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A B S T R A C T   

As a response to the pandemic caused by SARS-Cov-2 virus, on 15 March 2020, the Republic of Serbia introduced 
comprehensive anti-epidemic measures to curb COVID-19. After a slowdown in the epidemic, on 6 May 2020, the 
regulatory authorities decided to relax the implemented measures. However, the epidemiological situation soon 
worsened again. As of 7 February 2021, a total of 406,352 cases of SARSCov-2 infection have been reported in 
Serbia, 4,112 deaths caused by COVID-19. In order to better understand the epidemic dynamics and predict 
possible outcomes, we have developed an adaptive mathematical model SEAIHRDS (S-susceptible, E-exposed, A- 
asymptomatic, I-infected, H-hospitalized, R-recovered, D-dead due to COVID-19 infection, S-susceptible). The 
model can be used to simulate various scenarios of the implemented intervention measures and calculate possible 
epidemic outcomes, including the necessary hospital capacities. Considering promising results regarding the 
development of a vaccine against COVID-19, the model is extended to simulate vaccination among different 
population strata. The findings from various simulation scenarios have shown that, with implementation of strict 
measures of contact reduction, it is possible to control COVID-19 and reduce number of deaths. The findings also 
show that limiting effective contacts within the most susceptible population strata merits a special attention. 
However, the findings also show that the disease has a potential to remain in the population for a long time, 
likely with a seasonal pattern. If a vaccine, with efficacy equal or higher than 65%, becomes available it could 
help to significantly slow down or completely stop circulation of the virus in human population. 

The effects of vaccination depend primarily on: 1. Efficacy of available vaccine(s), 2. Prioritization of the 
population categories for vaccination, and 3. Overall vaccination coverage of the population, assuming that the 
vaccine(s) develop solid immunity in vaccinated individuals. With expected basic reproduction number of 
Ro=2.46 and vaccine efficacy of 68%, an 87% coverage would be sufficient to stop the virus circulation.   

1. Introduction 

On 11 March 2020, the World Health Organization characterised the 
disease caused by the novel SARS-Cov-2 virus as a pandemic (World 
Health Organization (WHO) 2020). The Initial epidemic outbreak in 
China spread outside the Wuhan area, and subsequently on a global 
scale. On 6 March 2020, the first case of the novel coronavirus infection 
was reported in the Republic of Serbia. Taking into consideration the 
escalation of the disease and limited effects of the initially implemented 

measures, the state of emergency was declared throughout the country 
on 15 March 2020. Comprehensive anti-epidemic measures (e.g. lock-
down of entire country) were introduced in the entire country 
(https://covid19.rs 2020). 

Due to the absence of specific pharmaceutical intervention, Serbia, 
like other countries, implemented an anti-epidemic strategy based on 
physical distancing, school and university closures, reduced number of 
workers present in the workplaces, closure of places of worship for 
public religious services, reduced working hours of cafés and 
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restaurants, avoiding mass gatherings, events, sports games, tracing and 
identification of infected people’s contacts, etc. After a slowdown in the 
epidemic, as shown in the relevant officially published data, the regu-
latory authorities decided to relax the introduced measures on 6 May 
2020. However, the epidemiological situation soon worsened again, 
resulting in the reinstatement of some measures, as well as the intro-
duction of new measures (https://covid19.rs 2020). Although the return 
of extensive measures has yielded favourable results, the further 
development of the epidemic is not clear. 

For these reasons, mathematical modeling has a crucial role in un-
derstanding the epidemic and predicting possible outcomes. modeling is 
a particularly useful tool for devising strategies for combating the 
epidemic, capacity planning, and selection of efficient measures, espe-
cially in the absence of specific pharmaceutical treatments (Wangping 
et al., 2020; Kucharski et al., 2020; Keeling and Rohani, 2021). Math-
ematical modeling based on differential equations dates back to the first 
half of 20th century. In 1927, Kermack and McKendrick developed the 
basic model of disease transmission consisting of three compartments: 
susceptible (S), infected (I) and removed (R). The model was based on a 
connected system of nonlinear differential equations as a special case of 
the general epidemiological model (Kermack and McKendrick, 1927; 
Barnes and Fulford, 2021). Subsequent models, became more complex 
and adapted to the needs of research (Keeling and Rohani, 2021). 

Since the outbreak of COVID-19, many published papers have dealt 
with the implementation of mathematical modeling and prediction of 
possible outcomes of COVID-19 epidemics. Most of these research efforts 
have been based on the implementation of the SIR (susceptible-infected- 
removed) model. Many of the other models provide a clear picture of 
dynamics of COVID-19 spreading, including the overloading of the 
relevant health systems. For example, Ferguson et al., developed one of 
the first models for COVID19 simulation, which was, among other 
things, used to plan the health care resources (Imperial College 
COVID-19 Response Team 2020). Wu et al., developed the SEIR model to 
examine the dynamics of SARS-Cov-2 transmission from person to per-
son. This model was also used to calculate the basic reproduction 
number Ro, which we use in this paper as one of the key parameters (Wu 
and Googan, 2020). The classical SIR model assumes that there is ho-
mogenous mixing of infected and susceptible populations and that the 
total population is constant and does not change over time. Moreover, 
according to the classical SIR model, there is a monotonous decline in 
susceptible population towards zero (Vynnycky and Richard, 2010). 
However, such assumptions are not objective in the case of COVID-19 
spreading and they are the basic problem in the modeling of this 
pandemic. In reality, the human population fluctuates constantly 
(2021). In order to account for such fluctuation, and better understand 
the COVID-19 epidemic in the Republic of Serbia, we have employed 
mathematical modeling of the epidemic using the available data on the 
characteristics of the disease, such as incubation period, latent period, 
recovery period, severity of clinical signs, and mortality rate caused by 
COVID-19. 

Unlike the classic SIR model, the SEAIHRDS (S-susceptible, E- 
exposed, A-asymptomatic, I-infected, H-hospitalized, R-recovered, D- 
dead due to COVID-19 infection, S-susceptible) epidemic model, 
developed for this research, simulates the spreading of COVID-19 in an 
open population. Taking into account that the population is constantly 
changing and that various measures are applied for different strata or 
subgroups of the population (such as preschool children, children 
attending primary school, high school students, students, employees, the 
unemployed and retirees), as well as changes in the intensity of applied 
measures, we have proposed the use of a model that takes these cir-
cumstances into account. Based on input disease parameters taken from 
scientific literature and specific data related to Serbia, this model sim-
ulates daily disease occurrence, including the number of hospitalized 
patients and cases which require intensive care. The model also predicts 
the expected number of deaths, as well as hospital capacities necessary 
to accommodate the patients. It provides a possibility to simulate 

different scenarios of disease control and intervention measures. 
Considering the expectations of successful development of the vaccine 
against COVID-19 in the near future, we added an option to model 
vaccination of different strata of the population as a set of disease con-
trol strategies. 

2. Methodology 

This section presents the research methodology and the proposed 
model, which were used to predict the further dynamics of the epidemic 
in Serbia. We also presented the data that were used to model the 
epidemic, a simulated strategy to combat COVID-19, and a sensitivity 
analysis. 

