1duosnuey Joyiny 1duosnuen Joyiny 1duosnuey Joyiny

1duosnuey Joyiny

Author manuscript
J Neuroimaging. Author manuscript; available in PMC 2021 July 01.

-, HHS Public Access
«

Published in final edited form as:
J Neuroimaging. 2020 July ; 30(4): 428-442. doi:10.1111/jon.127109.

MR Intracranial Vessel Wall Imaging: A Systematic Review

Jae W. Song, MD, MS?, Brianna F. Moon, BS2, Morgan P. Burkel, Srikant Kamesh lyer,
PhD?Y, Mark A. Elliott, PhD1, Haochang Shou, PhD3, Steven R. Messe, MD#, Scott E. Kasner,
MD#*5, Laurie A. Loevner, MD1.6, Mitchell D. Schnall, MD, PhD?, John E. Kirsch, PhD?,
Walter R. Witschey, PhD1", Zhaoyang Fan, PhD8"

1Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
2Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA

SDepartment of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania School of
Medicine, USA

4Department of Neurology, Hospital of University of Pennsylvania, Philadelphia, Pennsylvania,
USA

SDepartment of Emergency Medicine, Hospital of University of Pennsylvania, Philadelphia,
Pennsylvania, USA

5Department of Otolaryngology, Hospital of University of Pennsylvania, Philadelphia,
Pennsylvania, USA

“Athinoula A Martinos Center for Biomedical Imaging, Massachusetts General Hospital,
Charlestown, Massachusetts, USA

8Biomedical Imaging Research Institute, Department of Biomedical Sciences, Cedars-Sinai
Medical Center, Los Angeles, California, USA

Abstract

The purpose of this systematic review is to identify trends and extent of variability in intracranial
vessel wall MR imaging (VWI) techniques and protocols. Although variability in selection of
protocol design and pulse sequence type is known, data on what and how protocols vary is
unknown. Three databases were searched to identify publications using intracranial VWI.
Publications were screened by predetermined inclusion/exclusion criteria. Technical development
publications were scored for completeness of reporting using a modified Nature Reporting
Summary Guideline to assess reproducibility. From 2,431 articles, 122 met the inclusion criteria.
Trends over the last 23 years (1995-2018) show increased use of 3 Tesla MR (p<0.001) and 3D
volumetric T1-weighted acquisitions (p<0.001). Most (65%) clinical VWI publications report
achieving a non-interpolated in-plane spatial resolution of <0.55 mm. In the last decade, an
increasing number of technical development (n=20) and 7 Tesla (n=12) publications have been
published, focused on pulse sequence development, improving cerebrospinal fluid suppression,
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scan efficiency, and imaging ex vivo specimen for histologic validation. Mean Reporting Summary
Score for the technical development publications was high (0.87, range: 0.63-1.0) indicating
strong scientific technical reproducibility. Innovative work continues to emerge to address
implementation challenges. Gradual adoption into the research and scientific community was
suggested by a shift in the name in the literature from “high resolution MR” to “vessel wall
imaging,” specifying diagnostic intent. Insight into current practices and identifying the extent of
technical variability in the literature will help direct future clinical and technical efforts to address
needs for implementation.

Keywords

vessel wall MR imaging; intracranial atherosclerotic disease; magnetic resonance imaging;
vasculopathy

Introduction

Intracranial vessel wall MR imaging (VWI1) is a diagnostic imaging technique used to assess
and differentiate intracranial vasculopathies.! Conventional vessel imaging techniques, such
as computed tomography angiography, digital subtraction angiography, and magnetic
resonance angiography, show changes in lumen caliber, which are common morphologic
changes in many intracranial vasculopathies and can be deemed nonspecific. Additional
anatomic information about the vessel wall pathology by VWI can provide specificity to the
working diagnosis and has resulted in an increasing number of publications.2 However, these
publications report a wide variety of technical parameters and protocols, making it
challenging to summarize the findings and compare the diagnostic technique across
publications. Variability exists with the MR scanner (e.g., magnet strength, vendor, coil
hardware), pulse sequence technique (e.g., contrast weighting, spatial coverage), and
protocol (e.g., protocol lengths, use and timing of contrast).

One reason for the variability is the continued optimization of the technique. Increasing
awareness of imaging artifacts and imaging constraints has resulted in a number of
publications focused on further improving scan efficiency and minimizing artifacts.3
However, to facilitate the clinical translation of VWI for diagnostic imaging, consensus
about the optimal methodology and reducing the technical variability would help with
standardization across institutions and streamline multicenter diagnostic accuracy studies.

While it is known that there is variability in the selection of protocol design and pulse
sequence types, data on what and how protocols vary remain unknown. We identify
technical trends in intracranial VWI and examine the extent of technical variability. We also
review the innovative direction of the VWI community by assessing technical development
publications and assess trends in how these technical advances are incorporated into clinical
research. Insight into current practices will help direct future clinical and technical efforts to
address needs for implementation.
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Search Strategy

This systematic review was conducted in accordance with the Preferred Reporting Items for
Systematic Reviews and Meta-Analyses guidelines. PubMed, EMBASE, and Medline were
searched on September 12, 2018. To identify eligible studies, keywords covering vessel wall
imaging, intracranial circulation, and vasculopathy keywords were searched using the
Boolean operators “OR” and “AND” and previously reported in detail (Table 1).2 A manual
review of the citations of each included article was also performed. All foreign language
articles were translated. This literature search was previously used to assess vasculopathy
type and funding trends of intracranial VWI publications.2 For this review, the inclusion
criteria were modified and publications re-screened to assess protocols and technical trends.

Study selection

Two raters independently reviewed all publications for inclusion with discrepancies resolved
by consensus. Inclusion criteria were (a) clinical research or technical development studies;
(b) humans; (c) intracranial arteries with or without vasculopathy; (d) magnetic resonance
imaging; and (e) vessel wall imaging. Studies with insufficient MR parameter information,
single case reports, conference abstracts, and animal studies were excluded.

