Published in final edited form as: *Curr Issues Mol Biol.* 2021: 42: 307–332. doi:10.21775/cimb.042.307.

Genetic Manipulation of Borrelia

Patricia A. Rosa^{1,*}, Mollie W. Jewett²

¹Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 S 4th St. Hamilton, MT 59840 USA

²Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, 6900 Lake Nona Blvd, Orlando, FL 32827 USA

Abstract

Genetic studies in *Borrelia* require special consideration of the highly segmented genome, complex growth requirements and evolutionary distance of spirochetes from other genetically tractable bacteria. Despite these challenges, a robust molecular genetic toolbox has been constructed to investigate the biology and pathogenic potential of these important human pathogens. In this review we summarize the tools and techniques that are currently available for the genetic manipulation of *Borrelia*, including the relapsing fever spirochetes, viewing them in the context of their utility and shortcomings. Our primary objective is to help researchers discern what is feasible and what is not practical when thinking about potential genetic experiments in *Borrelia*. We have summarized published methods and highlighted their critical elements, but we are not providing detailed protocols. Although many advances have been made since *B. burgdorferi* was first transformed over 25 years ago, some standard genetic tools remain elusive for *Borrelia*. We mention these limitations and why they persist, if known. We hope to encourage investigators to explore what might be possible, in addition to optimizing what currently can be achieved, through genetic manipulation of *Borrelia*.

Introduction

Spirochetes in the genus *Borrelia* have been known to cause human disease for well over a century, but in-depth investigations of these pathogenic bacteria awaited many developments, including the advent of molecular genetics. Since transformation of *Borrelia burgdorferi* was first described in 1994 (Samuels et al., 1994b; Samuels, 1995), a molecular genetic approach has been applied with growing success to study the biology and pathogenic potential of these tick-borne spirochetes (Tilly et al., 2000; Cabello et al., 2001; Rosa et al., 2005; Battisti et al., 2008; Fine et al., 2011; Brisson et al., 2012; Raffel et al., 2014; Krishnavajhala et al., 2017; Raffel et al., 2018; Samuels et al., 2018). Both *in vitro* and *in vivo* analyses have thus been conducted to identify and describe the basic functions of many *Borrelia* genes and gene products and their contributions to the relationship of these important pathogens with their tick vectors and mammalian hosts. Direct applications of genetic tools developed for Gram-positive and Gram-negative bacteria have encountered

^{*}Corresponding author: prosa@niaid.nih.gov.

limitations, however, due to the genetic distance and distinct codon usage of *Borrelia* relative to these bacteria (Paster et al., 1984; Fraser et al., 1997). Hence there is still a significant need to develop additional and alternative genetic tools for *Borrelia* in particular, and for spirochetes in general.

Over 30 years ago, Dr. Stanley Falkow, the father of the field of microbial pathogenesis, restated Koch's postulates as they could be applied in microbiology using the tools of molecular genetics (Falkow, 1988). In their simplest form, Falkow's molecular postulates entail the ability to create mutations, restore genes and analyze the phenotypes of an otherwise isogenic set of microbes. However, their interpretation and application continue to evolve as new technologies emerge with which to investigate the complex biology of pathogenic microbes (Falkow, 2004; Casadevall, 2017).

Molecular genetic analyses have provided insight into a wide array of regulatory and structural elements of Borrelia. However, limitations persist for genetic studies of both the Lyme disease (LD) and relapsing fever (RF) Borrelia, including low frequencies and efficiencies of transformation, complex and undefined growth media, and a variable ability to quantify or clone spirochetes as colonies in solid medium. In addition, the generation of isogenic wild-type, mutant and complemented clones present unique challenges in Borrelia due to the segmented and unstable nature of their genomes, and poorly defined, multifactorial barriers to the uptake and incorporation of exogenous DNA. Polar effects following insertional inactivation and allelic exchange can arise as a consequence of the compact chromosome of *B. burgdorferi*, which contains many genes with overlapping transcriptional and termination signals (Fraser et al., 1997; Adams et al., 2017b). The presence of paralogous gene families (Casjens et al., 2000) encoding related products with potentially redundant functions in B. burgdorferi can also complicate the interpretation of mutant phenotypes. Establishing the connection between a mutation and a phenotype through complementation is essential, but it can be particularly challenging. Isolation of nutritional mutants in Borrelia is limited by the complex and undefined nature of the growth media and a relatively long doubling time (>5 hours under optimal conditions) (Barbour, 1984). Despite these potential and real challenges, substantial progress has been made in utilizing genetic approaches to study factors involved in the biology and physiology of Borrelia and pathogenesis of the diseases they cause, as illustrated elsewhere (Radolf and Samuels, 2021).

Clone and strain considerations

Lyme disease spirochetes

Most genetic studies to date have been conducted with *B. burgdorferi* sensu stricto (ss) strains, with only a few studies utilizing *B. afzelii* or *B. garinii* strains (Fingerle et al., 2007; Bontemps-Gallo et al., 2018; Cuellar et al., 2019; Strnad and Rego, 2020). Initially, the complete and annotated genomic sequence, including all plasmids, was only available for *B. burgdorferi* ss type strain B31 (Fraser et al., 1997; Casjens et al., 2000), which made it the obvious choice for genetic studies. However, this limitation no longer exists, and the sequences for the complete genomes, including plasmids, are either available or readily determined for virtually any *Borrelia* isolate (Casjens et al., 2017; Casjens et al., 2018).

Sequencing advances that yield extremely long and accurate reads from single DNA molecules have been key to this development (Margos et al., 2017). The linear chromosome is highly conserved other than a short region at one telomere, whereas the plasmid component of the genome has undergone substantial rearrangement among strains. However, the total gene content of *B. burgdorferi* ss is relatively constant, with few absolute differences among the large number of isolates analyzed to date, despite widespread plasmid reorganization (Casjens et al., 2017). The variability in plasmid structure among strains suggests that the phenotype of a particular mutant (role/contribution of a particular gene) could vary with the context (strain background) in which it is analyzed. Ideally, mutations would be introduced and analyzed in more than a single clone or strain (Gilbert et al., 2007; Lybecker and Samuels, 2007). However, recognizing that experimental outcome may differ between strains and interpreting results accordingly is currently acceptable, given the limitations and challenges presented by genetic studies in *B. burgdorferi*,

Strain choice by individual labs generally reflects what has been used in previous experiments to facilitate comparison with existing data. There are no data indicating that a particular LD spirochete strain is inherently more suitable than another. However, the ease with which spirochetes can be grown and plated, the efficiency at which they can be transformed, and their phenotype in the mouse/tick infectious cycle are relevant traits that vary substantially among *B. burgdorferi* strains and between clones derived from a single strain (Elias et al., 2002). Hence a key consideration at the outset of any experiment is whether characteristics of the clone/strain/genospecies being used, such as those described above, are appropriate for the question(s) being asked.

Although differences in plasmid content (and corresponding differences in plasmid-borne restriction/modification systems) clearly contribute to the efficiency with which different LD strains and clonal derivatives can be transformed (Lawrenz et al., 2002; Kawabata et al., 2004; Rego et al., 2011), additional traits also affect transformability. These include surface properties that permit or restrict resuspension in electroporation solution (Tilly et al., 2000; Tilly et al., 2016). The highly segmented and potentially unstable structure of the B. burgdorferi genome mandates that plasmid content be continuously monitored to assure that mutant and wild-type clones remain isogenic except for directed genetic changes (Elias et al., 2002). Determining the plasmid content of strain B31 derivatives has been greatly facilitated by development of multiplex PCR methods (Bunikis et al., 2011; Norris et al., 2011). Complementation also represents a critical component of genetic experiments in Borrelia. Finally, it is important to remember that a wild-type Borrelia "clone" is neither clonal nor isogenic after passage through a mouse, due to rampant recombination at the vlsE and vmp expression loci of LD and RF spirochetes, respectively (Stoenner et al., 1982; Barbour, 1990; Restrepo and Barbour, 1994; Zhang et al., 1997; Zhang and Norris, 1998; Coutte et al., 2009; Verhey et al., 2019). Spirochetes isolated from a mouse comprise a complex population of genetically and phenotypically distinct bacteria expressing different alleles of these abundant and immunodominant surface proteins. This heterogenous population of spirochetes recovered from a mouse can serve as the source from which to derive a new infectious clone by plating or limiting dilution, but it should not be used directly as the starting material for genetic manipulation.

Transformation protocol

B. burgdorferi was first genetically transformed in 1994 by electroporation, following a previous study in which the effect of buffers and electroporation parameters on *B. burgdorferi* had been tested (Sambri and Lovett, 1990; Samuels et al., 1994a). A detailed protocol for electro-transformation of *B. burgdorferi* was published by Samuels et al. in 1995 (Samuels, 1995) and recently updated (Samuels et al., 2018). Although increasingly sophisticated genetic tools and techniques have become available, the only significant improvement to the original protocol is the addition of large amounts of DNA (10–50 μg) as electroporation substrate (Tilly et al., 2000). More recently, recognizing and avoiding barriers presented by plasmid-borne restriction/modification (R/M) genes (Lawrenz et al., 2002; Kawabata et al., 2004; Jewett et al., 2007a; Chen et al., 2008; Rego et al., 2011; Kasumba et al., 2015), and routinely monitoring total plasmid content of transformants by multiplex PCR (Bunikis et al., 2011; Norris et al., 2011) have permitted genetic manipulation of fully infectious *B. burgdorferi* clones, which is needed for *in vivo* studies.

Transformation frequency and efficiency

Two calculations are typically used to monitor how well a transformation has worked. Each provides important information for developing, optimizing or applying genetic tools to Borrelia and should be used routinely. The first, termed transformation frequency, describes what fraction of the population that survives electroporation (or other transformation method) has stably acquired the introduced DNA. This is determined by quantifying viable bacteria in comparable aliquots of the post-electroporation culture, with and without selection for the transforming DNA. The other standard calculation is transformation efficiency, which is determined by calculating the number of transformants obtained per microgram of DNA used in the electroporation. Transformation frequency and efficiency can be determined only if selection is imposed and viable bacteria are quantified shortly after recovery from electroporation, before the surviving bacteria have undergone substantial cell division. Accurate determinations of transformation frequency and efficiency also require verification that bacteria growing under selection are transformants and not spontaneous resistance mutants. The frequency and efficiency of transformation in *Borrelia* are notoriously poor, which means that a large number of spirochetes and many micrograms of DNA are needed per electroporation in order to recover a transformant. In general, high passage, non-infectious B. burgdorferi spirochetes are more readily transformed (higher frequency and efficiency) than low-passage infectious clones; this is due primarily to the loss of plasmids carrying R/M genes, but other poorly understood factors also contribute.