1.1. SEAIHRDS mathematical model 

Classical SEIRDS model divides the population into compartments, i. 
e. groups, and follows the disease dynamics at all times. The population 
is divided into the following compartments: the portion of the popula-
tion susceptible to the infection is denoted by S, those latently infected 
with SARSCov-2 (exposed to) are denoted by E, the infected individuals 
who are able to spread the disease are denoted by I, the ones recovered 
from the infection are denoted by R, and those who died due to disease 
with D. Assuming that individuals mix homogenously, the force of 
infection λ (the rate at which susceptible persons are infected) is related 
to per capita contact rate β. Also, the risk of infection is closely related to 
the number of infectious individuals in the population It. It depends on 
the number of infectious individuals (It) and how frequently they make 
contacts with other persons. In a situation of homogenous mixing among 
the population, the force of infection λ can be express as follows: 

λ(t) = βI(t) (1) 

The change of rates in every compartment per unit time in SEIRDS 
model is presented in the following series of differential equations: 

St+1 = bNt − βStIt − mSt + ωRt (2)  

Et+1 = βStIt − − fE − mEt (3)  

It+1 = fEt − − (r +m)It − − δIt (4)  

Rt+1 = rIt − − (m+ω)Rt (5)  

Dt+1 = δIt (6)  

where ƒ is rate of onset of infectiousness expressed as the reciprocal of 
the latent infection period, r is the rate at which infectious individuals 
are recovered, δ is the rate at which infectious individuals die from 
COVID-19 infection and ω is rate of waning of immunity. The total 
population at any particular interval of time t is: 

Nt = St + E + It + Rt + Dt + bNt− 1 − mSt− 1 (7)  

where parameters b and m are per capita daily birth rate and death rate 
unrelated to COVID-19. 

However, considering that implemented anti-epidemic measures 
against COVID-19 do not have an identical impact on the population’s 
age subgroups and that COVID-19 pathogenesis varies in different age 
subgroups, we propose the use of multi-compartment version of stan-
dard SEIRDS model. The model, named SEAIHRDS, monitors the dy-
namics of following compartments: susceptible individuals (S), latently 
infected with SARSCov-2 (E) (exposed to/presymptomatic), asymp-
tomatic infectious individuals (A), infectious individuals with symp-
toms/clinically ill (I), hospitalized patients (H), recovered individuals 
(R), and those who died due to disease (D). In this model the susceptible 
population was further stratified within the compartment S according to 
age and occupations. Grouping into various strata was done according to 
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the real age structure of the Republic of Serbia population as follows: 
pre-school children (Sps), elementary school children (Ses), high school 
children (Shs), college students (Scs), unemployed population (Sua), 
employed population (Sea), and elderly/retired (Sr) (Table 1). To simu-
late the epidemic progression through different population strata- 
subgroups, we used appropriate, stratum-specific, model parameters 
and factors of effective contact reduction (anti-epidemic intervention 
measures - ρ), which were adapted to the relevant population groups: 
lockdown of the entire country, closures of pre-school, school and col-
lege sessions closures, reduced number of workers allowed in the 
workplaces, work from home, restrictions of mobility of elderly people, 
etc. During the simulation, we monitored the effects of various levels of 
contact reduction, ranging from 20% to 75%, taking into account the 
realistic possibilities of maintaining a minimum work process, func-
tioning of the society and feasibility of such measures. 

Given that intervention measures, applied in response to the emer-
gence of COVID-19, are not the same for all population strata, homo-
geneous mixing can be expected only within same population stratum. 
The rate of effective contacts β, after the application of intervention 
measures, is no longer identical at the level of all strata of the popula-
tion. Effective contacts are limited by the intensity and types of mea-
sures applied and are identical only when it comes to individuals within 
the same population strata. Furthermore, persons in different population 
strata become infected at different rates depending on how frequently 
they interact with other persons in their own subgroup and other sub-
groups. If we assume that force of infection differs between different 
strata of population, the equation for the force of infection would be as 
follows: 

λi(t) =
∑n

j=1
βijIj(t) (8)  

where λi(t) is force of infection in the ith population strata, βij is the rate 
at which susceptible persons in the ith population strata and infectious 
persons in jth population strata come into effective contact per unit of 
time, and Ij(t) is the number of infectious persons in jth population strata. 
Also, in this model the number of recovered and dead is conditioned 
with different ages and genders. 

Now our model will be expressed as follows: 

dSi(t)
dt

= bN(t) −
∑n

j=1
βijIj(t)Si(t) −

∑n

j=1
βijηAj(t)Si(t) + ωRi(t) − mSi(t) (9)  

dEi(t)
dt

=
∑n

j=1
βijIj(t)Si(t) +

∑n

j=1
βijηAj(t)Si(t) − (m+ f )Ei(t) (10)  

dAi(t)
dt

= f αEi(t) − (γ +m)Ai(t) (11)  

dIi(t)
dt

= f (1 − α)Ei(t) −
∑n

j=1
σijIj(t) − (r+m)Ii(t) (12)  

dHi(t)
dt

=
∑n

j=1
σijIj(t) −

∑n

j=1
δijHi(t) − (ε+m)Hi(t) (13)  

dRi(t)
dt

=
∑n

j=1
rijIj(t) +

∑n

j=1
γijAj(t) + εHi(t) − (m+ ω)Ri(t) (14)  

dDi(t)
dt

=
∑n

j=1
δijIi(t) (15)  

where α is the proportion of asymptomatic cases, η accounts for the 
relative infectiousness of asymptomatic carriers (in comparison to 
symptomatic carriers), r is the rate at which infectious individuals whit 
symptoms are recovered, γ is the rate at which asymptomatic infectious 
individuals are recovered, σ is rate at which infectious individuals are 
hospitalized, ε is the rate at which hospitalized patients are recovered, δ 
is the rate at which infected individuals die from COVID-19 infection 
and ω is rate of waning of immunity (Supplementary material). 

Determining the herd immunity threshold and control of COVID-19 by 
vaccination policy 

Considering the undergoing worldwide efforts to develop a vaccine 
against COVID-19 and promising results, we extended the model to 
simulate and analysed the effects of a hypothetical vaccination on the 
epidemic dynamics, and to estimate the extent of coverage of vaccina-
tion which can interrupt the chain of infection. The control of COVID-19 
by vaccination means targeting the entire susceptible population with 
mass vaccination until critical herd immunity achieved. In such situa-
tion there is a “race” between the exponential growth of epidemic and 
mass vaccination. The level of herd immunity threshold (HIT) can be 
calculated by the following formula: 

HIT = 1 − 1/Ro = (Ro − 1)/Ro (16)  

and the critical vaccination coverage required to achieve herd immunity 
can be obtained by multiplying herd immunity threshold with reciprocal 
value of vaccine efficacy, ve: 

Vc =
1
ve

(

1 −
1
Ro

)

(17) 