Data extraction

Data on MR vendor, magnet strength (Tesla, T), head coil, pulse sequence parameters,
protocols, spatial resolution, acquisition plane and coverage, year of publication, study type,
and studied vasculopathy were collected.

Acquired spatial resolution was calculated from the reported matrix size and field of view. If
pulse sequence type (e.g., turbo/fast spin echo (TSE/FSE)) was not reported, the authors
identified sequence type based on imaging parameters. Acquisition coverage was described
as imaging the whole brain, a vessel segment (e.g., aneurysm, vessel stenosis), or the circle
of Willis (e.g., anterior and posterior circulation).

To account for publications that originated from the same investigator/institution,
publications were matched by corresponding author and institution. If more than 1
publication was identified from the same corresponding author/institution, MR vendor/
protocol data were used from only 1 of the group’s most recent publications to avoid
duplicating counts from prolific investigators. Analyses about clinical VWI protocol designs
were performed only on clinical research investigations.

Technical development studies were further scored for completeness of reporting based on
the MR Acquisition Section of the Nature Reporting Summary guidelines for MR studies?;
the guideline was modified to include head coil, acquisition time, spatial resolution, and
echo train length/turbo factor (Table 2). Sixteen criteria were scored as 1 (complete
reporting), 0.5 (partial reporting), or 0 (did not fulfill reporting criteria). Scoring was
performed independently by two raters and discrepancies resolved by consensus. Inter-rater
agreement was calculated for the two raters.
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Statistical Analysis

Results

Search

Categorical variables are expressed in counts and percentages. Continuous variables are
presented as means and standard deviations or medians and inter-quartile ranges. Agreement
was calculated with an unweighted Cohen’s kappa. Logistic and linear regressions were
used to test trends of categorical and continuous variables over the years, respectively. The
Reporting Summary Score (RSS) was calculated by summing the points of the 16 criteria
divided by total possible criteria fulfillment; the RSS ranged from 0 to 1. SPSS v19 (IBM,
Chicago, IL) was used for statistical analysis.

From 2,431 articles, 1,635 were screened based on the inclusion/exclusion criteria (k=0.77,
p<0.001) (Figure 1). Qualitative synthesis was conducted on 122 publications (x=0.95,
p<0.0001).

Hardware Variability

To survey frequency of MRs by field strength and vendors, publications were matched by
corresponding author/institution and vendor (n=104). Since 2008, a significant increase in
the use of 3T for VWI emerged over time (B=5.36, 95% CI 3.34-7.12, p<0.001). By 2018,
no VWI publications used 1.5T. Among publications using 3T field strength, the GE
platform was the most frequently used (n=32), followed by Siemens (n=26), and Philips
(n=23). For 7T, Philips was more commonly used (n=6) followed by Siemens (n=3). Among
the studies using 3T, an 8 channel head coil was most frequently used (n=51) followed by 32
channel (n=8),>12 16 channel (n=5),13-17 64 channel (n=2),18.19 12 channel (n=2),20-21 20
channel (n=2),22:23 custom-designed 36 channel (n=1)24 and 15 channel (n=1).25 Head coil
was not reported in 8 publications.26-33 Two studies reported using a “standard head coil”’34
and “loop coil (4 cm diameter).”35

Clinical Protocol Design Variability

Protocols from clinical research publications (n=93) varied with different combinations of
T1-weighted (T1w), T2-weighted (T2w), and proton density-weighted (PDw) sequences
(Figure 2A). The most common VWI protocol included 3D T1w followed by a combination
of 2D T1w and 2D T2w acquisitions. Analyses by vasculopathy type showed protocol
variability with 3D T1w acquisitions most frequently used to study atherosclerosis and
dissection compared to 2D T1w for vasculitis, aneurysm, and reversible cerebral
vasoconstriction syndrome (Figure 2B-D).

Most publications (86%) used time-of-flight magnetic resonance angiography (TOF-MRA)
as the lumen-based imaging technique. No luminal imaging was reported for 8% of the
publications. Both TOF-MRA and contrast-enhanced MRA (CE-MRA) were used in 3% of
publications, while 1% reported using CE-MRA only.

The majority of the publications (n=67%) reported including postcontrast imaging among
which 34% reported the contrast injection-to-scan time interval. The injection-to-scan time
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ranged from “immediate”3® to “within 20 minutes.”3” Other publications reported durations
of 3 minutes (n=2),38:3% 4 minutes (n=1)17, and 5 minutes (n=16).5.7:14.21,40-51 Ope
publication evaluated only postcontrast without precontrast imaging.14

Pulse Sequence Variability

Figure 3 shows the percentages of 2D versus 3D and T1w, T2w, and PDw pulse sequences
types. A trend was noted over 23 years with increased use of 3D T1w acquisitions compared
to 2D acquisitions (p=2.54, 95% CI 1.29-3.80, p<0.001). The most common pulse sequence
type was TSE/FSE or variable flip angle turbo spin echo (VFA-TSE; common vendor labels
for VFA-TSE are sampling perfection with application optimized contrasts using different
flip angle evolution (SPACE) for Siemens, volume isotropic turbo spin echo acquisition
(VISTA) or volumetric isotropically reconstructed turbo spin-echo acquisition (VIRTA) for
Philips, and CUBE for GE healthcare).

The in-plane spatial resolution varied widely. Among the 82 clinical imaging publications
that used T1w acquisitions on 1.5T or 3T, 46 did not report spatial resolutions and 20
reported an interpolation step. True acquired in-plane resolution was calculated by the
authors. Twenty-three publications had insufficient parameter details and are not included in
this analysis. Most (65%, n=38) publications achieved an in-plane resolution of <0.55mm
with coverage focused on a vessel segment (n=22), circle of Willis (n=3) or whole brain
(n=1) (Figure 4).

