-
geneity and purity problems. After data collection and
initial image processing, in silico purification of the particle
set allows separation of particle classes based of the results of
2D and 3D ab initio classifications. This process helps to
separate different views of the target protein from those that
belong to impurities, which allows map building of the protein
of interest. While methods have been developed to build maps
of multiple water-soluble protein complexes from a heterogene-
ous, partially purified sample®%, we are currently developing
an iterative methodology to handle impure, heterogeneous
samples for structural determination of RND transporters and
other membrane-bound complexes by cryo-EM. To test our
strategy, we determined cryo-EM structures of the A. baumannii
70S ribosome™. The intact 70S complex as well as the individ-
ual 30S and 50S subunits were able to be identified in distinct
2D class averages from a single cryogenic sample (Figure 3A).
Using 3D variability analysis, we were able to detect the inter-
particle motions of the 70S ribosome in different tRNA-bound
states (Figure 3B), as well as visualize the ribosome in vari-
ous conformations upon the introduction of ribosomal-specific
substrates, thus allowing an enhanced understanding of the struc-
tural dynamics of ribosomal function from one sample. These
techniques can be effectively extended to analyze membrane
isolates. Indeed, with cryo-EM, it will soon be possible to

Figure 3. Ribosomal structures determined by single particle cryo-EM. (A) Two-dimensional class averages obtained from a single cryo-
EM experiment. Ribosomes were isolated from the Acinetobacter baumannii bacterium and flash-frozen onto a cryogenic grid. Shown are
three separate classes that differentiate the 70S complex (red squares) from the individual 50S (blue circles) and the 30S (yellow hexagons)
subunits. (B) Further computational sorting and analysis revealed three separate states of the intact 70S ribosome: tRNA bound at the P-site
(green spheres), the E-site (red spheres), or empty. cryo-EM, cryo-electron microscopy.
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simultaneously solve structures of several bacterial membrane
proteins to near atomic resolution®’. Non-homogeneous sample
preparations will no longer be restrictive for these membrane
isolates, and significant data can be obtained from a single,
heterogeneous protein sample.

In addition to the generation of high-quality structures of
protein—substrate complexes that are challenging to solve
with X-ray crystallography, cryo-EM has the potential to be
used in a broader scope as a conduit to structural systems
proteomics. Many cellular machineries consist of protein
complexes and enzymatic pathways that span both the inner and
outer membranes of Gram-negative bacteria as well as eukaryo-
tic mitochondria. With the advancements of cryo-EM as well
as the recent development of native mass spectrometry’!, it is
now possible to study these proteins within intact membranes.
It is not unrealistic to foresee how multiple structures of a
complex or enzymatic chain can be solved simultaneously with
the help of these cutting-edge technologies. This will enable
the identification of important protein—protein contacts and
help discern how these proteins assemble into a functional
complex. The end result is the development of an integrated
systems approach to structural biology that will greatly aid
in elucidating the membrane proteome. This, in turn, will
significantly advance our knowledge of how cells develop
multidrug resistance and shed light on new membrane com-
plexes and transport systems as potential targets for the
development of new inhibitors or biocides or both.

Future prospective

The field of structural biology has developed into a power-
ful tool in the fight against drug-resistant bacterial infections.
X-ray crystallography has been the standard for protein struc-
tural determination for decades and the foundation on which
structure-based drug design has been built. With the advance-
ment of additional techniques, such as cryo-EM, cryo-electron
tomography  (cryo-ET)’?, microcrystal electron diffraction
(micro-ED)”, and XFEL’!, the ability to generate structural
data has never been greater. Protein structures in their native
state as well as structures of protein-ligand and protein—protein
complexes are becoming easier to determine. It is also possible
to thoroughly analyze the dynamics of biomacromolecular
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