Most people infected with SARS-CoV-2 develop an immune response 
followed by the development of specific antibodies between 10 and 21 
days after getting infected (European Centre for Disease Prevention and 
Control 2020). Specific IgM and IgG antibodies against SARS-CoV-2 
develop 6 to 15 days after the onset of the disease (Woelfel et al., 
2020; Liu et al., 2020; Long et al., 2021; J Zhao et al., 2020; Okba et al., 
2020). According to some studies, the presence of antibodies has been 
confirmed in less than 40% of the patients within 1 week after the onset 
of the disease, whereas percentage reaches 100% of subjects 15 days 
after the onset of disease (J Zhao et al., 2020). Although duration of the 
immune response against CVOVID 19 is still unknown, comparing with 
other coronaviruses, where immunity wane within 12 to 52 weeks after 
the first symptoms appear (Kellam and Barclay, 2020; Kissler et al., 
2020), while in the case of SARS-CoV-1 infection the presence of IgG 
antibodies was confirmed in 90% and 50% of infected patients, 
respectively, over two and three years, respectively (The World Bank 
2021), we assumed that durable immunity against COVID-19 is possible 
(Kissler et al., 2020; Callow et al., 1990). Immunity to HCoVOC43 and 
HCoV-HKU1 appears to wane appreciably within 1 year (Callow et al., 
1990; Dan et al., 2021), whereas SARS-CoV-1 infection can induce 
longer-lasting immunity (Chan et al., 2013). S. F. Lumley et. in a study 
conducted on 1246 persons recovered from COVID-19 found no symp-
tomatic re-infections over 6 months (Lumley et al., 2021). 

Based on these findings, and fact that SARS-Cov-2 virus is also beta 
coronavirus, we assumed that in the event of the development of a 

Table 1 
Structure of different population strata in the Republic of Serbia (Chan et al., 
2013).  

Stratum Population Percentage of total population 

Younger than 7 years 356,377 5.10% 
Elementary school 550,527 7.88% 
Secondary school 249,455 3.57% 
Students 241,698 3.46% 
Employed 2197,065 31.46% 
Pensioners 1715,152 24.56% 
Others 1672,330 23.95%  
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successful vaccine, immunity against the SARS-Cov-2 virus could last for 
a year, as well as after recovery after a natural infection. In a study 
conducted to determine the dynamics of SARS-Cov-2 transmission in the 
post pandemic period, Kissler et al. applied a similar approach in 
defining the possible length of the immunity period (Kissler et al., 2020). 

For the purpose of modeling a control strategy based on vaccination, 
additional compartment to the model was added denoted with V(t), in 
which there are vaccinated persons who have successfully developed 
protective immunity after vaccination. The vaccination parameter, υ, is 
the daily rate of vaccination of susceptible population and it represents 
the proportion of susceptible population immunized per unite time. The 
critical daily rate of vaccination, ѱc, is ѱc = (b+ω)(Ro − 1), required to 
interrupt the infection (Keeling and Rohani, 2021). The basic repro-
duction number under the vaccination is Rop = (1-p)Ro. The proportion 
of effectively protected persons, p, is conditioned by parameter the 
vaccine efficacy, ve. This parameter represents a proportion of person 
who successfully developed protective immunity after vaccination, 
whereas total number of actively protected individuals in time t is V(t) 
= number of vaccinated x ve (Keeling and Rohani, 2021). In this 
compartment the daily rate of waning of immunity at which immunity of 
vaccinated population fades out is ω, and it is reciprocal to the period of 
lasting of immunity. Vaccinated persons, after losing their immunity, 
become sensitive again and removed to the compartment S. The change 
of rate in this compartment per unit time is as follows: 

dVi(t)
dt

= veψSi(t) − mVi − ωVi. (18) 

The compartment S(t) is slightly modified as follows: 

dSi(t)
dt

= bN(t) −
∑n

j=1
βijIj(t)Si(t) + ωR i (t) − mSi(t) − veψSi(t) + ωVi.

(19) 

The other of compartments of SERIDS model remain unchanged. 

Model parametrisation 

In proposed model, β is per capita effective contact rate at which 
specific persons come into effective contact per unit of time. An effective 
contact is defined as a contact sufficient to cause disease transmission 
(Vynnycky and Richard, 2010; Lumley et al., 2021; Thrusfield, 2007). 
We calculated the parameter β by using the formula: 

β = Ro/NTR (20)  

where Ro is a basic reproduction number of the disease, i.e. the average 
number of newly infected people with COVID-19 (secondary infection 
cases), infected by one infectious individual in a totally susceptible 
population, N is total population, and TR is the average duration of in-
fectious period (Vynnycky and Richard, 2010; Chowell et al., 2009; 
Thrusfield, 2007). The R values of 2.46 and 3.1 are adopted from the 
relevant literature. The Ro values were based on the data obtained 
during the initial phase of the epidemic in Italy (Marco D’Arienzo and 
Coniglio, 2020). Since the implemented measures and disease trans-
mission were simulated through various population strata, we corrected 
the β parameter with a relevant, stratum-specific contact reduction 
factor ρi. In this way, we obtained the per capita contact rate specific for 
each separate stratum based on following formula 

βi=(1 − ρi). (21) 

The values of the ρi factor in different population strata ranged from 
0.25 to 0.75 (effective contact reduction ranged from 25% to 75%). 

Parameters such as daily birth and death rates were calculated based 
on the data published by the Office of Statistics of the Republic of Serbia, 
and data published by the World Bank regarding the life expectancy in 
the Republic of Serbia (Demografski pregled 2017; The World Bank 
2021). The latter study reported that the life expectancy in Serbia was 

79.06 years in 2017 (The World Bank 2021). By using this figure, we 
expressed the daily death rate as a value reciprocal to life expectancy m 
= 0.000036. We calculated the daily per capita birth rate of b = 0.000025 
based on the figure of 9.2 births in the Republic of Serbia per 1000 
people in a year. These estimates were needed to realistically simulate 
fluctuations of the total population. To simplify the calculations, we 
assumed that the general morality rate m is applicable for all population 
strata. 

The infectivity rate, i.e. the rate of transfer from compartment E to I, 
was derived as a value reciprocal to the COVID-19′s average latent 
period. The data on the average duration of latent infection (ƒ− 1) and the 
average period during which an infected person is shading the SARS- 
Cov-2 virus (TR) were adopted from the relevant literature as ƒ− 1 =

3.5 days (Byrne et al., 2020; Shujuan Ma et al., 2020) and TR = 9.3 days, 
respectively (Byrne et al., 2020). Also the data on the percentage of 
hospitalized patients and those whose therapy requires intensive care, 
used for prediction of required hospital capacities, as shown in Table 2, 
were taken from literature (Imperial College COVID-19 Response Team 
2020; Verity et al., 2020; Byrne et al., 2020). 

Parameters such as δ and r are related to the infectious fatality rate 
(IFR) for COVID-19 and average times taken from onset of symptoms to 
death (TD) or recovery (TR). These parameters were calculated using the 
following formulas: 

δ = IFRstratum/TDand (22)  

r = (1 − IFRstratum)/TR (23) 

The IFRs, shown in Table 2, were taken from literature and compared 
with local IFR value which was calculated based on officially registered 
deaths published by the health system of the Republic of Serbia [2]. The 
Calculation of local IFR is presented in section 2.4. Population data, (e.g. 
total population, age structure, and stratification) are presented in Ta-
bles 1 and 2. A summary of all model parameters is given in Table 3. 