Motion and poor quality were cited as reasons for data exclusion in 40% of publications.
Fifty-five articles did not report motion as a reason for exclusion, and it is unclear whether
all exams were considered good quality or this information was not reported. When
reported, a mean of 5% (range: 0-17%) of collected cases were excluded due to motion/poor
quality. This loss of data due to motion degradation further highlights the need for improved
scan efficiency.

Technical Development on 3T

The evolution of VWI has depended on technical innovations primarily focused on scan
efficiency and reducing artifacts (e.g., CSF and blood suppression). Table 3 summarizes the
20 technical development articles at 3T. Study aims include pulse sequence development,
65253 jmproving scan efficiency,>*56 CSF suppression,®1157.58 assessment of reliability,
59-63 and comparisons of 2D versus 3D acquisitions,%46° acquisition planes,% and 3T
versus 7T imaging.22.:67

To assess reporting completeness, a Reporting Summary Score (RSS) was calculated
(x=0.33, p<0.001) for the technical development publications. The mean RSS of the 20
publications was 0.87 (range: 0.63 to 1.0), suggesting strong technical reproducibility.
Criteria that scored low included reporting the k-space sampling method (mean=0.28),
matrix size (mean=0.65), and description of anatomic coverage (mean=0.75).
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Ultra-high field 7T VWI

Table 4 summarizes 12 publications using 7T MR. Four publications imaged ex vivo
specimens®-71 with acquisition times ranging from 1 hour 35 minutes to 11 hours 7
minutes. Publications covered topics of feasibility and sequence development,’2-74
histologic validation,58-71 comparisons of 3T versus 7T22.75 and examining vasculopathies.
76-78 The most commonly studied intracranial vasculopathies were atherosclerosis and
aneurysms.

Clinical Adoption of 3T Technical Developments

Over the last decade, VWI pulse sequence developments have mainly focused on VFA-TSE
at 3T. To reduce artifacts, magnetization preparations for blood and CSF suppression have
been investigated.®11:57.58 The impact of these ongoing improvements to VWI pulse
sequences were trended by online publication dates (Figure 5). Online publication dates
were used to show precision in chronological trends. After the first publication to use VFA-
TSE,’? an increasing number of clinical publications used VFA-TSE from 2013 onward.
Blood suppression magnetization preparation modules were previously used to study carotid
vessel wall MR and the results suggest this technique was more readily incorporated into
intracranial VWI clinical research investigations. A CSF suppression module was first
reported by Wang et al®’ using delay-alternating with nutation for tailored excitation
(DANTE, a blood-suppressing magnetization preparation module). A truly dedicated CSF
suppression module was subsequently published by Fan et al,?8 after which an increasing
number of technical development and clinical imaging publications reported VWI with
different CSF suppression techniques.

Trends in Names for VWI

The name for VWI was classified into 3 categories: “vessel wall imaging or high-resolution
vessel wall imaging,” “high-resolution MR” and “other.” The name “high-resolution MR”
peaked in 2016. A shift was noted in 2017 with more frequent use of the specific term
“vessel wall imaging” (Figure 6), indicating diagnostic intent in the name.

Discussion

Considerable technical variability exists for intracranial vessel wall MR imaging. We
identified changing trends and most common practices based on the literature. VWI is now
primarily performed at 3T with no publications at 1.5T identified in 2018. The selection of
pulse sequence and protocol design remains variable. Literature shows a shift from 2D to 3D
volumetric acquisitions. There is gradual adoption of technical developments for VWI pulse
sequences aimed to reduce blood and CSF flow artifacts. While advancements with technical
optimization and innovative research on 7T MR continue, VWI remains clinically
investigative and is in the assessment phase of the health technology assessment framework.

The American Society of Neuroradiology Vessel Wall Study Group set forth expert
consensus recommendations for techniques to consider. Results show that 3T has become
the magnet strength of choice, likely due to a higher signal-to-noise ratio than that available
from 1.5T, and most studies achieve the recommended 0.5 mm in-plane spatial resolution.
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Results show a 3D T1w sequence to be most commonly used for VWI. However, selection
of the optimal combination of tissue weightings for protocol design may vary by
vasculopathy type and institutional clinical workflows. The role of 7T MR remains
innovative and investigative with studies reporting on feasibility.22.7

Several insights from this study warrant attention. First, lengthy acquisition times are a
barrier to implementation and is evidenced by the high reported rates of data exclusion due
to motion degraded images. This loss of data highlights the need for improved scan
efficiency. Second, the American Society of Neuroradiology Vessel Wall study group
recommends an in-plane resolution of <0.5mm.1 Although, most publications are achieving
this recommended resolution, spatial coverage varied widely. A possible explanation for this
may be based on clinical indications. Assessing vasculitis or ICAD may be more diffuse
with advantages of imaging the whole-brain with 3D imaging. By contrast, 2D acquisitions
and multiple contrast weightings may be optimal to characterize a vessel segment for
stenosis or an aneurysm. Indeed, our results show different protocols are reported for
different intracranial vasculopathies, highlighting an area for future investigations. Third,
wall enhancement signal intensity varies by the contrast injection-to-postcontrast image
duration.8% The wide range of reported injection-to-scan time indicates a need for concerted
efforts towards consistency and a need to identify a defined time interval in protocol design.
Finally, CSF suppression techniques such as utilizing a post readout magnetization flip-
down,38 anti-driven equilibrium module,!! or DANTE preparation®’ are being investigated
for intracranial VWI. These techniques reportedly reduce vessel wall signal-to-noise ratios
leading to underestimations of imaging endpoint metrics, such as vessel wall thickness.?