Preparation of competent cells

The preparation of electrocompetent *Borrelia* involves growing spirochetes to a suitable density, followed by a series of washes to concentrate cells and remove culture medium, especially salts, which cause arcing, cell death, and, of course, decreased transformation efficiency (Samuels et al., 1994a; Samuels, 1995; Samuels et al., 2018). Cell density and growth phase are important criteria to consider for successful electrotransformation of *Borrelia* (Samuels, 1995; Tilly et al., 2000; Hübner et al., 2001). Spirochetes in mid-log phase have the highest transformation frequency, but competent cell preparations from late-

log phase cultures, which have a greater number of cells, yield the most transformants (Samuels, 1995; Tilly et al., 2000). Briefly, cells are harvested sterilely by centrifugation, washed several times, and finally resuspended in cold electroporation solution as an approximately 100-fold concentrated cell slurry. Some *B. burgdorferi* strains aggregate during the washes and cannot be resuspended in electroporation solution, which prevents or severely limits transformation (Tilly et al., 2000); this undesirable trait is intensified when bacteria are grown to higher cell density. The presence of outer surface protein B (OspB) contributes to this clumping phenotype (Tilly et al., 2016); hence most strains selected for use in genetic studies are spontaneous mutants that lack OspB (Elias et al., 2002). Aliquots of competent cells can be transformed by electroporation immediately or they can be stored at –80°C, which decreases transformation efficiency by about 50% (Samuels, 1995; Samuels and Garon, 1997; Samuels et al., 2018).

Electrotransformation

Electroporation conditions for transformation of *B. burgdorferi* are similar to those used for other bacteria (Samuels et al., 1994a; Samuels, 1995; Samuels et al., 2018). A high-voltage electric pulse generates pores in the cellular membranes through which DNA can enter the cytoplasm (Shigekawa and Dower, 1988; Trevors et al., 1992; Nickoloff, 1995). Transmission electron microscopy of electroporated *B. burgdorferi* reveals darkly stained regions on the membrane along the length of the cell that are thought to be disruptions in the surface (Samuels and Garon, 1997). These putative pores are no longer visible after a 30 minute incubation in culture medium.

As mentioned above, a significant improvement to the original protocol was increasing by approximately 1000-fold the amount of DNA used per electroporation, from the nanogram levels typically used with other bacteria, to the microgram quantities needed to routinely transform *B. burgdorferi* (Bono et al., 2000; Tilly et al., 2000; Hübner et al., 2001; Stewart et al., 2001; Eggers et al., 2002; Elias et al., 2002). However, even when successful, relatively few *B. burgdorferi* transformants are typically recovered per electroporation, particularly when working with infectious clones. Aside from R/M systems, which can be eliminated, the basis for the extremely low transformation frequency and efficiency of *B. burgdorferi* remains a mystery. Perhaps very little of the transforming DNA actually gets into the cell, the DNA is rapidly targeted for degradation once it enters, or some other feature of the spirochete limits stable retention of transforming DNA. Whatever the basis, this unfortunate characteristic limits the routine construction of saturated libraries that are needed to apply powerful forward genetic screens in *Borrelia* (Lin et al., 2012; Ellis et al., 2013).

Transformation substrate

In addition to the amount of DNA, its source and form have an effect on transformation efficiency. Allelic exchange transformation was first demonstrated by introducing site-directed mutations that conferred antibiotic resistance, using PCR-generated linear DNA substrates (Samuels et al., 1994a). Short oligonucleotides also can be used as transformation substrates (Samuels and Garon, 1997), although this has limited utility because the site-directed mutation encoded by the oligonucleotide must confer a selectable advantage (currently limited to antibiotic resistance). A circular suicide plasmid was previously shown

to recombine into the genome at the same frequency as linear DNA (Stevenson et al., 1998); hence linearized plasmid DNA or PCR-amplified DNA fragments are typically used when allelic exchange is the desired outcome. This prevents integration of suicide plasmids and generation of merodiploids, which are recovered more frequently when working with *Borrelia* clones lacking loci encoding restriction-modification (R/M) systems. As described in a later section, circular shuttle vectors have been constructed that replicate autonomously in *B. burgdorferi* and *E. coli* (Stewart et al., 2001; Eggers et al., 2002; Stewart et al., 2003; Byram et al., 2004). In addition, linear shuttle vectors have been constructed using replication functions from both native circular and linear plasmids (Chaconas et al., 2001; Beaurepaire and Chaconas, 2007). Transformation of autonomously replicating shuttle vectors into strains lacking R/M systems (see below) is generally more efficient than that of allelic exchange constructs (Elias et al., 2003), presumably because the latter require the additional step of recombination. Remarkably, intact native plasmids up to 36 kbp in length have been successfully transformed into *B. burgdorferi*. (Grimm et al., 2004; Jewett et al., 2007b).

The requirement for microgram quantities of substrate DNA per *Borrelia* transformation can present a problem in itself. Plasmids containing *Borrelia* sequences or *Borrelia* codon-optimized genes can limit *E. coli* growth, and rapid propagation of *E. coli* to high cell densities (as typically done for large scale plasmid preparations) can select for mutations in sequences conferring a growth phenotype. Propagating *E. coli* carrying recombinant plasmids at a lower temperature, such as 30°C, (Takacs et al., 2018), lessens the selection for mutations that confer a growth advantage, and plasmid DNA preparations should be sequenced to confirm the integrity of the insert.

DNA modification

One of the identified barriers to efficient transformation of *B. burgdorferi* is the presence of plasmid-encoded restriction-modification (R/M) systems (Lawrenz et al., 2002; Kawabata et al., 2004). Transformation of a set of closely related B. burgdorferi strain B31 clones with distinct plasmid complements demonstrated that loss of two linear plasmids, lp25 and lp56, correlated with higher transformation efficiency of a shuttle vector (Lawrenz et al., 2002). These two plasmids carry genes (bbe02 and bbq67) that are predicted to encode type IV R/M enzymes. Disruption of bbe02 increased shuttle vector transformation efficiency approximately 40-fold (Kawabata et al., 2004). Subsequent studies confirmed these initial observations and demonstrated that bbe02 and bbg67 of strain B31 encode distinct R/M enzymes that methylate endogenous DNA and restrict foreign DNA lacking sequencespecific modifications (Chen et al., 2008; Rego et al., 2011). The motifs modified by bbe02 and bbq67 were recently inferred by SMRT sequence analysis of genomic DNA from B31 clones that differed in R/M gene content (Casselli et al., 2018). This information should facilitate the design of optimized constructs for more efficient transformation of B31 clones containing intact bbe02 and bbq67 loci. Analysis of genomic sequences in the database indicates that some B. burgdorferi strains contain additional R/M loci that likely recognize and modify novel sequence motifs (Rego et al., 2011). However, a third plasmid-borne R/M locus in strain B31, bbh09 on lp28-3, does not negatively impact shuttle vector

transformation (Lawrenz et al., 2002; Kawabata et al., 2004), suggesting that the presence of R/M loci does not necessarily indicate a barrier to transformation in these strains.

In addition to the bbe02 R/M locus, lp25 also carries genes required for mouse and tick infectivity (Purser and Norris, 2000; Labandeira-Rey and Skare, 2001; Purser et al., 2003; Grimm et al., 2005; Revel et al., 2005; Strother et al., 2005; Gilmore et al., 2014). The linkage of these disparate functions on lp25 is the primary reason that infectious B31 derivatives (containing lp25) are difficult to genetically transform. Transformation efficiency into low-passage infectious strains can be increased by first transforming the DNA into a strain carrying lp56 but lacking lp25 (Jewett et al., 2009). The resulting genomic DNA purified from *Borrelia* is expected to be partially modified and thus presents less of an obstacle when introduced in subsequent transformations into strains containing lp25. The transformation barrier imposed by putative restriction enzymes on lp56 and lp25 applies primarily to shuttle vector transformations rather than gene inactivation by allelic exchange (Elias et al., 2002; Lawrenz et al., 2002; Hübner et al., 2003; Kawabata et al., 2004; Tilly et al., 2004). This likely reflects the requirement for intact circular DNA for autonomous plasmid replication, whereas linearized DNA remains an effective template for allelic exchange. Consequently, trans-complementation on a shuttle vector presents a greater challenge than gene inactivation in infectious clones retaining lp25.

Fortunately, spirochetes do not require *bbe02* or *bbq67* for growth *in vitro* or at any stage of the experimental mouse/tick infectious cycle. Therefore, fully infectious B31 variants have been constructed in which the *bbe02* locus on lp25 has been deleted (Lawrenz et al., 2002; Kawabata et al., 2004; Rego et al., 2011). These modified strains typically lack the (non-essential) lp56 plasmid that carries *bbq67*, thereby further enhancing their suitability for genetic studies. As an added bonus, the presence of an antibiotic resistance cassette in *bbe02* provides selection for lp25 during *in vitro* growth and genetic manipulation. The *bbe02* locus on lp25 has been chosen as an optimal site for insertion of reporter genes, components of inducible systems, and *trans*-complementation (Gilbert et al., 2007; Chan et al., 2015; Kasumba et al., 2015), as targeted insertion at this site guarantees stable retention of introduced DNA at normal copy number throughout the mouse/tick infectious cycle. This is discussed more fully in subsequent Complementation and Reporter gene sections.

Alternative methods for transformation

In addition to electroporation, *B. burgdorferi* has been successfully transformed using a simple protocol that entails resuspension of bacteria and DNA together in a solution of PEG and DMSO (Chung et al., 1989; Elias et al., 2002). However, this method has not been widely used or optimized, and its general utility remains unexplored. Likewise, Eggers and colleagues have demonstrated that the endogenous prophage of *Borrelia* can mediate relatively efficient horizontal gene transfer between co-cultured spirochetes (Eggers et al., 2016), but phage transduction has not been developed as a standard genetic tool for *B. burgdorferi*. A substantial advantage of both protocols over electroporation is that they require fewer bacteria at the outset of an experiment because neither technique results in significant cell death, thereby greatly reducing (~100-fold) the initial culture volume needed per transformation.

Selectable markers

Antibiotic resistance markers are one of the most effective selective tools used to single out rare bacterial variants containing new genetic properties, as well as to select for and screen mutants deficient in the expression of specific genes (Pich et al., 2006). *B. burgdorferi* is exquisitely susceptible to many antibiotics (Hunfeld et al., 2002; Ruzic-Sabljic et al., 2005; Hunfeld and Brade, 2006), but the choice of antibiotic resistance genes as genetic markers is somewhat limited by biosafety considerations: markers encoding resistance to ampicillin and tetracycline are prohibited for use in *B. burgdorferi* because these antibiotics are clinically useful in the treatment of Lyme disease (Steere, 2001; Wormser, 2006). The selectable markers currently available for genetic studies in *B. burgdorferi* and their relevant features are listed in Table 1.

Endogenous genes

To date, only antibiotic resistance has been used to select *Borrelia* transformants (Samuels et al., 1994a; Bono et al., 2000; Sartakova et al., 2000; Elias et al., 2003; Frank et al., 2003). An allele of the endogenous *B. burgdorferi gyrB* gene (Samuels et al., 1994b), which encodes the B subunit of DNA gyrase, was the first selectable marker used in *Borrelia* (Samuels, 2006). However, the *gyrB301* marker, which confers resistance to the antibiotic coumermycin A₁, has limited utility for several reasons, including pleiotropic effects due to relaxed DNA supercoiling (Alverson and Samuels, 2002; Alverson et al., 2003). Nonetheless, the use of *gyrB301* was seminal in the development of transformation and genetic manipulation of *B. burgdorferi* (Samuels et al., 1994a; Rosa et al., 1996).