Setting disease control scenarios 

Five different scenarios were developed for simulating the COVID-19 
epidemic control based on non-pharmaceutical interventions. SC1 im-
plies a base-case scenario where the epidemic spreads in susceptible 
population without any anti-epidemic measures being implemented. In 
the other scenarios, the extent of contacts was reduced, for each popu-
lation stratum separately, according to objective possibilities and mea-
sures which were implemented during the actual epidemic in the 
Republic of Serbia. Scenarios are presented in Table 4. 

The timing of the simulation of anti-epidemic measures, i.e. the 
reduction of individual contacts corresponds to the actual date when the 
implementation of measures in the real epidemic in Serbia began (March 
15, 2020). Considering that it is not realistic to expect the desired level 
of reduction of physical contacts to be achieved in one day, in each 
scenario, a period of gradual introduction of measures was simulated 
(lag period of 7 days). Since each individual scenario was simulated at 
R0 of 2.46 and 3.10, different contact reduction rates were applied 
accordingly. 

Additional four scenarios of control of COVID-19 were simulated 
based on vaccination policy. We assumed that vaccine efficacy was 50%, 
68%, 80%, and 85%. The initial conditions assumed that all other anti- 
epidemic measures are excluded from the model and replaced with mass 
vaccination. Indicators of epidemic dynamics were monitored, such as: 
CI, hospitalized patients, patient in intensive care units and deaths. 

Model sensitivity analysis and calibration 

Considering the world experience with detection of COVID-19 cases, 
as well as the unreliable data on COVID-19 infections which are 
currently available worldwide, model calibration is very challenging, 
and can result in obtaining inaccurate values for the parameters 
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(Viguerie et al., 2021). This is especially due to the facts that a signifi-
cant percentage of the infected individuals do not exhibit any symptoms. 
The other issue is small percentage of tested population (Viguerie et al., 
2021). 

As part of the national seroepidemiological study, 1006 subjects 
were tested in Serbia from May 11th to June 25th, 2020, for the purpose 

of estimating the extent of COVID-19 infection. According to the pub-
lished data, seroconversion was confirmed in 6,4% of the subjects. On 
the other hand, a total of 13,372 cases of the infection were reported, 
which means that those who were infected constitute around 0.19% of 
the overall population. However, it is our opinion that the data on re-
ported deaths caused by COVID-19 infection is more reliable for use in 
model calibration, e.g. infection fatality rate. Alex et al. reached a 
similar conclusion when simulating COVID-19 by using the SEIRD 
model with heterogeneous diffusion (Viguerie et al., 2021). When we 
compared the data recorded during the beginning of the epidemic in 
Serbia with the results obtained during the simulation, such as the initial 
doubling time, the two data series matched well. However, later, the 
obtained results did not match well the officially registered data on the 
number of infected, especially after the beginning of the implementation 
of measures in Serbia. We attribute these differences to the methodology 

Table 2 
Age structure of the population of the Republic of Serbia and expected percentage of hospitalized patients, patients in intensive care, and death rate caused by COVID- 
19.  

Population age 
groups 

*Population Percentage of total 
population 

**Expected% of hospitalized 
patients (σ) 

***Expected% of patients whose treatment 
requires intensive care 

****Infection fatality rate IFR 
(male/female) 

0–9 458,199 6.56% 0.00% 5.00% 0.04%;0.01% 
10–19 445,481 6.38% 0.04% 5.00% 0.00%;0.02% 
20–29 1028,226 14.73% 1.04% 5.00% 0.00%;0.01% 
30–39 951,615 13.63% 3.43% 5.00% 0.00%;0.05% 
40–49 968,854 13.88% 4.25% 6.30% 0.08%;0.04% 
50–59 963,229 13.79% 8.16% 12.20% 0.33%;0.20% 
60–69 815,244 11.68% 11.80% 27.40% 1.62%;0.62% 
70–79 696,045 9.97% 16.60% 43.20% 6.11%;2.68% 
80- 655,711 9.39% 18.40% 70.90% 16.40%;6.49% 

*[28], **[32], ***[8], ***[33]. 

Table 3 
SEAIHRDS model parameters.  

Input parameters Mark Value Source 

Population Nt0 6982,604 (Demografski 
pregled 2017) 

Initial number of cases It0 1 Assumed 
Initially immune Imm0 0 Assumed 
Basic reproduction number R0 2.46 (3.1) (Marco D’Arienzo 

and Coniglio, 2020) 
Effective contact rate Ce 0.38 Estimated 
Per capita contact rate β 0.0000000378 Estimated 
Daily infection rate (transfer 

E→I) 
Ƒ 0.294118 Estimated 

Recovery rate of symptomatic 
cases 

R 0.107527 Estimated 

Daily rate of waning of 
immunity 

Ω 0.002739726 Estimated 

Per capita birth rate B 0.000025205 (Demografski 
pregled 2017) 

Per capita death rate unrelated 
to COVID-19 

M 0.000036006 Estimated 

Life expectancy in years L 76.09 (The World Bank 
2021) 

Duration of latent infection in 
days 

ƒ− 1 3.5 (Byrne et al., 2020) 

Duration of infectious period in 
days (clinical cases) 

TR 9.3 (Byrne et al., 2020) 

Duration of immunity in days Imm 365.00 Assumed 
Incubation period in days Inc 5.8 (McAloon et al., 

2020) 
Time period (day) Dt 1.00 – 
Average treatment duration in 

hospital 
Days 15,9 (Boëlle et al., 2020) 

Average time spent in intensive 
care 

Days 27 (Boëlle et al., 2020) 

Recovery rate of hospitalized 
cases 

ε  0.062893 Estimated 

Average times taken from onset 
of symptoms to death 

Days 17 (Linton et al., 2020) 

Infectious period for 
asymptomatic cases 

Days 7.25 (Byrne et al., 2020; S 
Ma et al., 2020) 

Recovery rate of asymptomatic 
cases 

γ  0.137931 Estimated 

Expected percentage of 
asymptomatic cases 

– 30% (Johansson et al., 
2021) 

Infectiousness of asymptomatic 
cases in relation to 
symptomatic cases     

Н 75% (Johansson et al., 
2021)  

Table 4 
Description of different simulated non-pharmaceutical intervention scenarios.  

Mark Scenario Scenario description 

SC1 Base-case scenario The population relies on development of herd 
immunity. No anti-epidemic measures are 
implemented. 

SC2 Lock down of the 
entire country 

Pre-schools, schools, and colleges are fully closed 
– reduction in contacts at educational institutions 
by 75%; reduction in contacts in workplaces by 
50%; reduction in contacts of the elderly (older 
than 65) by 50% at R0 = 2.46 or by 65% at R0 =

3.10; physical distancing of the unemployed 
population and in public places – reduction in 
contacts by 45% at R0 = 2.46) or by 55% at R0 =

3.10. 
SC3 Partial lockdown of 

the country - I 
Elementary and pre-school educational 
institutions are open. High schools and colleges 
are closed. Reduction in contacts by 75% at 
colleges and high-schools; reduction in contacts 
in workplaces by 50%; reduction in contacts of 
the elderly (older than 65) by 60% at R0 = 2.46 or 
by 65% at R0 = 3.10; social distancing of the 
unemployed population and in public places – 
reduction in contacts by 40% at R0 = 2.46 or by 
55% at R0 = 3.10. 