The impact of technical variability for VWI hinges upon identifying reliable imaging
endpoints/biomarkers for the type of intracranial vasculopathy being assessed. Questions
remain as to which imaging endpoints are the strongest for diagnostic accuracy. To identify
endpoints, meaningful data synthesis by meta-analyses requires reduced data heterogeneity.
For example, a meta-analysis assessing intracranial atherosclerotic plaque using VWI
reported wall enhancement, positive wall remodeling, and plaque surface irregularity to be
significantly associated with ischemic stroke.81 However, the analysis was hampered by data
heterogeneity from patient selection and technique. The development of vessel wall
phantoms shows effort towards technical standardization across sites.82 Furthermore, in
parallel, assessing diagnostic performance with consensus on imaging endpoints is needed to
determine the necessary degree of imaging precision and measurement reliability.
39,59,60,62,63.83 A fyture direction is to assess the diagnostic performance of imaging
endpoints by vasculopathy type. Consensus on which imaging endpoint is critical for
diagnosis, defining the minimum clinically achievable image quality, and showing
measurement reliability and reproducibility are important steps for generalizability.

Clinical adoption is incremental. It is promising to see gradual incorporation of technical
developments into clinical research. In recent years, a shift in the name from “high-
resolution MR” to “vessel wall imaging” emerged suggesting universal recognition of the
technique specifically for vessel wall assessment. “High-resolution” MR is vague and could
reflect spatial or temporal resolution. Thus, the shift to “vessel wall imaging,” conferring
diagnostic intent and specificity, is a step towards clinical adoption.
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A limitation of this systematic review is the available data of MR technical details.
Reporting of MR technical parameters varied widely across clinical journals. This variability
may partly be explained by different journals with varying target audiences. Furthermore, a
plethora of vendor specific labels adds a layer of jargon. Among the technical development
publications, completeness of reporting was high when assessed by a modified version of the
Nature Reporting Guideline suggesting reproducibility.

Conclusion

VW] investigations show active involvement at a medical-scientific interface among
clinicians and MR physicists working to optimize technical performance to study
intracranial vasculopathies. We show data on the extent of variability of intracranial VWI
protocols in the literature. Trends in the literature suggest continued optimizations to address
implementation challenges through technical development and innovative research. Based
on the published literature, collective efforts leading to clinical adoption is on the horizon.

Acknowledgements and Disclosure:

This study was funded by the RSNA Research & Education Foundation, through grant number RSCH1929. The
content is solely the responsibility of the authors and does not necessarily represent the official views of the RSNA
R&E Foundation. This study was also funded by the Institute for Translational Medicine and Therapeutics/Thomas
B. McCabe and Jeannette E. Laws McCabe Fund (JWS) and NIH National Heart, Lung, and Blood Institute
RO1HL137984 (WRW) and RO1HL 147355 (ZF).

References

1. Mandell DM, Mossa-Basha M, Qiao Y, et al. Intracranial vessel wall MRI: principles and expert
consensus recommendations of the American Society of Neuroradiology. AJINR Am J Neuroradiol
2017;38:218-29. [PubMed: 27469212]

2. Song JW, Guiry SC, Shou H, et al. Qualitative assessment and reporting quality of intracranial
vessel wall MR imaging studies: a systematic review. AJINR Am J Neuroradiol 2019;40:2025-32.
[PubMed: 31727743]

3. Lindenholz A, van der Kolk AG, Zwanenburg JJ, et al. The use and pitfalls of intracranial vessel
wall imaging: how we do it. Radiology 2018;286:12-28. [PubMed: 29261469]

4. Nature research reporting summary, magnetic resonance imaging, acquisition. Nature Research
Website. https://www.nature.com/nature-research/editorial-policies/reporting-standards; https://
www.nature.com/documents/nr-reporting-summary-flat.pdf. Published 2019.

5. Wu F, Ma Q, Song H, et al. Differential features of culprit intracranial atherosclerotic lesions: A
whole-brain vessel wall imaging study in patients with acute ischemic stroke. Journal of the
American Heart Association 2018;7.

6. Zhang L, Zhang N, Wu J, et al. High resolution three dimensional intracranial arterial wall imaging
at 3 T using T1 weighted SPACE. Magn Reson Imaging 2015;33:1026-34. [PubMed: 26143482]

7.Wu F, Song H, Ma Q, et al. Hyperintense plaque on intracranial vessel wall magnetic resonance
imaging as a predictor of artery-to-artery embolic infarction. Stroke 2018;49:905-11. [PubMed:
29540606]

8. Zou X, Chung Y, Zhang L, et al. Middle cerebral artery atherosclerotic plaques in recent small
subcortical infarction: a three-dimensional high-resolution MR study. BioMed Res Int
2015;2015:540217. [PubMed: 26539508]

9. Cogswell PM, Siero JCW, Lants SK, et al. Variable impact of CSF flow suppression on quantitative
3.0T intracranial vessel wall measurements: CSF flow suppression in intracranial vessel wall
measurements. J Magn Reson Imaging 2018;48:1120-8. [PubMed: 29603829]

J Neuroimaging. Author manuscript; available in PMC 2021 July 01.


https://www.nature.com/nature-research/editorial-policies/reporting-standards
https://www.nature.com/documents/nr-reporting-summary-flat.pdf
https://www.nature.com/documents/nr-reporting-summary-flat.pdf

1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Song et al.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

Page 9

Matouk CC, Mandell DM, Giinel M, et al. Vessel wall magnetic resonance imaging identifies the
site of rupture in patients with multiple intracranial aneurysms: proof of principle. Neurosurgery
2013;72:492-6. [PubMed: 23151622]

Yang H, Zhang X, Qin Q, et al. Improved cerebrospinal fluid suppression for intracranial vessel
wall MRI. J Magn Reson Imaging 2016;44:665—72. [PubMed: 26950926]

Bae YJ, Choi BS, Jung C, et al. Differentiation of deep subcortical infarction using high-resolution
vessel wall MR imaging of middle cerebral artery. Korean J Radiol 2017;18:964—72. [PubMed:
29089829]