Hybrid genes

A major breakthrough in genetic analysis of B. burgdorferi was the construction of hybrid genes using native B. burgdorferi promoters fused to foreign open reading frames. This was first used to assay transcription by fusing various borrelial promoters to cat, encoding chloramphenicol acetyl transferase (Sohaskey et al., 1997). Bono et al. (Bono et al., 2000) constructed the first efficient selectable marker for Borrelia by fusing the strong and constitutive flgB and flaB promoters of B. burgdorferi to the aphI gene from Tn903, which confers resistance to the aminoglycoside kanamycin; the resulting cassette confers kanamycin resistance in both E. coli and Borrelia. Several other chimeric genes were constructed in a similar fashion, notably selectable markers conferring resistance to gentamicin with the aacC1 gene from Tn 1696 (Elias et al., 2003) and resistance to spectinomycin and streptomycin with the aadA gene from Shigella flexneri plasmid R100 (Frank et al., 2003). Most recently, this approach was applied to the hph gene of E. coli and the bsd gene of Aspergillis terreus, yielding codon-optimized selectable markers fused to the flgB promoter that confer resistance to hygromycin and blasticidin, respectively (Takacs et al., 2018). Although seemingly straightforward, not all antibiotic resistance cassettes constructed in this fashion function as selectable markers in B. burgdorferi. The cat and pac genes, fused to the flgB promoter, do not confer resistance to chloramphenicol and puromycin, respectively (Elias et al., 2003). Hybrid cassettes conferring resistance to various antibiotics and used as selectable markers in B. burgdorferi are summarized in Table 1.

Selection parameters

Transformants were originally isolated (Samuels et al., 1994a) as sub-surface colonies in semi-solid medium using a modification (Rosa and Hogan, 1992) of the plating protocol described by Kurtti *et al.* (Kurtti et al., 1987). Following electroporation, cells are allowed to recover in liquid culture for approximately 18 hours in the absence of selection before plating in semi-solid medium containing the selective agent and incubating in a humidified microaerobic atmosphere, typically a CO₂ incubator. Stably transformed bacteria form colonies in the semi-solid medium in five days to two weeks and can be isolated by aspirating a plug of agarose containing the colony to liquid medium. A PCR-screen for the presence of the selectable marker can be used to distinguish transformants from spontaneous antibiotic resistant mutants.

A method of selecting for clonal transformants by limiting dilution was developed by Yang et al. (Yang et al., 2004), who were unable to isolate ospA mutants in solid medium. Recovered transformants are diluted into 100 ml of liquid medium with selection and distributed among several 96-well plates. Again, the plates are incubated in a humidified atmosphere containing CO₂ and positive wells are detected by the change in color of the medium from red to yellow, which is due to the production of lactic acid by the bacteria during growth, as detected by phenol red in the medium. Putative transformants can be expanded in a larger volume of medium containing antibiotic for confirmation and subsequent analysis. Regardless of the method used to isolate transformants, there is the possibility that two spirochetes are intertwined and thus a colony in semi-solid medium or a positive well at the endpoint of limiting dilution may not be derived from a single cell; therefore, extensive mixing, vortexing, and/or pipetting is required to separate cells before plating.

Not currently available

Effective counter-selectable markers have not been widely applied to *B. burgdorferi*. The use of the *rpsL* gene for counter-selection in *Borrelia* has been described but not utilized in any genetic studies to date (Drecktrah et al., 2010). The lack of defined culture medium, coupled with an inherently limited metabolic capability, has impaired the development of auxotrophic selection as an *in vitro* genetic tool for *Borrelia*. However, Richards and colleagues recently demonstrated that *B. burgdorferi* mutants lacking genes encoding the initial enzymes in acetate utilization are non-infectious in mice and have an absolute requirement for the addition of mevalonate to culture medium, suggesting a means of auxotrophic selection *in vitro* and potential utility as selectable markers *in vivo* (Richards et al., 2015).

Gene inactivation

A number of reviews have outlined various strategies and provided detailed protocols for gene inactivation in *Borrelia* (Hyde et al., 2011b; Drecktrah and Samuels, 2018; Latham and Blevins, 2018; Radolf and Samuels, 2021; Samuels et al., 2018), and this information will not be reiterated in detail in this review. As described above, targeted gene inactivation by homologous recombination is straightforward but inefficient in *B. burgdorferi*, requiring

microgram quantities of DNA and ranging in frequency from 10^{-5} to 10^{-8} , depending upon the recipient organism (Samuels et al., 1994a; Tilly et al., 2000; Elias et al., 2002). Fortunately, illegitimate recombination (insertion of transforming DNA at a nonhomologous site) does not commonly occur in *B. burgdorferi* and thus does not impede the recovery of intended mutants. Simple gene disruption can be accomplished by integration (through a single crossover event) of a circular suicide vector carrying an appropriate selectable marker and a fragment of homologous DNA. Alternatively, if homologous sequences flank the selectable marker in the inactivation construct, allelic exchange can occur with the targeted gene through a double crossover event. Depending upon the design of the inactivation construct, allelic exchange can result in simple disruption or deletion of the targeted gene. A somewhat more elegant form of allelic exchange entails modifying the coding sequence of the targeted gene rather than deleting it, to assess the resulting mutant phenotype. This approach has been used for site-directed mutagenesis of a number of *B. burgdorferi* genes (Knight et al., 2000; Yang et al., 2003; Earnhart et al., 2010; Earnhart et al., 2011; Drecktrah et al., 2013).

As mentioned previously, a single crossover event can occur with allelic exchange constructs if they are introduced as circular DNA. This can result in the unintentional introduction into *B. burgdorferi* of other antibiotic resistance markers present on the cloning vector. As stated above, some selectable markers commonly used in *E. coli*, such as those conferring resistance to ampicillin and tetracycline, are not permitted for genetic studies in *B. burgdorferi* due to the clinical utility of these antibiotics in treating Lyme disease. At the minimum, cloning vectors carrying these markers should be linearized prior to transformation into *B. burgdorferi*. Preferably, allelic exchange constructs should be cloned into vectors that do not contain such restricted markers or the genes encoding them should be inactivated prior to transformation of *B. burgdorferi*.

Several approaches for engineering large deletions in *Borrelia* have been described. Chaconas and colleagues co-opted an endogenous cellular activity involved in the formation of telomeres in *Borrelia* to engineer staggered deletions from either end of a linear plasmid to targeted internal sites (Beaurepaire and Chaconas, 2005; Bankhead and Chaconas, 2007). Bestor et al. have adapted the Cre-*lox* site-specific recombination system to *Borrelia* and used it to generate large internal deletions on a linear plasmid (Bestor et al., 2010). Finally, a basic understanding of the genes/sequences required for autonomous replication and plasmid incompatibility has been applied to displace entire plasmids in *Borrelia* (Stewart et al., 2001; Eggers et al., 2002; Stewart et al., 2003; Byram et al., 2004; Stewart et al., 2005; Jewett et al., 2007a; Jewett et al., 2007b; Dulebohn et al., 2011; Dulebohn et al., 2013).

Conditional mutants, as described elsewhere in this review, can now be generated with any of several inducible systems available for *Borrelia*, (Blevins et al., 2007; Gilbert et al., 2007; Whetstine et al., 2009; Latham and Blevins, 2018) Conditional mutants provide an important means to assess the contributions of genes that encode essential functions or for which unmodulated expression is lethal. Finally, all forms of gene inactivation or modification in *Borrelia* entail insertion of a selectable marker at a targeted site, with potential polar effects on adjacent sequences. Interrupted or enhanced transcription of upstream or downstream sequences following insertion of a constitutively expressed antibiotic resistance cassette is

not uncommon and should be considered when designing gene inactivation constructs and interpreting experimental outcome. Promoter-less resistance cassettes have been used successfully within constitutive operons of *B. burgdorferi* to target individual genes without impacting downstream genes (Motaleb et al., 2011; Showman et al., 2016).

Complementation

Complementation plays a crucial role in genetic studies of *B. burgdorferi* due to the extremely low frequency with which targeted gene inactivation occurs and the inherent instability of the segmented genome, as described above. Although measures can be taken to ensure that wild-type and derivative clones contain the same plasmids (Purser and Norris, 2000; Labandeira-Rey and Skare, 2001; Eggers et al., 2002; Elias et al., 2002; Parveen et al., 2006; Bunikis et al., 2011; Norris et al., 2011), screening for more subtle genomic alterations elsewhere in the genome is not routinely feasible. To control for unforeseen or unidentified second site mutations, or polar effects on flanking sequences, the goal of complementation is to leave the original mutation unaltered, but to re-introduce a wild-type copy of the targeted gene in *trans* on an autonomously replicating shuttle vector or elsewhere in the genome, or in *cis* by allelic replacement. As described below, various technical considerations, such as copy number, DNA supercoiling, genomic organization and placement of the antibiotic cassette, should be considered when selecting which complementation approach to use.

Endogenous plasmid shuttle vectors

A number of shuttle vectors have been derived from the endogenous plasmids of B. burgdorferi. As reviewed in Radolf and Samuels (2021) the complete genome sequence of B. burgdorferi identified a set of paralogous gene families (PGFs) present on all plasmids, suggested to be involved in plasmid replication and maintenance, although lacking strict sequence homology to plasmid genes with comparable functions in other bacteria (Zückert and Meyer, 1996; Casjens et al., 2000). An early shuttle vector derived from a small, nonessential endogenous circular plasmid (cp9) of B. burgdorferi demonstrated that the region encompassing these PGFs did not support replication in E. coli, but was sufficient for autonomous replication in B. burgdorferi (Stewart et al., 2001). This shuttle vector, termed pBSV2, and its derivatives have become the workhorse for plasmid-based transcomplementation and other applications in B. burgdorferi. In the absence of strong counterselection (Tilly et al., 2006), pBSV2 is relatively stable both in vitro and in vivo (Stewart et al., 2001), and present at approximately 5–10 copies per cell (Tilly et al., 2006). However, sequences inserted on a shuttle vector (such as for complementation or fluorescent protein expression) can destabilize the shuttle vector, leading to its loss if antibiotic selection is not maintained. Depending on the mutation, the increased copy number of a wild-type gene on the shuttle vector has the potential for ineffective complementation due to deleterious effects of overproduction of the target protein (Sartakova et al., 2001; Eggers et al., 2002; Tilly et al., 2006; Ristow et al., 2012; Kasumba et al., 2015). Additional shuttle vectors have been derived from other endogenous plasmids (lp25, lp28–1, cp26, and a cp32) by cloning their PGF counterparts together with a functional selectable marker (Eggers et al., 2002; Stewart et al., 2003; Byram et al., 2004; Beaurepaire and Chaconas, 2005). Along

with autonomous replication, the PGF regions also mediate incompatibility, resulting in displacement of the endogenous *B. burgdorferi* plasmid from which they were derived (Stewart et al., 2001; Eggers et al., 2002; Stewart et al., 2003; Beaurepaire and Chaconas, 2005), unless selection exists for the coexistence of both replicons (Byram et al., 2004). Displacement with incompatible shuttle vectors thus has been used to experimentally manipulate plasmid content in *B. burgdorferi* (Stewart et al., 2003; Byram et al., 2004; Grimm et al., 2004; Jewett et al., 2007a; Jewett et al., 2007b; Dulebohn et al., 2011; Dulebohn et al., 2013).