SC4 Partial lockdown of 
the country - II 

Colleges are closed – reduction in contacts by 
75%; reduction in contacts in the workplace by 
50%; reduction in contacts of the elderly (older 
than 65) by 60% at R0 = 2.46 or by 65% at R0 =

3.10; social distancing of the unemployed 
population and in public places – reduction in 
contacts by 40% at R0 = 2.46 or by 55% at R0 =

3.10. 
SC5 Partial lockdown of 

the country - III 
Reduction in contacts in the workplace by 50%; 
reduction in contacts of the elderly (older than 
65) by 60% at R0 = 2.46 or by 65% at R0 = 3.10; 
social distancing of the unemployed population 
and in public places – reduction in contacts by 
40% at R0 = 2.46 or by 55% at R0 = 3.10.  
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by which official authorities register cases of infection, and collect the 
data. 

The parameter that determines the number of deaths is the IFR. It is 
the number of persons who die of the COVID-19 among all infected 
individuals regardless of whether the infected show symptoms of the 
disease or not. As with many diseases, IFR is not always equivalent to the 
number of reported deaths caused by COVID-19. This is because a sig-
nificant number of deaths, although caused by COVID-19, will not be 
recognized as deaths caused by COVID-19 (Baud et al., 2020). Also, 
there are many asymptomatic cases of infection which are never 
detected (Manski and Molinari, 2021; WHO 2020; CDC 2020; BMJ 
2020). 

However, according to new findings, the overall estimate of the 
proportion of people who become infected with SARSCoV-2 and remain 
asymptomatic throughout infection was 20% (95% confidence interval) 
with a prediction interval of 3%–67% in 79 studies that addressed this 
question (Buitrago-Garcia et al., 2020; Meyerowitz et al., 2020). Michael 
A. Johansson et al. reported that 30% of individuals with infection never 
develop symptoms and are 75% as infectious as those who do develop 
symptoms, and concluded that persons with infection who never 
develop symptoms may account for approximately 24% of all trans-
mission (Johansson et al., 2021). 

Due the fact that there is a lag in time between when people are 
infected and when they die, patients who die on any given day were 
infected much earlier, and thus the denominator of the mortality rate 
should be the total number of patients infected at the same time as those 
who died (Baud et al., 2020). David et al. estimated mortality rate by 
dividing of deaths on a given date by the total number of persons 
confirmed as COVID 19 cases 14 days before (The World Bank 2021; 
Baud et al., 2020). It is based on the assumption that maximum incu-
bation period is14 days (Marco D’Arienzo and Coniglio, 2020). How-
ever, if we take into account that the number of registered cases of 
COVID-19 infection is usually significantly lower than the actual num-
ber, assuming that the data on deaths are accurate, the real IFR value is 
significantly lower than the calculated value (Viguerie et al., 2021). If 
we apply this to the situation in Serbia, the daily value of IFR on July 
10th, 2020, when the largest number of deaths was registered in one 
day, was 9.33%, considering that 18 deaths were registered on July 10th 
and 14 days earlier 193 confirmed cases of COVID-19 infection. The raw 
values of IFR for the period between March 6th and August 10th were as 
follows: median of IFR = 2.11%, and average value of IFR = 7.15% 
bounded in interval 4.17%− 10.13%. When we compared these values 
with those published by the WHO, CDC and other authors (WHO 2020; 
CDC 2020; CEBM- 2020) we concluded that they differ significantly. 
Considering these findings, the IFR values adopted in the model (for 
various population groups and genders) were primarily taken from the 
literature, with a remark that the selection of IFR values was based on 
preliminary comparison of the overall Serbian IFR with similar IFRs 
found in the literature, taking into account the registered deaths and 
most probable number of infected individuals (Pastor-Barriuso et al., 
2020). To make this possible, the first step was to correct the local raw 
IFR value mentioned above. Based on real data we first calculated the 
population at risk of dying from COVID-19 infection for each individual 
day since the outbreak, ending on August 10th, 2020. The number at risk 
on a given day should correspond to the number of deaths from 
COVID-19 infection, considering the lag period from infection to death. 
For this calculation, we used the data on the number of deaths Dt in 
Serbia registered on daily bases (https://covid19.rs 2020). We hypoth-
esized that the distribution of time periods tn from the moment of 
COVID19 infection to death follows the lognormal distribution defined 
by the parameters m = 26.8 and σ = 12.4 days (CEBM- 2020; Wood, 
2021). 

Based on the formula: 

Ir(t) =
∑n

j=1
I(t− n) *m(t− n)

by reverse, we calculated the population at risk of dying from COVID-19 
infection for each individual day, where mt is the probability that the 
time between infection and death is t days and follows the lognormal 
distribution (m = 26.8, σ = 12.4) (CEBM- 2020; Wood, 2021). After that, 
the daily IFR values were calculated according to the formula IFR(t) = Dt 
/Ir(t) (Ghisolfi et al., 2020). Based on IFR values calculated in this way, 
we made descriptive statistics and obtained the mean value of IFR =
0.70%, bounded in the interval 0.46–0.94% and a median of 0.19%. It is 
important to note here that this value corresponds with the COVID-19 
IFR values found in Eastern European countries and Spain (Pas-
tor-Barriuso et al., 2020; Ghisolfi et al., 2020). Taking these findings into 
account, we decided to take the IFR values specific to certain population 
strata recorded in Spain as the most appropriate for our case (Pas-
tor-Barriuso et al., 2020). The adopted IFR values are listed in Table 3. 

In this section, we used sensitivity analysis to estimate the amount of 
change on outcomes when varying the input values used in the model. 
Sensitivity analysis is one of the methods most frequently used for the 
evaluation of disease spread models (Martınez-López et al., 2012; 
Karsten et al., 2005). A sensitivity analysis is carried out to characterize 
the impact of uncertainty of input parameters on model outputs. 
Sensitivity analysis consists of assessing the impact that changes in input 
parameters have on model outcomes. We evaluate two aspects of the 
model: the global behavior of the model when perturbing a group of key 
parameters together, and the impact of changes when perturbing the key 
parameters used in the model individually. 

The model sensitivity analysis was conducted by changing the most 
sensitive model parameters: R0, β, ƒ-1, r, b, m, γ, ε, η, ω, τ‾d . The values 
of these parameters were increased by 5%, 10% and 25% relative to the 
base scenario and changes in output indicators were observed. 

Finaly, validation of the model was performed by comparing the 
historical data of the real epidemic in Serbia with the data obtained with 
the SEAIHRDS model. For validation purposes, the current epidemic of 
COVID-19 was simulated, along with actual anti-epidemic measures. 
Taking into account the risks described above related to the accuracy of 
historical data from the COVID-19 epidemic in Serbia and significantly 
higher confidence in the accuracy of data related to the number of 
deaths from COVIDA-19 compared to data on the number of infected, for 
the purpose of model validation, only data on the cumulative number of 
deaths were used. The reason for this assumption is that there is still 
uncertainty about the proportion of the infected population that is not 
reported due to a mild form of the disease or the patients are 
asymptomatic. 