Choi JW, Han M, Hong JM, et al. Feasibility of improved motion-sensitized driven-equilibrium
(iMSDE) prepared 3D T1-weighted imaging in the diagnosis of vertebrobasilar artery dissection. J
Neuroradiol 2018;45:186-91. [PubMed: 29273530]

Jang J, Kim T, Hwang E, et al. Assessment of arterial wall enhancement for differentiation of
parent artery disease from small artery disease: comparison between histogram analysis and visual
analysis on 3-dimensional contrast-enhanced T1-weighted turbo spin echo MR images at 3T.
Korean J Radiol 2017;18:383-91. [PubMed: 28246519]

Edjlali M, Gentric JC, Régent-Rodriguez C, et al. Does aneurysmal wall enhancement on vessel
wall MRI help to distinguish stable from unstable intracranial aneurysms? Stroke 2014;45:3704—6.
[PubMed: 25325912]

Yu JH, Kwak HS, Chung GH, et al. Association of intraplaque hemorrhage and acute infarction in
patients with basilar artery plaque. Stroke 2015;46:2768—72. [PubMed: 26306752]

Ryu CW, Jahng GH, Shin HS. Gadolinium enhancement of atherosclerotic plaque in the middle
cerebral artery: relation to symptoms and degree of stenosis. AINR Am J Neuroradiol
2014;35:2306-10. [PubMed: 25012673]

Yun SY, Heo YJ, Jeong HW, et al. Spontaneous intracranial vertebral artery dissection with acute
ischemic stroke: high-resolution magnetic resonance imaging findings. Neuroradiol J
2018;31:262-9. [PubMed: 29565222]

Jung SC, Kim HS, Choi C-, et al. Spontaneous and unruptured chronic intracranial artery
dissection: high-resolution magnetic resonance imaging findings. Clin Neuroradiol 2018;28:171-
81. [PubMed: 27677627]

Niu PP, Yu 'Y, Zhou HW, et al. Vessel wall differences between middle cerebral artery and basilar
artery plaques on magnetic resonance imaging. Sci Rep 2016;6:38534. [PubMed: 27917937]
Omodaka S, Endo H, Niizuma K, et al. Quantitative assessment of circumferential enhancement
along the wall of cerebral aneurysms using MR imaging. AJNR Am J Neuroradiol 2016;37:1262—
6. [PubMed: 26939634]

Zhu C, Haraldsson H, Tian B, et al. High resolution imaging of the intracranial vessel wall at 3 and
7 T using 3D fast spin echo MRI. MAGMA 2016;29:559-70. [PubMed: 26946509]

Obusez EC, Hui F, Hajj-Ali R, et al. High-resolution MRI vessel wall imaging: spatial and
temporal patterns of reversible cerebral vasoconstriction syndrome and central nervous system
vasculitis. AJINR Am J Neuroradiol 2014;35:1527-32. [PubMed: 24722305]

Chen Z, Liu AF, Chen H, et al. Evaluation of basilar artery atherosclerotic plaque distribution by
3D MR vessel wall imaging. J Magn Reson Imaging 2016;44:1592-9. [PubMed: 27249041]

Sun L, Li Z, Tang W, et al. High resolution magnetic resonance imaging in pathogenesis diagnosis
of single lenticulostriate infarction with nonstenotic middle cerebral artery, a retrospective study.
BMC Neurol 2018;18.

Ahn SH, Lee J, Kim YJ, et al. Isolated MCA disease in patients without significant atherosclerotic
risk factors: a high-resolution magnetic resonance imaging study. Stroke 2015;46:697-703.
[PubMed: 25628303]

Thaler C, Kaufmann-Blhler A, Gansukh T, et al. Neuroradiologic characteristics of primary
angiitis of the central nervous system according to the affected vessel size. Clin Neuroradiol
2019;29:37-44. [PubMed: 28875326]

Li F, Chen QX, Chen ZB, et al. Magnetic resonance imaging of plaque burden in vascular walls of
the middle cerebral artery correlates with cerebral infarction. Curr Neurovasc Res 2016;13:263—
70. [PubMed: 27573442]

J Neuroimaging. Author manuscript; available in PMC 2021 July 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Song et al.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

Page 10

Chen CY, Chen SP, Fuh JL, et al. Vascular wall imaging in reversible cerebral vasoconstriction
syndrome - A 3-T contrast-enhanced MRI study. J Headache Pain 2018;19. [PubMed: 29500688]

Muraoka S, Araki Y, Taoka T, et al. Prediction of intracranial arterial stenosis progression in
patients with moyamoya vasculopathy: contrast-enhanced high-resolution magnetic resonance
vessel wall imaging. World Neurosurg 2018;116:e1114-21. [PubMed: 29864569]

Cheng-Ching E, Jones S, Hui FK, et al. High-resolution MRI vessel wall imaging in varicella
zoster virus vasculopathy. J Neurol Sci 2015;351:168-73. [PubMed: 25732801]

Niizuma K, Shimizu H, Takada S, et al. Middle cerebral artery plaque imaging using 3-Tesla high-
resolution MRI. J Clin Neurosci 2008;15:1137-41. [PubMed: 18703337]

Feng C, Xu Y, Bai X, et al. Basilar artery atherosclerosis and hypertensive small vessel disease in
isolated pontine infarctions: A study based on high-resolution MRI. Eur Neurol 2013;70:16-21.
[PubMed: 23652613]

Mossa-Basha M, Shibata DK, Hallam DK, et al. Added value of vessel wall magnetic resonance
imaging for differentiation of nonocclusive intracranial vasculopathies. Stroke 2017;48:3026-33.
[PubMed: 29030476]

Jiang Y, Zhu C, Peng W, et al. Ex-vivo imaging and plaque type classification of intracranial
atherosclerotic plaque using high resolution MRI. Atherosclerosis 2016;249:10-6. [PubMed:
27062404]

Skarpathiotakis M, Mandell DM, Swartz RH, et al. Intracranial atherosclerotic plaque
enhancement in patients with ischemic stroke. AINR Am J Neuroradiol 2013;34:299-304.
[PubMed: 22859280]

Vakil P, Vranic J, Hurley MC, et al. T1 gadolinium enhancement of intracranial atherosclerotic
plaques associated with symptomatic ischemic presentations. AJINR Am J Neuroradiol
2013;34:2252-8. [PubMed: 23828109]

Huang B, Yang WQ, Liu XT, et al. Basilar artery atherosclerotic plaques distribution in
symptomatic patients: A 3.0 T high-resolution MRI study. Eur J Radiol 2013;82:e199-203.
[PubMed: 23228280]

Yang W, Huang B, Liu X, et al. Reproducibility of high-resolution MRI for the middle cerebral
artery plaque at 3T. Eur J Radiol 2014,;83:49.