Genetic reconstitution at the original locus

An alternative complementation strategy is genetic reconstitution, in which the mutated copy of the gene is replaced with a wild-type copy and another closely linked marker (Hübner et al., 2001; Tilly et al., 2001; Li et al., 2007b), similar to the strategy used to introduce point mutations (Knight et al., 2000; Yang et al., 2003). This approach, however, does not leave the original mutation unaltered. A potential advantage to complementation by genetic reconstitution, at the site of the mutated locus or elsewhere on the same replicon, is that the reintroduced wild-type gene copy is at the same copy number and similar supercoiling state as the original gene. Some attempts to complement mutations in *trans* on a shuttle vector have only partially or unsuccessfully restored the wild-type phenotype (Sartakova et al., 2001; Ristow et al., 2012), raising questions about whether the context of the complementing gene has significantly altered its expression. Alternatively, such results could indicate the presence of an unrecognized second site mutation, which is responsible for the defective phenotype of the complemented mutant. Distinguishing among the possible causes of unsuccessful complementation is addressed below.

Trans-complementation in the genome

An improvement over *trans*-complementation on a shuttle vector is to insert the complementing gene elsewhere in the genome, such as on an essential plasmid (cp26, lp25, lp28-1 or lp36) (Byram et al., 2004; Kawabata et al., 2004; Grimm et al., 2005; Blevins et al., 2007; Gilbert et al., 2007; Jewett et al., 2007b; Caimano et al., 2019). This approach leaves the original mutation undisturbed and maintains in vivo selection for the reintroduced gene by virtue of insertion on an essential plasmid. A logical target for this approach is the bbe02 locus on lp25 as the insertion site. Currently, many research labs employ B. burgdorferi clones in which bbe02 has been inactivated as a means to increase transformation efficiency, yet maintain infectivity (Kawabata et al., 2004; Jacobs et al., 2006; Rego et al., 2011). Further, because lp25 is required for *B. burgdorferi* survival throughout the enzootic cycle, this provides biological selection for in vivo maintenance of the complementing gene. The allelic exchange suicide vectors pKBE-Strep and pKBE-Kan have been engineered with a multiple cloning site for insertion of the complementing gene upstream of a linked antibiotic cassette, and flanking DNA homologous to sequences upstrem and downstream of the bbe02 R/M locus (Kasumba et al., 2015). Validation of this approach via complementation of an ospC mutant demonstrated copy number on lp25 consistent with the copy number of the native gene on cp26, as well as functional and stable maintenance of the ospC gene in trans on lp25 (Kasumba et al., 2015). Similarly, the intergenic region between oppositely transcribed bb0445 and bb0446 genes on the

chromosome has been used successfully for *trans*-complementation (Li et al., 2007a; Zhang et al., 2009). Innocuous sites on lp25, lp28–1 and lp36 have been useful for insertion of an antibiotic resistance cassette to provide antibiotic selection to ensure *in vitro* maintenance (Blevins et al., 2007) or to restore to *B. burgdorferi* clones lacking each of the critical virulence plasmids (Grimm et al., 2004; Jewett et al., 2007b). Given that this approach effectively preserved or reestablished the wild-type infection phenotype, these sites like *bbe02* on lp25, provide preferable alternatives for stable *trans*-complementation for *in vivo* studies.

Limitations, failures and alternatives

Complementation, while critical to demonstrating the link between a mutant phenotype and gene, presents a substantial challenge when working with infectious B. burgdorferi clones retaining the full set of endogenous plasmids. As mentioned above, this is primarily due to the activities of restriction enzymes encoded by genes bbe02 and bbq67 on lp25 and lp56, respectively (Lawrenz et al., 2002; Kawabata et al., 2004). The DNA of B. burgdorferi contains N^6 -methylated adenine only when bbe02 and/or bbq67 are present, indicating that both genes encode adenine methyltransferase activity (Rego et al., 2011), and recently the sequence motifs recognized by these restriction enzymes were identified (Casselli et al., 2018). Two genetic approaches to address the barrier that these R/M loci present for transformation of infectious B. burgdorferi are (i) to use a genetic background that lacks lp56 and gene bbe02 (Kawabata et al., 2004; Jacobs et al., 2006; Rego et al., 2011; Jain et al., 2012; Showman et al., 2016; Aranjuez et al., 2019), or (ii) to perform genetic manipulations in a non-infectious, yet transformable, B. burgdorferi genetic background lacking lp25 and subsequently restore the in vivo-essential lp25-encoded pncA (bbe22) gene prior to mouse infection studies (Labandeira-Rey and Skare, 2001; Labandeira-Rey et al., 2003; Purser et al., 2003; Seshu et al., 2006; Weening et al., 2008). However, this second approach does not allow tick studies due to the requirement for lp25-encoded genes in addition to pncA for tick colonization and persistence (Grimm et al., 2005; Revel et al., 2005; Strother et al., 2005; Gilmore et al., 2014).

When repeated attempts to obtain an isogenic complemented mutant retaining essential plasmids are unsuccessful, an argument can be made linking a mutant phenotype and targeted gene if several independently derived mutants, obtained in separate transformation experiments, are compared with an isogenic wild-type clone. This argument is based on the low probability that second site mutations resulting in a similar mutant phenotype would have arisen independently in separate transformations. Occasionally, a quandary arises when a wild-type copy of the gene has been reintroduced successfully into the mutant strain, yet the defective phenotype persists, leading to the conclusion that complementation has failed. As discussed above, one explanation is that the complementing gene may not be appropriately expressed in *trans* due to changes in supercoiling, copy number or absence of key regulatory sequences. This issue may be addressed by employing one of the alternative complementation strategies. If persistence of the mutant phenotype in the complemented strain cannot be explained by dysregulated gene expression, the next possibility to investigate is polar effects of the original mutation on the transcription of adjacent sequences. If expression of adjacent transcripts appears to be altered by the mutation, then a

different gene inactivation strategy should be employed that minimizes potential polar effects. Finally, if the complementing gene is intact and appropriately expressed, and there is no evidence that the mutation impacts adjacent sequences, then the most likely explanation for the defective phenotype of the complemented mutant strain is an unlinked and unrecognized mutation elsewhere in the genome. In this case, complementation has failed because the phenotype of the mutant strain does not derive from the introduced mutation, thus illustrating the essential role of complementation in genetic studies.

Use of published 5' RNA-seq data to predict endogenous promoters

When designing a complementation construct it is important to incorporate sufficient sequence upstream of the complementing gene to ensure its appropriate regulation. Similarly, the genomic and transcriptional context of the gene should be taken into account, including whether or not the gene is transcribed alone or with other genes as a part of an operon. The *B. burgdorferi* 5' end transcriptome has provided significant information for refined annotation of the *B. burgdorferi* genome, including a genome-wide map of transcription start sites and a comprehensive analysis of 5' UTR length (Adams et al., 2017b). These data provide a valuable resource (https://lymedisease.med.ucf.edu/) for predicting endogenous promoters and putative regulatory sequence, critical for the design of effective mutagenesis and complementation approaches.

Surrogate genetics

Limitations on the genetic manipulation of B. burgdorferi have stimulated researchers to perform surrogate genetics in E. coli because of the well-developed genetic systems of the latter organism and the availability of extensively characterized mutants (Beckwith, 1991). Numerous B. burgdorferi genes have been expressed in E. coli from either their endogenous promoters or from cloning vector promoters, primarily as a source of purified recombinant protein. A number of B. burgdorferi genes have been used to complement E. coli or Salmonella mutants deficient in the homologous genes, which has permitted partial functional characterization of these borrelial genes (Tilly et al., 1993; Margolis et al., 1994; Knight and Samuels, 1999; Lin et al., 2001; Purser et al., 2003; Eggers et al., 2004; Liveris et al., 2004; Putteet-Driver et al., 2004; Bugrysheva et al., 2005; Jewett et al., 2011). Similarly, cloning of *B. burgdorferi* genes encoding phosphatidylcholine and phosphatidylglycerolphosphate synthase in E. coli permitted the characterization of these enzymatic activities (Wang et al., 2004). Expression in E. coli of a phage display library led to the identification of a putative integrin-binding adhesin of *B. burgdorferi* (Coburn et al., 1999; Coburn and Cugini, 2003). Surrogate genetics in E. coli also permitted the characterization of B. burgdorferi promoter elements involved in transcriptional regulation (Alverson et al., 2003; Boylan et al., 2003; Caimano et al., 2004; Eggers et al., 2004; Burtnick et al., 2007; Medrano et al., 2010). However, differences in metal acquisition and homeostasis between B. burgdorferi and E. coli have been cited as a reason why E. coli may not be an appropriate surrogate system for studying B. burgdorferi gene expression and regulation (Ouyang et al., 2010). The advances in genetic manipulation of B. burgdorferi described in this review suggest that the need to perform surrogate genetic experiments in other bacterial hosts may decrease in the future. However, given its complex culture medium

and slow growth rate, it is unlikely that *B. burgdorferi* will ever be as easy to manipulate as *E. coli*.

Engineered gene expression

Endogenous promoter fusions

The first tools employed to control gene expression in B. burgdorferi were its endogenous flaB and flgB promoters (Sohaskey et al., 1997; Bono et al., 2000; Sartakova et al., 2000). These two promoters have been used extensively to constitutively express endogenous and foreign genes in B. burgdorferi, and to develop new genetic markers and genetic tools, as described throughout this review. Enzootic stage-specific expression has been achieved using the ospA and ospC promoters, for tick stage and mammalian stage expression, respectively (Tilly et al., 2016; Adams et al., 2017b). Constitutive expression mediated by flaBp has also been utilized to study the role of ospC-repression in the ability of B. burgdorferi to evade mammalian host defenses (Xu et al., 2006). Similarly, B. burgdorferi containing flaBp-ospAB gene fusions were used to demonstrate that constitutive expression of these proteins led to rapid clearance of *Borrelia* in mice by the immune system (Strother et al., 2007). For many applications, strong gene expression driven by the flaB and flgB promoters is experimentally useful; however, overexpression of certain proteins can be limited by possible toxic effects, mis-localization and even altered function (Hayes et al., 2014). Recently, to address these challenges, constitutive promoters of low and intermediate strengths were identified from a global transcriptome data set that measured B. burgdorferi gene expression at multiple in vitro growth phases (Arnold et al., 2016; Takacs et al., 2018). This panel of cloned and validated promoters provides a range of levels of constitutively controlled expression of genes of interest (Takacs et al., 2018). Future analysis of the activities and utility of these promoters in vivo will be important.