In statistical analysis the coefficient of determination, R2, was used to 
check goodness of fit of SEAIHRDS model with COVID-19 data recorded 
during the real epidemic. The regression coefficient compares predicted 
values (y) against actual data (x). To address model uncertainties, bias, 
mean absolute error (MAE), mean square error (MSE), the root mean 
square error (RMSE), maximum deviation (MaxDev) and normalized 
root mean square error (NRMSE) were also estimated (Supplementary 
material). 

Results 

Predicting the number of sick, hospitalized patients and deaths caused by 
COVID-19 in the absence of any intervention measures 

After the simulation, the model predicted that with Ro = 2.46, and 
without the implementation of any anti-epidemic measures, the initial 
doubling time of the infection could be five days. The epidemic wave 
could peak 219 days after the outbreak, and it could yield 99,819 
infected individuals in a day. Afterwards, the infection rate could 
decline for 215 days, eventually reaching the daily incidence of 492 
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newly infected, after which the next epidemic wave could start. The 
second wave could peak 706 days after the onset of epidemic and 
yielding 25,232 infected individuals in a day. The third epidemic wave 
could peak 429 days later, with 13,709 infected individuals in a day. The 
true cumulative incidence in the first year of the epidemic could be 
6229,144 infected people with SARS-Cov-2 virus, while the apparent 
cumulative incidence could be 4360,401 infected. A total of 20,894 
patients could die due to COVID-19 consequences. 

With Ro = 3.1, the following results were obtained: the initial 
doubling time of the infection was five days, true cumulative incidence 
7133,221, apparent cumulative incidence 4993,254, and the total 
deaths of 23,951. Fig. 1, panels a) and b) show daily variations in the 
number of susceptible, latently infected, infected and recovered pa-
tients, at basic reproduction numbers of Ro=2.46 and Ro=3.1, respec-
tively. Panels c) and d) of the same figure show daily fluctuations in 
susceptible, recovered and net reproduction rates Rn for Ro=2.46 and 
Ro=3, respectively. Panels e) and f) of Fig. 1 show daily variations in Rn, 

true and apparent disease incidences at basic reproduction numbers of 
Ro=2.46 and Ro=3.1. The shaded area corresponds to the period when 
the daily number of new COVID-19 infected individuals increasing, and 
therefore all of the following hold: Rn>1, proportion susceptible >1/Ro 
and the proportion of population that is recovered (immune) is below 
the herd immunity threshold. Fig. 2 panels a) and b) show a prediction of 
necessary hospital capacities. Panels c) and d) of Fig. 2 show predicted 
numbers of sick and dead due to COVID-19 at Ro=2.46 and Ro=3.1 and 
age structure of hospitalized patients and deaths. 

Predicting the number of sick, hospitalized patients and deaths caused by 
COVID-19 in the conditions of application of restrictive anti-epidemic 
measures 

When the spread of COVID-19 epidemic through totally susceptible 
population in the Republic of Serbia is simulated, under an assumption 
of only incidental movement among the population, basic reproduction 

Fig. 1. Model prediction of latently infected, asymptomatic infectious individuals, infected, recovered and daily fluctuations of Rn.  
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number of Ro = 2.46, and with lock-down of entire country, a significant 
slowdown of the epidemic was observed. Initial infection doubling time 
was 6 days. The peak of the epidemic wave could occur 702 days after 
the epidemic onset, when there could be 2848 infected in one day. In the 
first year of the epidemic 308,581 people could be infected and 1031 
people could die. 

When the basic reproductive number was increased to R0 = 3.1, and 
for certain segments of the population the contact reduction factor ρi 
increased compared to the values from the scenario with R0 = 2.46 
(reduction of contacts in public places and contacts of persons over 65 
years by 55% and 65%, respectively), the results changed significantly. 
The model predicted that with R0 = 3.10, the initial infection doubling 
time could be 5 days, the peak of epidemic wave could occur after 246 
days and it yield 8110 infected people in one day. In the first year of the 
epidemic 2219,251 people could be infected and 7194 could die. 

Table 5 provides the overview of epidemic indicators obtained from 
the simulations of all five scenarios with Ro = 2.46 and Ro = 3.1. Figs. 3. 
and 4 provide a comparative overview of results of all five simulated 

scenarios. Panels a) and b) of Fig. 3 show the values of cumulative in-
cidences on a daily basis for Ro=2.46 and Ro=3.1, respectively. Panels b) 
and c) of Fig. 3 show the expected total number of hospitalized patients 
and patients in intensive care units (ICU) for Ro=2.46 and Ro=3.1, 
respectively. Fig. 4 provides overview of required hospital capacities e.g. 
hospital bed occupancy and the occupancy of beds in ICU on daily bases 
for Ro=2.46 and Ro=3.1, respectively. The results show that after 
applying various measures to slow down the circulation of SARS-Cov-2, 
the number of newly infected people, hospitalized patients and the oc-
cupancy of hospital capacities are the lowest in the situations where 
rigorous anti-epidemic measures are applied to all population strata 
(Scenario 2 in Table 5 and in Fig. 3 and Fig. 4). Openings of pre-school 
and elementary school’s facilities leads to a visible jump in the number 
of infected and hospitalized in all strata. This finding clearly shows that 
children, although least susceptible to developing more severe clinical 
pictures, are important when transmitting SARS-Cov-2 (Scenario 3 in 
Table 5 and Fig. 3). Opening of the high schools and colleges also leads 
to a visible increase in the number of newly infected and hospitalized 

Fig. 2. Model prediction of required hospital capacities under the assumption of different intervention measures.  

Table 5 
Results of different simulated scenarios (Ro = 2.46 and Ro = 3.1). The data refers to the period of 365 days from epidemic onset.  

Scenario mark SC1  SC2  SC3  SC4  SC5  
Basic reproductive number Ro=2.64 Ro=3.1 Ro=2.64 Ro=3.1 Ro=2.64 Ro=3.1 Ro=2.64 Ro=3.1 Ro=2.64 Ro=3.1 

Cumulative incidence (CI) 6229,144 7133,221 308,581 2219,251 1286,227 2419,079 1375,416 2489,197 1408,262 2514,936 
Apparent CI 4360,401 4993,254 216,007 1553,476 900,359 1693,355 962,791 1742,438 985,783 1760,456 
Overall hospitalized 278,781 320,567 13,970 98,337 56,631 105,930 60,319 108,554 61,685 109,538 
Overall in intensive care 85,633 98,333 4260 29,753 17,085 32,058 18,202 32,855 18,612 33,147 
Overall deaths 20,894 23,951 1031 7194 4113 7754 4383 7948 4483 8018  
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patients, including an increase in the number of deaths (Scenario 5 in 
Table 5 and Fig. 3). Without the application of any intervention mea-
sures, the greatest burden on the health system could be expected 228 
days from the beginning of the epidemic at Ro=2.46 or 168 days at 
Ro=3.1. 