Wang M, Yang Y, Zhou F, et al. The contrast enhancement of intracranial arterial wall on high-
resolution MRI and its clinical relevance in patients with moyamoya vasculopathy. Sci Rep
2017;7.

Lou X, Jiang W, Ma L, et al. In vivo high-resolution magnetic resonance imaging in severe
intracranial stenosis. Zhonghua Nei Ke Za Zhi 2008;47:478-81. [PubMed: 19040065]

Lou X, Ma N, Ma L, et al. Contrast-enhanced 3T high-resolution MR imaging in symptomatic
atherosclerotic basilar artery stenosis. AINR Am J Neuroradiol 2013;34:513-7. [PubMed:
22878005]

Harteveld AA, van der Kolk AG, van der Worp HB, et al. Detecting intracranial vessel wall lesions
with 7T-magnetic resonance imaging: patients with posterior circulation ischemia versus healthy
controls. Stroke 2017;48:2601-4. [PubMed: 28701579]

Qiao Y, Anwar Z, Intrapiromkul J, et al. Patterns and implications of intracranial arterial
remodeling in stroke patients. Stroke 2016;47:434-40. [PubMed: 26742795]

Klein IF, Lavallée PC, Touboul PJ, et al. In vivo middle cerebral artery plague imaging by high-
resolution MRI. Neurology 2006;67:327-9. [PubMed: 16864831]

Qiao Y, Zeiler SR, Mirbagheri S, et al. Intracranial plague enhancement in patients with
cerebrovascular events on high-spatial-resolution MR images. Radiology 2014;271:534-42.
[PubMed: 24475850]

Wang Y, Lou X, Li Y, et al. Imaging investigation of intracranial arterial dissecting aneurysms by
using 3 T high-resolution MRI and DSA: From the interventional neuroradiologists’ view. Acta
Neurochir 2014;156:515-25. [PubMed: 24420008]

Jiang W, Yu W, Ma N, et al. High resolution MRI guided endovascular intervention of basilar
artery disease. J Neurolnterv Surg 2011;3:375-8. [PubMed: 21990448]

J Neuroimaging. Author manuscript; available in PMC 2021 July 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Song et al.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

Page 11

van der Kolk AG, Zwanenburg JJM, Brundel M, et al. Distribution and natural course of
intracranial vessel wall lesions in patients with ischemic stroke or TIA at 7.0 tesla MRI. Eur
Radiol 2015;25:1692-700. [PubMed: 25577517]

Kim TH, Choi JW, Roh HG, et al. Atherosclerotic arterial wall change of non-stenotic
intracracranial arteries on high-resolution MRI at 3.0 T: Correlation with cerebrovascular risk
factors and white matter hyperintensity. Clin Neurol Neurosurg 2014;126:1-6. [PubMed:
25190670]

Xu X, Wei Y, Zhang X, et al. Value of higher-resolution MRI in assessing middle cerebral
atherosclerosis and predicting capsular warning syndrome. J Magn Reson Imaging 2016;44:1277—
83. [PubMed: 27080075]

Lou X, Ma N, Shen H, et al. Noninvasive visualization of the basilar artery wall and branch ostia
with high-resolution three-dimensional black-blood sequence at 3 Tesla. J Magn Reson Imaging
2014;39:911-6. [PubMed: 24783241]

Li M, Xu Y, Hou B, et al. High-resolution intracranial vessel wall imaging using 3D CUBE T1
weighted sequence. Eur J Radiol 2016;85:803-7. [PubMed: 26971427]

Lindenholz A, Harteveld AA, Zwanenburg JJ, et al. Comparison of 3T intracranial vessel wall MRI
sequences. AJINR Am J Neuroradiol 2018;39:1112-20. [PubMed: 29674412]

Zhu C, Tian B, Feng L, et al. Accelerated whole brain intracranial vessel wall imaging using black
blood fast spin echo with compressed sensing (CS-SPACE). MAGMA 2018;31:457-67. [PubMed:
29209856]

Yang Q, Deng Z, Bi X, et al. Whole-brain vessel wall MRI: a parameter tune-up solution to
improve the scan efficiency of three-dimensional variable flip-angle turbo spin-echo. J Magn
Reson Imaging 2017;46:751-7. [PubMed: 28106936]

Wang J, Helle M, Zhou Z, Bornert P, Hatsukami TS, Yuan C. Joint blood and cerebrospinal fluid
suppression for intracranial vessel wall MRI. Magn Reson Med 2016;75:831-8. [PubMed:
25772551]

Fan Z, Yang Q, Deng Z, et al. Whole-brain intracranial vessel wall imaging at 3 Tesla using
cerebrospinal fluid-attenuated T1-weighted 3D turbo spin echo. Magn Reson Med 2017;77:1142—
50. [PubMed: 26923198]

Qiao Y, Guallar E, Suri FK, et al. MR imaging measures of intracranial atherosclerosis in a
population-based study. Radiology 2016;280:860-8. [PubMed: 27022858]

Ma N, Lou X, Zhao T, et al. Intraobserver and interobserver variability for measuring the wall area
of the basilar artery at the level of the trigeminal ganglion on high-resolution MR images. AJNR
Am J Neuroradiol 2011;32:E29-32. [PubMed: 20223883]

Yang W, Huang B, Liu X, Liu H, Li P, Zhu W. Reproducibility of high-resolution MRI for the
middle cerebral artery plaque at 3T. Eur J Radiol 2014;83:49.