Inducible gene expression

Inducible promoter systems that can regulate gene expression in a graded manner offer certain advantages over the total ablation of gene expression generated by null mutants, or constitutive expression generated by endogenous *B. burgdorferi* promoters. For example, information about the function of unknown but essential genes can be obtained through modulating gene expression and monitoring the phenotypic changes that occur when gene products become limiting. In *B. burgdorferi*, endogenous genetic switches have yet to be identified. However, well characterized genetic switches, such as the *E. coli* lactose operon (Jacob and Monod, 1961) and the *E. coli* tetracycline resistance gene of *Tn*10 (Gossen and Bujard, 1992; Bujard, 1999), have been adapted for use in *B. burgdorferi*.

lac system

The *lac* system has been adapted to experimentally regulate gene expression in *B. burgdorferi* (Blevins et al., 2007; Gilbert et al., 2007). Gilbert *et al.* (Gilbert et al., 2007) constructed the *flacp* inducible promoter by integrating the synthetic *lacO*_{id} operator (Oehler et al., 1994) into the *B. burgdorferi flgB* promoter (Ge et al., 1997). This inducible promoter was fused to *ospC* and *rpoS* by directly incorporating *flacp* into the genome and replacing the native promoters of the respective genes (Gilbert et al., 2007). These investigators also

generated *B. burgdorferi* strains that produce high levels of the LacI repressor by fusing the *flgB* promoter to *lacI* and inserting the hybrid into lp25, a plasmid required for infectivity (Purser and Norris, 2000; Labandeira-Rey and Skare, 2001). The expression of *flacp*-controlled genes in this background is tightly regulated in response to the inducer isopropyl β-D-thiogalactopyranoside (IPTG); genomic *flacp-ospC* and *flacp-rpoS* fusions bypass the normal regulation by environmental factors (Gilbert et al., 2007). In addition, *flacp-rpoS* was used to demonstrate that RpoS was not sufficient to downregulate OspA *in vitro* (Caimano et al., 2007). This *lac* system was used *in vivo* (Gilbert et al., 2007) to further test the hypothesis that OspC was required at an early time point in infection (Tilly et al., 2006; Tilly et al., 2007). This experiment indicated that the inducible system functions *in vivo* and can be used to test genes required for infectivity (Gilbert et al., 2007).

An alternative system of gene regulation based on the *E. coli lac* operon was also shown to be functional in *B. burgdorferi* (Blevins et al., 2007). Gene regulation by the *lac* operator was demonstrated using a codon-optimized luciferase reporter (*luc_{Bb}*) and through expression of the endogenous *B. burgdorferi* protein BptA. In this system, the *B. burgdorferi lac* expression system consisted of a single plasmid based on the pKFSS1 shuttle vector with the T5/*lac* hybrid promoter *pQE30* from plasmid QE30 (QIAGEN); this promoter contains two *lac* operators (Blevins et al., 2007). On the same plasmid, a codon-optimized *lacI* gene was present under the control of the *flaB* promoter (Blevins et al., 2007). Adding IPTG to *B. burgdorferi* carrying this plasmid with either *luc_{Bb}* or *bptA* cloned under the control of the *pQE30* promoter resulted in increased expression of these gene products. This *lac* system worked relatively well in *B. burgdorferi*, but induction was incomplete, which may result from either insufficient IPTG or excessive LacI inside the cell, or weak activity of the *pQE30* promoter in *Borrelia*.

tet system

Like the *lac* system, the tetracycline-inducible system has been adapted for controlling gene expression in *B. burgdorferi* (Cabello et al., 2006; Whetstine et al., 2009). These approaches use hybrid tetracycline-responsive *B. burgdorferi* promoters and constitutively expressed *tetR*. Placement of the *tet* operator upstream of the -10 and -35 sequences of the *bmpA* promoter resulted in inducible, but significantly leaky expression of the target gene (Cabello et al., 2006). In contrast, the hybrid P_{ost} promoter includes the *ospA* promoter and 5' UTR sequence with the first 19 nucleotides of the 5' UTR replaced with the *tetO* sequence (Whetstine et al., 2009). The P_{ost} promoter, along with the constitutively expressed *tetR* gene, are engineered on a single kanamycin-resistant shuttle vector, pCRW53 (Whetstine et al., 2009). This system demonstrates little to no background expression in the absence of anhydrotetracycline (ATc) and titratable expression up to 2 µg/ml ATc. Yet, maximal P_{ost} promoter activity was not achieved, perhaps due to read through-transcription of *tetR*. In its current design, the pCRW53 tet-inducible system is limited to environments in which *ospA* is expressed and further adaptation is required for its application during mammalian infection (Whetstine et al., 2009).

These results demonstrate that gene expression can be artificially regulated in *B. burgdorferi* using either the *lac* system or the *tet* system. Modifications yielding stronger and tighter

induction of genes under the control of these inducible promoters should be possible in the future. The availability of inducible expression systems for *B. burgdorferi* has allowed isolation of conditional lethal mutants through regulated repression of a number of essential genes. (Lenhart and Akins, 2010; Groshong et al., 2012; Bandy et al., 2014; Ye et al., 2014; Chu et al., 2016; Groshong et al., 2017; Drecktrah et al., 2020). Conversely, increased expression of *rpoS* from an inducible *lac* promoter resulted in cell death, consistent with a failure to engineer over-expression of *rpoS* from the strong *flaB* promoter (Chen et al., 2013). Further optimization of these genetic switches, as well as development of endogenous genetic switches, will improve manipulation of *B. burgdorferi* gene expression *in vivo* and open a new avenue for studies of pathogenesis in Lyme borreliosis.

Random tagged mutagenesis

The use of transposon mutagenesis as a tool for bacterial genetics represents an important advance that has generally superseded chemical and radiation mutagenesis (Hayes, 2003; Bosse et al., 2006; Salama and Manoil, 2006; Burrack and Higgins, 2007). Mutagenized bacteria are easily isolated on the basis of antibiotic resistance or other selectable markers carried on the transposable element, and the mutated gene can be readily identified by routine molecular procedures (Judson and Mekalanos, 2000; Hayes, 2003; Bosse et al., 2006; Salama and Manoil, 2006; Burrack and Higgins, 2007).

Genome-wide transposon mutagenesis of *B. burgdorferi* was first demonstrated with a suicide plasmid that contained a modified *Himar1* element of the *mariner* family (Stewart et al., 2004). In this system, called pMarGent, the inverted repeats of the transposable element flank a ColE1 origin of replication and a gentamicin-resistance cassette that functions in both *E. coli* and *B. burgdorferi*, while the *Himar1* transposase is carried on a portion of the suicide plasmid that is not mobilized, and hence only transiently present in *B. burgdorferi* (Stewart et al., 2004; Stewart and Rosa, 2008). This approach yielded a saturated mutant library in a non-infectious *B. burgdorferi* clone and permitted the isolation and characterization of a large number of mutants, with random transposon insertions in the linear chromosome and all linear and circular plasmids (Stewart et al., 2004). These experiments demonstrated the strength and feasibility of transposon mutagenesis in *B. burgdorferi*.

The utility of transposon mutagenesis as a tool to study *B. burgdorferi* virulence was illustrated by using the pMarGent system to generate a limited number of transposon mutants in an infectious *B. burgdorferi* clone and subsequently assessing their ability to infect mice (Botkin et al., 2006a; Botkin et al., 2006b). However, this approach was limited due to the instability of the pMarGent plasmid in *E. coli* and the low transformation frequency of infectious *B. burgdorferi*. To reduce the possibility of recovering inactive plasmid from *E. coli* due to transposition of the gentamicin marker, a kanamycin resistance cassette was added adjacent to the transposase, creating the vector pGKT (Stewart and Rosa, 2008). However, this modification does not fully stabilize pGKT because both markers can be retained in the same cell at different genomic locations following transposition. The limitation on transposon mutagenesis imposed by *B. burgdorferi*'s low transformation frequency has been partially addressed, as in other genetic approaches, with *B. burgdorferi*

clones lacking lp56 and gene *bbe02* on lp25, thereby avoiding the R/M systems they encode (Kawabata et al., 2004; Rego et al., 2011; Lin et al., 2012; Lin et al., 2014; Lin and Gao, 2018). Lin et al. further adapted the pGKT vector for signature tagged mutagenesis (STM) by inserting eleven distinct 7-bp tags in the region between the ColE1 and inverted terminal repeat 2 (Lin et al., 2012). This molecular genetic advance allowed for generation of a genome-scale STM library of 4,479 sequence-defined mutants, which can be interrogated in groups of clones to identify genes important for *in vivo* and *in vitro* phenotypes (Lin et al., 2012).

Isolation of a random, saturated mutant library requires an insertion every 200 base pairs on average, thus a completely saturated transposon library of B. burgdorferi would contain at least 7,500 independent mutants, since the B. burgdorferi genome is approximately 1,500,00 bp (Fraser et al., 1997; Casjens et al., 2000; Salama and Manoil, 2006). Generation of a genome-wide STM library necessitated development of a multiplex, high-throughput method for plasmid content analysis of the individual clones. The Luminex plasmid analysis assay employs a combination of three multiplex PCRs using 24 primer sets specific for each of the 21 B. burgdorferi B31 plasmids, and Luminex xMAP technology for microfluidic bead-based detection of the *B. burgdorferi* replicons (Norris et al., 2011). This approach allows simultaneous analysis of 30 B. burgdorferi clones in a 96-well plate format and has been used to assess the plasmid content of 44 B31 clones and 4,464 transposon mutants in an STM library (Norris et al., 2011). To date, 434 STM mutants from the library of 4,479 unique mutants have been screened for infectivity in mice (Lin et al., 2012), resulting in the identification of infection-relevant candidate genes (reviewed in Radolf and Samuels, 2021). Initially, comparison of the input and output STM mutant pools to identify those mutants that were attenuated for infection involved a semi-quantitative Luminex-based multiplex PCR procedure (Lin et al., 2012). More recently, Tn-seq has been used to identify genes contributing to a phenotype. Using this approach, the fitness of STM mutants is determined by sequencing the genomic DNA flanking the transposon insertion sites in the entire library, before and after undergoing selection in the environment of interest (Troy et al., 2016). Tnseq has been applied in B. burgdorferi to identify gene candidates important for mouse infection, survival in ticks, resistance to reactive oxygen and nitrogen species and carbohydrate utilization (Troy et al., 2016; Ramsey et al., 2017; Phelan et al., 2019), (see Radolf and Samuels, 2021), as well as to identify when and where B. burgdorferi encounters barriers to mouse infection (Troy et al., 2016).

STM library screens are powerful molecular genetic tools to identify candidate genes of interest. It is important to note, however, that genetic screens of this nature do not assess the fitness of a single mutant alone in the challenge environment, rather the fitness of all mutants in the input pool relative to each other. For this reason, the phenotype of a single mutant alone may differ from that in the context of a pool of other clones. Further studies, including targeted inactivation and complementation, are required to validate the roles of the implicated genes in the phenotype of interest. Despite technical advancements in the transformation frequency of *B. burgdorferi*, the challenge of achieving a saturated transposon mutant library remains daunting. The increased technical feasibility and reduced cost of whole genome re-sequencing raises the possibility for the resurgence of chemical and radiation mutagenesis approaches as alternatives for genetic screens in *B. burgdorferi*.

Reporter genes

Reporter genes encode proteins whose function, such as enzymatic activity, fluorescence or selectable phenotype, can be readily assayed or detected; they have been used extensively to monitor gene expression, to track cells in complex environments, and to determine the subcellular locations of proteins. Different types of reporters are typically better suited for distinct applications. The reporter genes currently available for *Borrelia* and their pertinent features are summarized in Table 2.