Depending on the Ro value used in simulation, it could be necessary 
to provide 42,351 (61,739) hospital beds and an additional 20,173 
(28,740) in intensive care units. In the case of Scenario 2, there is a 
significant slowdown in the epidemic. According to the predictions ob-
tained by the simulation of Scenario 2, after 713 (259) days at the 
moment of maximum occupancy of hospital capacities, it might be 
necessary to provide 1387 (3940) beds in COVID-19 hospitals and 784 
(2162) beds in intensive care units (Fig. 4). 

COVID-19 simulation and disease control by implementing a hypothetical 
vaccine 

Assuming that the disease is spreading at the basic reproduction 
number of Ro=2.46, the herd immunity threshold (when the disease can 

be expected to slow down and the chain of infection is expected to be 
broken) would be 59.35%, while at Ro=3.1, it would be 67.74%. 
Depending on the efficacy of the potential vaccine, the required vacci-
nation coverage should be 87% (ve =68%), 74.19% (ve =80%), 69.82% 
(ve=85%), 65.94% (ve=90%) and 95.41% (ve=71%), 84.68% (ve=80%), 
79.70% (ve=85%), 75.27% (ve=90%) for Ro=2.46 and Ro=3.1, respec-
tively. The different ways of including vaccination in the SEAIHRDS 
model are detailed in the supplementary material. Fig. 5 shows different 
scenarios of COVID-19 control strategies based solely on vaccination. 

Results of the model sensitivity analysis 

The results of the sensitivity analysis are presented in Tables 6 and 7. 
The tables show increased values of input parameters and the percent-
age of the parameter increase relative to the basic scenario, as well as the 
values of output results obtained after the simulation of the changed 
scenario. 

Fig. 3. Model prediction of expected number of hospitalized patient and patient in intensive care.  
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Results of the model validation 

The model was validated on the most recent historical data (from 
January 1, 2021 to February 1, 2021). As shown in Table 8. all measures 
of the prediction quality of deceased due to COVID-19 are low. The 
average difference between the actual number of people who died of 
COVID-19 and predicted one is only 2.05% and the maximum deviation 
between the predicted and actual number will not exceed 4.82% with a 
probability of 95%. 

Based on Fig. 6 and Table 9, we can conclude that the SEAIHRDS 
model fits historical data quite well. Pearson’s r and coefficient of 
determination (R2) have shown strong the linear relationship between 
real deceased and the number of deaths predicted by SEAIHRDS model. 

More information on validation results are detailed in the supple-
mentary material. 

Conclusions and discussion 

For the needs of this research, we augmented the classic determin-
istic model by adding the compartments of vaccinated, asymptomatic, 
hospitalized and latently infected subjects. By adding birth and death 
rates, we enabled daily fluctuations of the overall simulated population, 
which brought us closer to the real conditions in which the disease is 
transmitted. When we assumed that the recovered lose immunity over 
time, we obtained dynamic oscillations of epidemic waves through 
susceptible population. 

The input values for the parameters used to simulate the COVID-19 
were obtained either from literature review or were calculated on the 
basis of data have taken from the literature and other official sources. 
Whereas some of these inputs are well documented; other input values 
are either not so well documented or based on potential subjective 
opinions (i.e., expert opinion, historical data from epidemic etc.). In any 
case, well documented or not input values have potential to impact re-
sults and, therefore, should be carefully evaluated. The results of 

conducted sensitivity analysis show that the sources of uncertainty are 
different for each output considered and it is necessary to consider 
multiple output variables for a proper assessment of the model. The most 
influential parameter is r than R0 and ƒ− − 1 . 

The model was tested on Serbian COVID-19 statistic data and ob-
tained validation results allow us to conclude that the proposed model 
has good prediction ability and performance. However, although we 
obtained satisfactory results during the validation of the model, worth 
noticing also that some of the model parameters were estimated based 
on available data that might be less precise due to the difficulty of being 
measured. That could be the reason why the values of some parameters 
e.g. recovery rate, contact rate, daily infection rate, that are estimated in 
hospitals may differ from those acquired by this study. For that reasons 
SEAIHRDS model can be used for the long-term rough predictions of the 
epidemic. Obtained long-term predictions reflect the general dynamic of 
the outbreak and are especially useful for the healthcare system workers 
and governmental officials. 

When we simulated different disease control scenarios of the COVID- 
19 epidemic based on non-pharmaceutical intervention measures, sce-
nario number 2 proved to be the most effective approach to the disease 
control, because it implemented the most comprehensive anti-epidemic 
measures (entire country lock down). However, the basic problem of this 
approach is the feasibility and practicability to maintain the measures in 
the long term. 

The model predicted that students, children and younger school-age 
generations have an important role in transmitting COVID-19, especially 
if they come into contact with a more vulnerable population. The model 
showed that, in the case of returning school children of all ages to 
schools, an increase of 10.48% in the estimated deaths and 12.16% of 
the number of infected is possible, when compared to the conditions 
before opening of the schools (Scenarios 2 and 4). However, most dead 
and seriously diseased people are found in the older population. This is 
particularly important when planning intervention measures, especially 
when deciding on which restrictions to be lifted and how (opening 

Fig. 4. Model prediction of required hospital capacities needed to treat patients with COVID-19.  
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Fig. 5. Results of simulated COVID-19 control based solely on vaccination, scenarios 6–9 (Ro=2.46 and Ro=3.1).  

Table 6 
Results of the model sensitivity analysis of individual parameters used in the 
model.  

Model 
parameter 
mark 

Change 
relative to 
the basic 
scenario 

CI Deaths 
(Dth) 

Change in 
CI relative 
to the basic 
scenario 

Change in 
Dth relative 
to the basic 
scenario 

R0 5% 6398,486 21,470 2.72% 2.75% 
R0 10% 6553,978 21,998 5.21% 5.28% 
R0 25% 6982,604 23,782 12.10% 13.82% 
ƒ− 1 5% 6224,056 19,885 0.08% 4.83% 
ƒ− 1 10% 6219,502 18,968 0.15% 9.22% 
ƒ− 1 25% 6208,481 16,666 0.33% 20.24% 
R 5% 6068,299 20,351 2.58% 2.60% 
R 10% 5908,223 19,811 5.15% 5.18% 
R 25% 5425,721 18,182 12.90% 12.98%  

Table 7 
Results of the model sensitivity analysis of group of parameters using a pertur-
bation up to 25%.  