Zhang X, Zhu C, Peng W, et al. Scan-rescan reproducibility of high resolution magnetic resonance
imaging of atherosclerotic plaque in the middle cerebral artery. PLoS ONE 2015;10.

Zhang N, Zhang F, Deng Z, et al. 3D whole-brain vessel wall cardiovascular magnetic resonance
imaging: a study on the reliability in the quantification of intracranial vessel dimensions. J
Cardiovasc Magn Reson 2018;20:39-z. [PubMed: 29898736]

Choi JW, Han M, Hong JM, et al. Feasibility of improved motion-sensitized driven-equilibrium
(iMSDE) prepared 3D iation of assoT1-weighted imaging in the diagnosis of vertebrobasilar artery
dissection. J Neuroradiol 2018;45:186-91. [PubMed: 29273530]

Qiao Y, Steinman DA, Qin Q, et al. Intracranial arterial wall imaging using three-dimensional high
isotropic resolution black blood MRI at 3.0 Tesla. J Magn Reson Imaging 2011;34:22-30.
[PubMed: 21698704]

Dieleman N, Yang W, van der Kolk AG, et al. Qualitative evaluation of a high-resolution 3D multi-
sequence intracranial vessel wall protocol at 3 Tesla MRI. PloS One 2016;11:0160781. [PubMed:
27532106]

Harteveld AA, van der Kolk AG, van der Worp HB, et al. High-resolution intracranial vessel wall
MRI in an elderly asymptomatic population: comparison of 3T and 7T. Eur Radiol 2017;27:1585-
95. [PubMed: 27387876]

J Neuroimaging. Author manuscript; available in PMC 2021 July 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Song et al.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77

78.

79.

80.

81.

82.

83.

Page 12

Majidi S, Sein J, Watanabe M, et al. Intracranial-derived atherosclerosis assessment: an in vitro
comparison between virtual histology by intravascular ultrasonography, 7T MRI, and
histopathologic findings. AJINR Am J Neuroradiol 2013;34:2259-64. [PubMed: 23811977]

Kleinloog R, Korkmaz E, Zwanenburg JJ, et al. Visualization of the aneurysm wall: a 7.0-Tesla
magnetic resonance imaging study. Neurosurgery 2014;75:614-22. [PubMed: 25255252]

Harteveld AA, Denswil NP, VVan Hecke W, et al. Ex vivo vessel wall thickness measurements of the
human circle of Willis using 7T MRI. Atherosclerosis 2018;273:106-14. [PubMed: 29715587]

Harteveld AA, Denswil NP, Siero JC, et al. Quantitative intracranial atherosclerotic plaque
characterization at 7T MRI: an ex vivo study with histologic validation. AJINR Am J Neuroradiol
2016;37:802-10. [PubMed: 26705320]

Viessmann O, Li L, Benjamin P, et al. T2-weighted intracranial vessel wall imaging at 7 Tesla
using a DANTE-prepared variable flip angle turbo spin echo readout (DANTE-SPACE). Magn
Reson Med 2017;77:655-63. [PubMed: 26890988]

van der Kolk AG, Zwanenburg JJ, Brundel M, et al. Intracranial vessel wall imaging at 7.0-T MRI.
Stroke 2011;42:2478-84. [PubMed: 21757674]

van der Kolk AG, Hendrikse J, Brundel M, et al. Multi-sequence whole-brain intracranial vessel
wall imaging at 7.0 tesla. Eur Radiol 2013;23:2996-3004. [PubMed: 23736375]

Harteveld AA, van der Kolk AG, van der Worp HB, et al. Detecting intracranial vessel wall lesions
with 7T-magnetic resonance imaging: patients with posterior circulation ischemia versus healthy
controls. Stroke 2017;48:2601-4. [PubMed: 28701579]

van der Kolk AG, Zwanenburg JJM, Brundel M, et al. Distribution and natural course of
intracranial vessel wall lesions in patients with ischemic stroke or TIA at 7.0 tesla MRI. Eur
Radiol 2015;25:1692-700. [PubMed: 25577517]

. Blankena R, Kleinloog R, Verweij BH, et al. Thinner regions of intracranial aneurysm wall

correlate with regions of higher wall shear stress: a 7T MRI study. AJINR Am J Neuroradiol
2016;37:1310-7. [PubMed: 26892986]

Harteveld AA, van der Kolk AG, van der Worp HB, et al. Detecting intracranial vessel wall lesions
with 7T-magnetic resonance imaging: patients with posterior circulation ischemia versus healthy
controls. Stroke 2017;48:2601-4. [PubMed: 28701579]

Qiao Y, Steinman DA, Qin Q, et al. Intracranial arterial wall imaging using three-dimensional high
isotropic resolution black blood MRI at 3.0 tesla. J Magn Reson Imaging 2011;34:22-30.
[PubMed: 21698704]

de Havenon A, Muhina HJ, Parker DL, et al. Effect of time elapsed since gadolinium
administration on atherosclerotic plague enhancement in clinical vessel wall MR imaging studies.
AINR Am J Neuroradiol 2019;40:1709-11. [PubMed: 31515211]

Lee HN, Ryu CW, Yun SJ. Vessel-wall magnetic resonance imaging of intracranial atherosclerotic
plaque and ischemic stroke: a systematic review and meta-analysis. Front Neurol 2018;9:1032.
[PubMed: 30559708]

Chueh JY, van der Marel K, Gounis MJ, et al. Development of a high resolution MRI intracranial
atherosclerosis imaging phantom. J Neurointerv Surg 2018;10:143-9. [PubMed: 28280114]
Mossa-Basha M, Watase H, Sun J, et al. Inter-rater and scan-rescan reproducibility of the detection
of intracranial atherosclerosis on contrast-enhanced 3D vessel wall MRI. Br J Radiol
2019;92:20180973. [PubMed: 30789784]

J Neuroimaging. Author manuscript; available in PMC 2021 July 01.