In vitro gene expression

A number of reporter genes have been used successfully as transcriptional fusions with B. burgdorferi promoters to study gene expression, including cat (chloramphenicol acetyl transferase), luc (luciferase), $lacZ(\beta$ -galactosidase), and gfp (green fluorescent protein) (Sohaskey et al., 1997; Sartakova et al., 2000; Carroll et al., 2003; Eggers et al., 2004; Blevins et al., 2007; Hayes et al., 2010). The initial studies in *B. burgdorferi* used promoter: cat fusions to assay gene expression (Sohaskey et al., 1997; Sohaskey et al., 1999), but cat has largely been replaced by other reporter genes that are easier to use or have broader utility. β-galactosidase, encoded by the *lacZ* gene, is a widely used reporter whose activity can be easily monitored in bacteria grown in liquid and solid media without specialized equipment or radioactivity (Sambrook et al., 1989). A codon-optimized lacZ reporter was developed for *B. burgdorferi*, and β-galactosidase activity measured in lysates of cultured spirochetes carrying *lacZ* transcriptional fusions with a standard Miller assay (Hayes et al., 2010). The omission of phenol red from BSK medium facilitates detection of lacZ-expressing (blue) B. burgdorferi colonies in plates containing X-Gal (Hayes et al., 2010). Use of a *lacZ* reporter in a blue-white colony screen confirmed the identity of a negative regulator of ospC encoded on linear plasmid lp17 (Sadziene et al., 1993; Sarkar et al., 2011; Hayes et al., 2014). The availability of *lacZ* further expands the repertoire of tools for investigating mechanisms of gene regulation in *B. burgdorferi*.

Whereas cat and *lacZ* reporters are routinely used to quickly measure gene expression in a population of cells, fluorescent protein reporters offer other advantages, such as directly monitoring gene expression at the individual cell level by microscopy or flow cytometry. Green fluorescent protein (GFP) was the first fluorescent protein reporter used to monitor gene expression and identify promoter elements in B. burgdorferi (Carroll et al., 2003; Eggers et al., 2004; Falkow, 2004; Valdivia et al., 2006; Srivastava and de Silva, 2008). GFP signal can be influenced by temperature, pH and oxygen concentration, but is relatively stable, which limits its utility for detecting rapid changes in gene expression (Valdivia et al., 2006). An expanded range of alternative fluorescent reporter genes that have been expressed in B. burgdorferi include yellow fluorescent protein, yfp, cyan fluorescent protein, cfp (Eggers et al., 2002); monomeric red fluorescent protein, mRFP (Schulze and Zuckert, 2006) and dTomato (Lee et al., 2010). Recently, a number of B. burgdorferi codon-optimized reporters have been developed, including CFP variants, mCerulean and msfCFP; GFP variants, mEGFP and msfGFP; YFP variants, mCitrine and msfYFP and a monomeric improved variant of mRFP1, mCherry (Takacs et al., 2018). In addition, an infrared fluorescent protein (iRFP) reporter was developed. iRFP is an extrinsically fluorescent

protein that covalently binds biliverdin as the fluorophore (Filonov et al., 2011). Growth of *B. burgdorferi* expressing iRFP in medium supplemented with the biliverdin cofactor results in near-infrared fluorescence of the cells (Takacs et al., 2018). In addition to *in vitro* studies, iRFP may be useful for *in vivo* live imaging of infected mice and/or *ex vivo* imaging of infected tissue explants, as described elsewhere in this review, due to the high excitation light penetrance and low tissue auto-fluorescence in the infrared region of the spectrum. Further, the endogenous levels of biliverdin in animal tissues are predicted to be sufficient for maximal fluorescence of iRFP-expressing *B. burgdorferi* (Takacs et al., 2018), although this has yet to be tested experimentally. Combinatorial imaging studies demonstrated that CFP variants can be co-imaged with mCitrine, mCherry and iRFP, and GFP variants can be co-imaged with mCherry and iRFP, suggesting the possibility for simultaneous imaging of up to four proteins in the same spirochete (Takacs et al., 2018).

Subcellular protein localization

In addition to their utility as transcriptional fusions for gene expression studies, translational fusions of fluorescent proteins represent important tools for cell biology, as described in greater detail in Radolf and Samuels (2021). Monomeric red fluorescent protein (mRFP) has been used in this capacity to investigate the lipoprotein export pathway of Borrelia (Schulze and Zuckert, 2006) and to develop a FACS-based lipoprotein localization screen (Kumru et al., 2010). More recently, an mCherry fusion protein was employed in a microscopy-based approach, coupled with quantitative image analysis, to investigate the dynamic cellular localization of an envelope protein of Borrelia (Takacs et al., 2018). A key feature of mRFP and mCherry as fusion partners for protein localization studies is that they continue to fluoresce outside of the cytoplasm, which earlier variants of GFP did not allow (Schulze and Zuckert, 2006). However, this previous limitation has been overcome with super-folding variants of GFP (sfGFP) that maintain fluorescence in periplasmic and extracellular locations (Pedelacq et al., 2006; Dinh and Bernhardt, 2011). A shortcoming of fluorescent proteins as translational fusions is their relatively large physical size, which can hinder the function, folding or localization of the protein to which they are fused. This potential drawback can be avoided with an alternative fluorescent labeling approach that entails tagging a cellular protein with a small tetra-cysteine motif that can bind fluorescent biarsenical dyes (Griffin et al., 1998). This approach has been used to label membrane proteins in B. burgdorferi and while avoiding the size constraints of fluorescent proteins, it is considerably less sensitive, requires a labeling step and can be limited by non-specific binding of the fluorescent dye (Hillman et al., 2019).

In vivo tracking and imaging

Beyond applications with spirochetes grown *in vitro*, reporter genes are important tools for detecting *B. burgdorferi* in ticks and mice (see Radolf and Samuels, 2021, for an in-depth review). GFP has permitted study of gene expression of individual spirochetes in ticks (Bykowski et al., 2006; Miller et al., 2006), and this reporter was used to visualize the interaction of the spirochete with the mouse vasculature in real time with high resolution imaging (Moriarty et al., 2008). Furthermore, GFP-expressing *B. burgdorferi* have been visualized in the intact skin of living mice and time-lapse images taken early after infection have allowed analysis of spirochete motility *in vivo* (Sultan et al., 2015; Novak et al., 2016).

GFP-expressing *B. burgdorferi* were used to track spirochete migration from an infected mouse to a feeding tick (Bockenstedt et al., 2014) and spirochete dissemination within ticks (Dunham-Ems et al., 2009).

Further expansion of *in vivo* live imaging of *B. burgdorferi* during infection has come with adaptation of a codon-optimized luciferase gene (luc_{Bb}) from the firefly *Photinus pyralis* for use in B. burgdorferi (Blevins et al., 2007). Luciferase activity of the firefly luc_{Bb} reporter, which requires an exogenous substrate and is measured with a luminometer, was first used to monitor the activity of endogenous Borrelia promoters and an ITPG-induced lac expression system (Blevins et al., 2007), as described above. Subsequently, in vivo bioluminescent imaging of mice infected with B. burgdorferi constitutively synthesizing luciferase has been used for temporal and spatial tracking of spirochete infection at the population level (Hyde et al., 2011a; Chan et al., 2015; Wager et al., 2015; Skare et al., 2016; Adams et al., 2017b; Hyde and Skare, 2018). The *luc*_{Bb} gene, driven by the strong constitutive *flaB* promoter and expressed on a multi-copy shuttle vector, allows detection of bioluminescent B. burgdorferi in live mice as early as three days post-inoculation (Adams et al., 2017b). This technique works well using both BALB/c and C3H/HeN mice (Hyde et al., 2011a; Adams et al., 2017b). The relative luminescence units (RLUs) detected by imaging mice infected with bioluminescent B. burgdorferi correlates with spirochete load in tissues of the same mice, as measured by quantitative PCR, allowing assessment of the ability of B. burgdorferi mutant clones to survive and disseminate in a live animal over time (Hyde et al., 2011a; Wager et al., 2015).

Quantifying in vivo gene expression

Application of *in vivo* bioluminescent imaging for quantitation of *B. burgdorferi* promoter activity as a means to measure expression of target genes during infection is less well developed. Currently this approach involves normalizing the luminescence signals of mice infected with B. burgdorferi carrying luc_{Bb} fused to the target gene promoter, with those of other mice infected with B. burgdorferi constitutively expressing luc_{Bb}, and subsequent qPCR analysis to demonstrate that all mice carry equivalent bacterial loads at the endpoint of the study (Skare et al., 2016). A dual reporter system that allows simultaneous measurement of the luminescence signal of the target promoter and a control constitutive promoter from the same population of spirochetes would provide a more straightforward and robust method to quantitate gene expression during infection. The first dual luciferase reporter system of B. burgdorferi was recently developed (Adams et al., 2017a). For this reporter system, constitutive expression of the B. burgdorferi codon-optimized Renilla reniformis (sea pansy) luciferase gene (P_{flaB}-rluc_{Bb}) allows normalization of the activity of a second promoter fused to the B. burgdorferi codon-optimized firefly luciferase (fluc_{Bb}) gene on the same shuttle vector plasmid. The bioluminescence signals of the two reporters are distinguishable due to their respective specificities for different substrates, coelenterazine and luciferin. This dual luciferase system is a simple and robust approach for quantitative analysis of B. burgdorferi promoter activity under in vivo growth conditions and in infected ticks (Adams et al., 2017a). Application of this dual reporter system to B. burgdorferi promoter activity during mammalian infection remains a challenge, however, because coelenterazine demonstrates high background fluorescence in the mouse that was not

circumvented through extensive modification of experimental parameters (Adams et al., 2017a). Future development of a dual reporter system for *in vivo* live imaging of *B. burgdorferi* infection may include a combination of green- and red-shifted luciferase enzymes (Branchini et al., 2005) or application of iRFP (Takacs et al., 2018), as discussed above.

Identifying in vivo promoters

Reporter genes are not limited to those whose expression can be measured as an enzymatic activity, fluorescence, luminosity or antibiotic resistance. A gene that is required for survival in a specific environment can also be used as a reporter of promoter activity. This concept is the basis of in vivo expression technology (IVET), a powerful and versatile method for genome-wide identification of promoters that are active in a host environment, by complementation of an auxotrophic mutation through gene fusion (Mahan et al., 1993). IVET has been adapted for B. burgdorferi using the pncA gene (Ellis et al., 2013; Casselli and Bankhead, 2015), which encodes a nicotinamidase activity that is required during infection of a mammalian host (Purser et al., 2003). The pncA promoter trap provides strong selection for *in vivo*-active promoters, as only those clones from the IVET library that express pncA during infection will survive in the mouse. Moreover, when expressed, pncA partially complements the phenotype of B. burgdorferi lacking virulence plasmid lp25 (on which *pncA* is encoded), allowing the IVET library to be generated in a more readily transformable genetic background, as described above (Lawrenz et al., 2002; Purser et al., 2003; Ellis et al., 2013). The initial IVET method in B. burgdorferi used the pncA reporter alone and identified promoters that were active both in vitro and during infection, as well as those that were specifically active during infection (Ellis et al., 2013; Adams et al., 2017b). This approach identified 233 unique infection-active promoters across a majority of the B. burgdorferi replicons (Ellis et al., 2013; Adams et al., 2017b). These sequences have led to the identification of novel genes critical for *B. burgdorferi* infectivity (Jain et al., 2015; Showman et al., 2016), as well as the discovery of previously unannotated intergenic, intragenic and antisense transcripts throughout the B. burgdorferi genome (Adams et al., 2017b).