Model 
parameter 
mark 

Change 
relative to 
the basic 
scenario 

CI Deaths 
(Dth) 

Change in 
CI relative 
to the basic 
scenario 

Change in 
Dth relative 
to the basic 
scenario 

R0, ƒ− − 1, r 5% 6242,433 19,948 − 0.21% 4.53% 
R0, ƒ− 1, r 10% 6257,685 19,093 − 0.46% 8.62% 
R0, ƒ− 1, r 25% 6321,339 16,984 − 1.48% 18.71% 
R0, β, ƒ− 1

, r, 
b, m, γ, ε, 
η, ω, τ‾d 

25% 6147,725 13,203 1.31% 36.81%  
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schools, students’ return to faculties etc.). The model predicted that 
COVID-19 has a potential to spread rapidly and linger in population. Due 
to a large number of the infected persons and duration of the disease, 
there are significant needs for hospital capacities, especially in the 
conditions when the disease is suppressed by implementing partly 
relaxed anti-epidemic measures, or in the case of absence of any mea-
sures. According to the prediction, without the application of any 
intervention measures, at the moment of the greatest load, depending of 
actual Ro, the health system should provide 42,351 (Ro=2.46) hospital 
beds for the care of the patients and an additional 20,733 in intensive 
care units. On the other hand, in the case of the application of the 
strictest anti-epidemic measures, the needs decrease to only 1387 beds 
in COVID-19 hospitals and additional 784 beds in intensive care units. In 
the case of continued implementation of current measures, which are 
significantly less intense than the measures applied at the beginning of 
the epidemic, it is necessary to provide 3537 beds in COVID-19 hospitals 
and 1945 beds in intensive care units in the entire country. The model 
also shows that the needs for hospital capacities decline with the ending 
of the first epidemic wave, since daily incidence decreases and during 
the second and third waves it never reaches the initial peaks, but these 
needs still remain substantial. For example, in the case of Scenario 1, at 
the top of the second epidemic wave, it is necessary to provide 11,845 
beds in COVID-19 hospitals and 6378 in intensive care units, which 
makes 27.96% and 30,76% of the required capacities of the first wave of 
the epidemic. 

Based on the cyclical patterns of the epidemic waves and duration of 
simulated epidemics, the model predicted that the disease has a poten-
tial to linger in population and that it will most probably have a seasonal 

pattern. Therefore, potential vaccines can have an enormous potential 
and significance for COVID-19 control. Depending on the efficacy of 
future vaccines, the disease can be stopped and curbed almost solely by 
implementing the measure of vaccination. However, the necessary 
conditions for these predictions and expectations are the efficacy of 
potential vaccines and the ability of a health systems to implement 
vaccination to a satisfactory extent and rapidly, especially with regards 
to the most sensitive categories of population. Depending on the Ro, a 
vaccine that would have an efficacy ≥ 68–71% could stop the pandemic 
and break the chain of infection. However, even vaccines with lower 
efficacy could be useful as they would significantly reduce the number of 
cases and deaths, especially if used in combination with the other dis-
ease control measures. The effects of vaccination depend primarily on: 1. 
Efficacy of available vaccine(s), 2. Prioritization of the population cat-
egories for vaccination, and 3. Overall vaccination coverage of the 
population, assuming that the vaccine(s) develop solid immunity in 
vaccinated individuals. With expected basic reproduction number of 
Ro=2.46 and vaccine efficacy of 68%, an 87%- coverage would be suf-
ficient to stop the virus circulation. The required minimal vaccination 
coverage should be 87% (ve =68%), 74.19% (ve =80%), 69.82% 
(ve=85%) and 95.41% (ve=71%), 84.68% (ve=80%), 79.70% (ve=85%) 
for Ro=2.46 and Ro=3.1, respectively. The minimum daily vaccination 
rate should be 0.47% for vaccines with an efficiency of 85%, and 0.59% 
for vaccines with an efficiency of 68%. 

Based on the obtained results, we can conclude that at this point, 
without the application of specific pharmaceutical products, COVID-19 
suppression is highly dependent on the basic reproduction number (Ro), 
and that more intensive contacts and relaxed measures can result in a 
dramatic spread of the virus. The choice of intervention measures de-
pends on the feasibility of their implementation and their efficacy in 
different social contexts. COVID-19 will likely have to be suppressed in 
this way for a certain period of time. This will most probably last until 
sufficient quantities of a reliable and effective vaccine are available, and 
thereafter until optimal vaccination coverage is achieved. 
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Table 8 
Measures of the prediction quality.   

MAE %Error MSE RMSE Normalized MAE Normalized MSE Max Deviation 

Deceased 73 2.04% 7212.20 84.92 2.05% 0.06% 4.82%  

Fig. 6. The observed number of deceased individuals (blue), number of 
deceased individuals modeled with SEAIHRDS model (orange), and predicted 
number of deceased individuals (green) by model and corrected with real data 
(95% confidence interval between dotted lines). 

Table 9 
Regression statistics.  

Multiple R R Square Adjusted R 
Square 

Standard 
Error 

Observations 

0.981678289 0.963692263 0.963124954 86.24143528 66  
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2009. Math. Stat. Estim. Approaches Epidemiol. https://doi.org/10.1007/978-90- 
481-2313-1. ISBN 978-90-481-2312-4DoiSpringer Dordrecht Heidelberg London 
New York;.  

Thrusfield, Michael, 2007. Veterinary Epidemiology, Third edition. Blackwell Science 
Ltd, a Blackwell Publishing company. 

D’Arienzo, Marco, Coniglio, Angela, 2020a. Assessment of the SARS-CoV-2 basic 
reproduction number, R0, based on the early phase of COVID-19 outbreak in Italy. 
Biosaf. Health 2, 57–59. 

Demografski pregled 2017. Broj: 68/2018, https://www.minrzs.gov.rs/sites/default/ 
files/2019-01/demografski_pregled_68.pdf; [accessed 15 July 2020]. 

The World Bank, 2021. World Developments Indicators https://www.google.com/ 
publicdata/explore?ds=d5bncppjof8f9_&met_y=sp_dyn_le00_in&idim=country: 
SRB:HRV:BIH&hl=en&dl=en#!ctype=l&strail=false&bcs=d&nselm=h&met_y=sp_ 
dyn_le00_in&scale_y=lin&ind_y=false&rdim=world&idim=country: 
SRB&ifdim=world&hl=en_US&dl=en&ind=false; [accessed 25 August 2020].   

Byrne, A.W., et al., 2020. Inferred duration of infectious period of SARS-CoV-2: rapid 
scoping review and analysis of available evidence for asymptomatic and 
symptomatic COVID-19 cases. BMJ Open 10, e039856. https://doi.org/10.1136/ 
bmjopen-2020-039856. ].  

Shujuan Ma et al., Epidemiological parameters of coronavirus disease 2019: a pooled 
analysis of publicly reported individual data of 1155 cases from seven countries. 
medRxiv 2020;preprint doi: https://doi.org/10.1101/2020.03.21.20040329 ]. 

Verity, Robert, et al., 2020. Estimates of the severity of coronavirus disease 2019: a 
model-based analysis. Lancet Infect. Dis. 20, 669–677. https://doi.org/10.1016/ 
S1473-3099(20)30243-7. 

Roberto Pastor-Barriuso et al. Infection fatality risk for SARS-CoV-2: a nationwide 
seroepidemiological study in the noninstitutionalized population of Spain. medRxiv. 
2020; preprint doi: https://doi.org/10.1101/2020.08.06.20169722. 

D’Arienzo, Marco, Coniglio, Angela, 2020b. Assessment of the SARS-CoV-2 basic 
reproduction number, R0, based on the early phase of COVID-19 outbreak in Italy. 
Biosaf. Health 2, 57–59. 

McAloon, C., et al., 2020. Incubation period of COVID-19: a rapid systematic review and 
meta-analysis of observational research. BMJ Open 10, e039652. https://doi.org/ 
10.1136/bmjopen-2020-039652. 
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