1duosnuepy Joyiny 1duosnuely Joyiny 1duosnuey Joyiny

1duosnuely Joyiny

Song et al.

Page 13

2,431 Articles identified in initial search

1,159 PubMed (1968-Sept 2018)
1,227 Embase (1974-Sept 2018)
45  Medline (1950-Sept 2018)

796 Duplicates Excluded

1,635 Articles for Title/Abstract Screen

240 Articles for Full-text Review
165 Initial Search

1,470 Articles Excluded

75 Manual Citation Search

122 Articles for Qualitative Synthesis

118 Articles Excluded

61- Conference abstracts

18- Extracranial vasculopathy

15- No vessel wall imaging/assessment
9- Insufficient MRI parameter information
4- Case report
4- Simultaneous intracranial and

extracranial carotid MR

3- No imaging
3- Computed Tomography
1- Animal study

Figure 1: Literature search flowchart.

Database searches from PubMed, EMBASE and Medline identified 2,431 publications.
From the initial search, 165 publications were identified for full-text review. A manual
review of the citations of the 165 articles identified 807 citations, among which 75
publications met the inclusion/exclusion criteria. A total of 122 publications underwent

qualitative data extraction.
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Figure 2: Intracranial vessel wall imaging (VWI) clinical protocol designs.
A: Protocols from 93 clinical publications using 1.5- or 3-Tesla varied with different

combinations of T1-weighted (T1w), T2-weighted (T2w), and proton density-weighted
(PDw) sequences. B: For intracranial atherosclerosis, 3D T1w acquisitions were the most
common VWI protocol design. C: For vasculitis, aneurysms, and reversible cerebral
vasoconstriction syndrome (RCVS), 2D T1w acquisitions were the most common protocol
design. D: For arterial dissection, a 3D T1w acquisition protocol design was most common.
Multicontrast weighting with 2D T1w, 2D T2w, and 2D PDw acquisitions was most
commonly used for moyamoya syndrome and disease.

Abbreviation: SPAIR, spectral attenuated inversion recovery.
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Figure 3: Types of pulse sequencesin intracranial vessel wall imaging protocols.
A: Types of T1-weighted (T1w) pulse sequences by 2D and 3D imaging. Other 2D T1w

pulse sequences include: T1w fluid-attenuated inversion recovery with (n=1) and without
(n=2) blood suppressing magnetization preparation, T1w spin echo with (n=1) and without
(n=1) blood suppressing magnetization preparation. Other 3D T1w pulse sequences include:
3D magnetization prepared-rapid gradient echo, phase sensitive inversion recovery enabled
3D inversion recovery turbo field echo, and 3D TSE/FSE with blood suppressing
magnetization preparation.
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B: Types of T2-weighted (T2w) pulse sequences by 2D and 3D imaging. Other 2D T2w
pulse sequences include: T2w spin echo with blood suppressing magnetization preparation
(n=1) and dual echo with (n=2) and without (n=1) blood suppressing magnetization
preparation. C: Types of proton density-weighted (PDw) pulse sequences by on 2D and 3D
imaging. Other 2D PDw pulse sequences include: PDw spin echo (n=1) and dual echo with
(n=2) and without (n=1) blood suppressing magnetization preparation.

Abbreviations: VFA-TSE, variable flip angle turbo spin-echo (vendor labels: SPACE,
CUBE, VISTA, VIRTA); bFFE, balanced fast field echo.
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Figure 4: In-plane spatial resolution and anatomic coveragein intracranial vessel wall imaging.
A: Acquired in-plane spatial resolution by magnet field strength. Publications from which

non-interpolated spatial resolutions could be calculated were included in this analysis. The
distribution of 2D and 3D T1-weighted acquisitions and the calculated in-plane spatial
resolution are shown at 3 and 1.5 Tesla. B: Acquired in-plane spatial resolution by imaged
anatomic coverage. The distribution of publications using T1-weighted acquisitions by
calculated in-plane spatial resolution and imaged anatomic coverage is shown.
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Figure5: Impact of 3-Tesla technical developmentsinto clinical imaging publications.
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A: After the first technical development publication reported the use of VFA-TSE in 2011,
an increasing number of publications using this pulse sequence emerged. This transition
suggests an adoption of this pulse sequence for clinical vessel wall imaging (VWI) research

investigating intracranial vasculopathies. B: Use of blood suppression magnetization

preparation modules in clinical imaging publications for intracranial vasculopathies was first
seen in 2012 with one dedicated technical development publication testing this module. C:
CSF-suppression magnetization preparation was first tested in 2 technical development
publications in 2015. A gradual increase in the number of publications in both technical

development and clinical imaging publications are seen thereafter.

Abbreviations: VFA-TSE, variable flip angle turbo spin echo; T1w, T1-weighted; PDw,

proton density-weighted.
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Changing trends in the name for intracranial vessel wall imaging publications from 1995 to
2018 show a shift in the name in 2016-2017.
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Nature Reporting Summary for Magnetic Resonance Imaging, Acquisition
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Nature Reporting Summary Criteriafor MR Acquisition®

Imaging type Specify: functional, structural, diffusion, perfusion

Field strength Specify in Tesla

Sequence and imaging parameters | Pulse sequence type

Imaging type

Field of view

Matrix size

Slice thickness

Plane or orientation of acquisition

Echo time

Repetition time

Flip angle

was determined

Area of acquisition State whether a whole brain scan was used OR define the area of acquisition, describing how the region

Additional vessel wall MR imaging relevant acquisition parameter details

Acquisition time

In-plane spatial resolution

Echo train length or turbo factor

Head coil
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