In vivo phenotype

An aspect of genetic studies with *B. burgdorferi* that requires recognition (but is not unique to this bacterial pathogen) is the phenotype of the organism and the context in which gene function is addressed. Cultured spirochetes look and respond quite differently from genetically identical organisms present in infected ticks or mice (Iyer et al., 2015). Thus *in vitro* assays may not accurately reflect or predict the *in vivo* function of a particular *B. burgdorferi* gene product because other differentially synthesized bacterial proteins could mask or expose its function. There is no ready solution to this potential problem, but interpretation of results obtained from *in vitro* assays should include this caveat. Propagation of spirochetes in implanted chambers in the peritoneal cavity of rats results in bacteria exhibiting a partially host-adapted state, as assessed by altered patterns of protein synthesis and gene expression (Akins et al., 1998; Revel et al., 2002; Brooks et al., 2003; Caimano,

2005) and presents a somewhat more relevant source of bacteria for testing the *in vitro* properties of mutants.

Offsetting the inefficiencies and challenges of genetic studies in *B. burgdorferi* is the availability of relevant animal models in which to analyze mutants. Rodents are natural reservoir hosts, and both ticks and mice can be experimentally infected, making the entire infectious cycle amenable to investigation. Another publication (Radolf and Samuels, 2021) describes the animal models of Lyme disease in greater detail. Several parameters of the in *vivo* model that merit attention with respect to mutant characterization are infectious dose, mode and route of challenge, mouse strain, number of animals and tissues analyzed, quantitation of tissue burden and gene expression, and the statistics used to evaluate the data. Competitive index may be a useful parameter for discovery and quantitation of more subtle phenotypes (Bestor et al., 2012; Dulebohn et al., 2013; Arnold et al., 2015). Experimental design typically is influenced by the mutant phenotype and the focus of the investigation.

When designing, executing and interpreting in *vivo* genetic screens that use a highly complex inoculum (such as a saturated library of mutants) in which the ability to be recovered (or not) is a defining trait (such as IVET or Tn-seq), it is important to keep in mind the population dynamics of *B. burgdorferi* infection. Population bottlenecks during infection have been experimentally demonstrated using both Tn-Seq and genetic bar-coding approaches (Troy et al., 2013; Rego et al., 2014). A significant population bottleneck was found to occur at the site of infection, due in part to early innate immune responses (Troy et al., 2013; Casselli and Bankhead, 2015). Population bottlenecks were also detected during persistent infection of mice, as well as during spirochete acquisition and transmission by ticks (Rego et al., 2014; Phelan et al., 2019). These data highlight the potential misinterpretation of a mutant phenotype in the context of a mixed infection (*in vivo* genetic screen or competition assay) because clones can undergo stochastic elimination at a bottleneck independently of their genotype.

Genetic manipulation of relapsing fever spirochetes

A significant advance in the *Borrelia* field has been the development of a genetic system for the relapsing fever (RF) spirochetes (Battisti et al., 2008; Fine et al., 2011; Guyard et al., 2013; Lopez et al., 2013; Fine et al., 2014; Raffel et al., 2014; James et al., 2016; Krishnavajhala et al., 2017; James et al., 2018; Jackson-Litteken et al., 2019). The availability of genetic tools and complete genomic sequences for multiple RF species (Lescot et al., 2008; Elbir et al., 2012; Miller et al., 2013; Barbour and Campeau Miller, 2014; Barbour, 2016; Wilder et al., 2016; Elbir et al., 2017; Kuleshov et al., 2020) has permitted investigation of genetically modified RF spirochetes in their respective tick vectors or rodent hosts, and informative comparisons with other *Borrelia*, as detailed in Radolf and Samuels (2021). As with LD spirochetes, there is considerable variation among RF strains in the efficiency with which they can be grown, transformed or recovered as colonies in solid medium (Raffel et al., 2018). A noteworthy feature of genetic studies with RF spirochetes is retention of infectivity following prolonged cultivation (Lopez et al., 2008), suggesting a more stable segmented genome or a stronger requirement for plasmidencoded functions during *in vitro* growth, relative to the LD *Borrelia*. Additional research is

needed to determine if this attribute is true for all RF strains and clones, and how it is influenced by media and culture conditions (Raffel et al., 2018). Another advantage of RF *Borrelia* for genetic studies is the relatively high density they reach in the blood of an infected mouse during a relapse, permitting direct visualization and quantitation of *in vivo* organisms, and sufficient material for downstream analyses.

The genetic approaches and tools developed for the LD spirochetes provided a strong foundation for molecular genetic manipulation of the closely related RF spirochetes. Generation of the first site-directed allelic-exchange deletion mutant in Borrelia hermsii was reported in 2008 (Battisti et al., 2008). Furthermore, this work included a method for genetic transformation by electroporation and isolation of individual B. hermsii clones in liquid medium by limiting dilution in 96-well plates. In addition, antibiotic resistance cassettes and a B. hermsii shuttle vector for trans-complementation and expression studies were described (Battisti et al., 2008). Further expansion of the genetic tools for RF spirochetes came with the generation of an infectious B. hermsii clone that constitutively expresses GFP, allowing visualization of fluorescent spirochetes both in vitro and in vivo (Fine et al., 2011). The methods for genetic manipulation of B. hersmii have been applied successfully to another RF spirochete, B. turicatae (Lopez et al., 2013; Krishnavajhala et al., 2017). Most recently, a method for reliable growth of B. hermsii and B. turicatae in solid medium has been developed, allowing isolation of single colonies following genetic manipulation, as well as enumeration of colony forming units from both in vitro and in vivo samples (Raffel et al., 2018). The application of reverse genetics to the RF spirochetes has opened the door to broad investigation of these tick-borne pathogens (Raffel et al., 2014; James et al., 2016, 2018; Jackson-Litteken et al., 2019; Schwan et al., 2020).

Conclusion

The genetic toolbox for B. burgdorferi continues to grow, expanding the spectrum of approaches available for investigating the genetic mechanisms driving the biology of this fascinating pathogen. An increased understanding of the R/M systems that limit transformation efficiency has resulted in B. burgdorferi clones with enhanced capacity for transformation while retaining infectivity. These B. burgdorferi clones have been critical for improved recovery of targeted mutant and complemented clones, as well as the generation of genome-wide mutant and promoter-trap libraries. The development of a wide array of new reporter genes have opened the door for novel microscopy, flow-cytometry, genetic screening, in vivo bioluminescence, and in vivo selection assays. Moreover, new constitutive and inducible promoters allow for various levels of engineered expression of genes of interest. Molecular genetic approaches pioneered in B. burgdorferi have facilitated the development of tools for genetic manipulation and investigation of the closely related RF spirochetes. Transformation, plating in solid medium, reverse genetics, and florescencetagging of B. hermsii and B. turicatae are critical advances for understanding these medically important spirochetes. In sum, although there are still challenges and obstacles to overcome, significant strides have been made in Borrelia genetics, and persistent innovation and creativity will continue to increase and enhance the genetic tools available for the study of LD and RF spirochetes.

Acknowledgements

The authors thank and acknowledge Drs. Felipe Cabello and D. Scott Samuels for their contributions as co-authors of the first edition of this review, substantial portions of which are retained or modestly revised in the current edition. Supported by the Intramural Research Program (PAR) and grant R01AI099094 (MWJ) of the National Institute of Allergy and Infectious Diseases, National Institutes of Health.

References

- Adams PP, Flores Avile C, and Jewett MW (2017a). A Dual Luciferase Reporter System for *B. burgdorfer*i Measures Transcriptional Activity during Tick-Pathogen Interactions. Frontiers in Cellular and Infection Microbiology 7, 225. 10.3389/fcimb.2017.00225 [PubMed: 28620587]
- Adams PP, Flores Avile C, Popitsch N, Bilusic I, Schroeder R, Lybecker M, and Jewett MW (2017b). *In vivo* expression technology and 5' end mapping of the *Borrelia burgdorferi* transcriptome identify novel RNAs expressed during mammalian infection. Nucleic Acids Res 45, 775–792. 10.1093/nar/gkw1180 [PubMed: 27913725]
- Akins DK, Bourell KW, Caimano MJ, Norgard MV, and Radolf JD (1998). A new animal model for studying Lyme disease spirochetes in a mammalian host-adapted state. Journal of Clinical Investigation 101, 2240–2250.
- Alverson J, Bundle SF, Sohaskey CD, Lybecker MC, and Samuels DS (2003). Transcriptional regulation of the *ospAB* and *ospC* promoters from *Borrelia burgdorferi*. Mol Microbiol 48, 1665–1677. [PubMed: 12791146]
- Alverson J, and Samuels DS (2002). *groEL* expression in *gyrB* mutants of *Borrelia burgdorferi*. J Bacteriol 184, 6069–6072. [PubMed: 12374843]
- Aranjuez GF, Kuhn HW, Adams PP, and Jewett MW (2019). *Borrelia burgdorferi bbk13* Is Critical for Spirochete Population Expansion in the Skin during Early Infection. Infect Immun 87, e00887–00818. 10.1128/IAI.00887-18 [PubMed: 30782856]
- Arnold WK, Savage CR, Antonicello AD, and Stevenson B (2015). Apparent role for *Borrelia burgdorferi* LuxS during mammalian infection. Infect Immun 83, 1347–1353. 10.1128/ IAI.00032-15 [PubMed: 25605770]
- Arnold WK, Savage CR, Brissette CA, Seshu J, Livny J, and Stevenson B (2016). RNA-Seq of *Borrelia burgdorferi* in multiple phases of growth reveals insights into the dynamics of gene expression, transcriptome architecture, and noncoding RNAs. PLoS One 11, e0164165. 10.1371/journal.pone.0164165 [PubMed: 27706236]
- Bandy NJ, Salman-Dilgimen A, and Chaconas G (2014). Construction and characterization of a *Borrelia burgdorferi* strain with conditional expression of the essential telomere resolvase, ResT. J Bacteriol 196, 2396–2404. 10.1128/JB.01435-13 [PubMed: 24748617]
- Bankhead T, and Chaconas G (2007). The role of VIsE antigenic variation in the Lyme disease spirochete: persistence through a mechanism that differs from other pathogens. Mol Microbiol 65, 1547–1558. [PubMed: 17714442]
- Barbour AG (1984). Isolation and cultivation of Lyme disease spirochetes. Yale J Biol Med 57, 521–525. [PubMed: 6393604]
- Barbour AG (1990). Antigenic variation of a relapsing fever *Borrelia* species. Annu Rev Microbiol 44, 155–171. [PubMed: 2252381]
- Barbour AG (2016). Chromosome and Plasmids of the Tick-Borne Relapsing Fever Agent *Borrelia hermsii*. Genome Announc 4, e00528–00516. 10.1128/genomeA.00528-16 [PubMed: 27284141]
- Barbour AG, and Campeau Miller S (2014). Genome Sequence of *Borrelia parkeri*, an Agent of Enzootic Relapsing Fever in Western North America. Genome Announc 2, e00018–00014. 10.1128/genomeA.00018-14 [PubMed: 24526628]
- Battisti JM, Raffel SJ, and Schwan TG (2008). A system for site-specific genetic manipulation of the relapsing fever spirochete *Borrelia hermsii*. Methods Mol Biol 431, 69–84. 10.1007/978-1-60327-032-8_6 [PubMed: 18287748]

Beaurepaire C, and Chaconas G (2005). Mapping of essential replication functions of the linear plasmid lp17 of *Borrelia burgdorferi* by targeted deletion walking. Mol Microbiol 57, 132–142. [PubMed: 15948955]

- Beaurepaire C, and Chaconas G (2007). Topology-dependent transcription in linear and circular plasmids of the segmented genome of *Borrelia burgdorferi*. Mol Microbiol 63, 443–453. [PubMed: 17241200]
- Beckwith J (1991). Strategies for finding mutants. Methods Enzymol 204, 3–18. [PubMed: 1834919]
- Bestor A, Rego RO, Tilly K, and Rosa PA (2012). Competitive advantage of *Borrelia burgdorferi* with outer surface protein BBA03 during tick-mediated infection of the mammalian host. Infect Immun 80, 3501–3511. 10.1128/IAI.00521-12 [PubMed: 22851744]
- Bestor A, Stewart PE, Jewett MW, Sarkar A, Tilly K, and Rosa PA (2010). Using the Cre-lox recombination system to investigate lp54 gene requirement in the infectious cycle of *Borrelia burgdorferi*. Infect Immun 78, 2397–2407. [PubMed: 20231410]
- Blevins JS, Revel AT, Smith AH, Bachlani GN, and Norgard MV (2007). Adaptation of a luciferase gene reporter and *lac* expression system to *Borrelia burgdorferi*. Appl Environ Microbiol 73, 1501–1513. [PubMed: 17220265]
- Bockenstedt LK, Gonzalez D, Mao J, Li M, Belperron AA, and Haberman A (2014). What ticks do under your skin: two-photon intravital imaging of *Ixodes scapularis* feeding in the presence of the Lyme disease spirochete. Yale J Biol Med 87, 3–13. [PubMed: 24600332]
- Bono JL, Elias AF, Kupko III JJ, Stevenson B, Tilly K, and Rosa P (2000). Efficient targeted mutagenesis in *Borrelia burgdorferi*. J Bacteriol 182, 2445–2452. [PubMed: 10762244]
- Bontemps-Gallo S, Lawrence KA, Richards CL, and Gherardini FC (2018). Genomic and phenotypic characterization of *Borrelia afzelii* BO23 and *Borrelia garinii* CIP 103362. PLoS One 13, e0199641. 10.1371/journal.pone.0199641 [PubMed: 29944685]
- Bosse JT, Zhou L, Kroll JS, and Langford PR (2006). High-throughput identification of conditionally essential genes in bacteria: from STM to TSM. Infect Disord Drug Targets 6, 241–262. [PubMed: 16918485]
- Botkin DJ, Abbott A, Howell JK, Mosher M, Stewart PE, Rosa PA, Kawabata H, Watanabe H, and Norris SJ (2006a). Transposon mutagenesis of infectious *Borrelia burgdorferi* B31: a pilot study. In Molecular Biology of Spirochetes, NATO Advanced Research Workshop Series, Cabello FC, and Hulinska D, eds. (Amsterdam: IOS Press), pp. 13–24.
- Botkin DJ, Abbott A, Stewart PE, Rosa PA, Kawabata H, Watanabe H, and Norris SJ (2006b). Identification of potential virulence determinants by *HimarI* transposition of infectious *Borrelia burgdorferi* B31. Infect Immun 74, 6690–6699. [PubMed: 17015459]
- Boylan JA, Posey JE, and Gherardini FC (2003). *Borrelia* oxidative stress response regulator, BosR: a distinctive Zn-dependent transcriptional activator. Proc Natl Acad Sci USA 100, 11684–11689. [PubMed: 12975527]
- Branchini BR, Southworth TL, Khattak NF, Michelini E, and Roda A (2005). Red- and green-emitting firefly luciferase mutants for bioluminescent reporter applications. Anal Biochem 345, 140–148. 10.1016/j.ab.2005.07.015 [PubMed: 16125663]
- Brisson D, Drecktrah D, Eggers CH, and Samuels DS (2012). Genetics of *Borrelia burgdorferi*. Annu Rev Genet 46, 515–536. 10.1146/annurev-genet-011112-112140 [PubMed: 22974303]
- Brooks CS, Hefty PS, Jolliff SE, and Akins DR (2003). Global analysis of *Borrelia burgdorferi* genes regulated by mammalian host-specific signals. Infect Immun 71, 3371–3383. [PubMed: 12761121]
- Bugrysheva JV, Bryksin AV, Godfrey HP, and Cabello FC (2005). *Borrelia burgdorferi rel* is responsible for generation of guanosine-3′-diphosphate-5′-triphosphate and growth control. Infect Immun 73, 4972–4981. [PubMed: 16041012]
- Bujard H (1999). Controlling genes with tetracyclines. J Gene Med 1, 372–374. [PubMed: 10738554]
- Bunikis I, Kutschan-Bunikis S, Bonde M, and Bergstrom S (2011). Multiplex PCR as a tool for validating plasmid content of *Borrelia burgdorferi*. J Microbiol Methods 86, 243–247. 10.1016/j.mimet.2011.05.004 [PubMed: 21605603]
- Burrack LS, and Higgins DE (2007). Genomic approaches to understanding bacterial virulence. Curr Opin Microbiol 10, 4–9. [PubMed: 17161645]

Burtnick MN, Downey JS, Brett PJ, Boylan JA, Frye JG, Hoover TR, and Gherardini FC (2007). Insights into the complex regulation of *rpoS* in *Borrelia burgdorferi*. Mol Microbiol 65, 277–293. [PubMed: 17590233]

- Bykowski T, Babb K, von Lackum K, Riley SP, Norris SJ, and Stevenson B (2006). Transcriptional regulation of the *Borrelia burgdorferi* antigenically variable VlsE surface protein. J Bacteriol 188.
- Byram R, Stewart PE, and Rosa PA (2004). The essential nature of the ubiquitous 26 kb circular replicon of *Borrelia burgdorferi*. J Bacteriol 186, 3561–3569. [PubMed: 15150244]
- Cabello FC, Dubytska L, Bryksin AV, Bugrysheva JV, and Godfrey HP (2006). Genetic studies of the Borrelia burgdorferi bmp gene family. In NATO Advanced Research Workshop on Molecular Biology of Spirochetes, Cabello FC, Hulinska D and Godfrey HP, ed. (Prague, Czech Republic: IOS Press, Amsterdam), pp. 235–249.
- Cabello FC, Sartakova ML, and Dobrikova EY (2001). Genetic manipulation of spirochetes-light at the end of the tunnel. Trends Microbiol 9, 245–248. [PubMed: 11390223]
- Caimano MJ (2005). Cultivation of Borrelia burgdorferi in dialysis membrane chambers in rat peritonea. Curr Protoc Microbiol Chapter 12, Unit 12C 13. 10.1002/9780471729259.mc12c03s00
- Caimano MJ, Eggers CH, Hazlett KR, and Radolf JD (2004). RpoS is not central to the general stress response in *Borrelia burgdorferi* but does control expression of one or more essential virulence determinants. Infect Immun 72, 6433–6445. [PubMed: 15501774]
- Caimano MJ, Groshong AM, Belperron A, Mao J, Hawley KL, Luthra A, Graham DE, Earnhart CG, Marconi RT, Bockenstedt LK, et al. (2019). The RpoS Gatekeeper in *Borrelia burgdorferi*: An Invariant Regulatory Scheme That Promotes Spirochete Persistence in Reservoir Hosts and Niche Diversity. Front Microbiol 10, 1923. 10.3389/fmicb.2019.01923 [PubMed: 31507550]
- Caimano MJ, Iyer R, Eggers CH, Gonzalez C, Morton EA, Gilbert MA, Schwartz I, and Radolf JD (2007). Analysis of the RpoS regulon in *Borrelia burgdorferi* in response to mammalian host signals provides insight into RpoS function during the enzootic cycle. Mol Microbiol 65, 1193–1217. [PubMed: 17645733]
- Carroll JA, Stewart P, Rosa P, and Garon G (2003). An enhanced GFP reporter system to monitor gene expression in *Borrelia burgdorferi*. Microbiology 149, 1819–1828. [PubMed: 12855733]
- Casadevall A (2017). The Pathogenic Potential of a Microbe. mSphere 2, e00015–00017. 10.1128/mSphere.00015-17 [PubMed: 28251180]
- Casjens S, Palmer N, van Vugt R, Huang WM, Stevenson B, Rosa P, Lathigra R, Sutton G, Peterson J, Dodson RJ, et al. (2000). A bacterial genome in flux: the twelve linear and nine circular extrachromosomal DNAs in an infectious isolate of the Lyme disease spirochete *Borrelia burgdorferi*. Mol Microbiol 35, 490–516. [PubMed: 10672174]
- Casjens SR, Di L, Akther S, Mongodin EF, Luft BJ, Schutzer SE, Fraser CM, and Qiu WG (2018). Primordial origin and diversification of plasmids in Lyme disease agent bacteria. BMC Genomics 19, 218. 10.1186/s12864-018-4597-x [PubMed: 29580205]
- Casjens SR, Gilcrease EB, Vujadinovic M, Mongodin EF, Luft BJ, Schutzer SE, Fraser CM, and Qiu WG (2017). Plasmid diversity and phylogenetic consistency in the Lyme disease agent *Borrelia burgdorferi*. BMC Genomics 18, 165. 10.1186/s12864-017-3553-5 [PubMed: 28201991]
- Casselli T, and Bankhead T (2015). Use of *in vivo* Expression Technology for the Identification of Putative Host Adaptation Factors of the Lyme Disease Spirochete. J Mol Microbiol Biotechnol 25, 349–361. 10.1159/000439305 [PubMed: 26488479]
- Casselli T, Tourand Y, Scheidegger A, Arnold WK, Proulx A, Stevenson B, and Brissette CA (2018). DNA Methylation by Restriction Modification Systems Affects the Global Transcriptome Profile in *Borrelia burgdorferi*. J Bacteriol 200, e00395–00318. 10.1128/JB.00395-18
- Chaconas G, Stewart PE, Tilly K, Bono JL, and Rosa P (2001). Telomere resolution in the Lyme disease spirochete. Embo J 20, 3229–3237. [PubMed: 11406599]
- Chan K, Alter L, Barthold SW, and Parveen N (2015). Disruption of *bbe02* by Insertion of a Luciferase Gene Increases Transformation Efficiency of *Borrelia burgdorferi* and Allows Live Imaging in Lyme Disease Susceptible C3H Mice. PLoS One 10, e0129532. 10.1371/journal.pone.0129532 [PubMed: 26069970]
- Chen L, Xu Q, Tu J, Ge Y, Liu J, and Liang FT (2013). Increasing RpoS expression causes cell death in *Borrelia burgdorferi*. PLoS One 8, e83276. 10.1371/journal.pone.0083276 [PubMed: 24358270]

Chen Q, Fischer JR, Benoit VM, Dufour NP, Youderian P, and Leong JM (2008). In vitro CpG methylation increases the transformation efficiency of *Borrelia burgdorferi* strains harboring the endogenous linear plasmid lp56. J Bacteriol 190, 7885–7891. [PubMed: 18849429]

- Chu CY, Stewart PE, Bestor A, Hansen B, Lin T, Gao L, Norris SJ, and Rosa PA (2016). Function of the *Borrelia burgdorferi* FtsH Homolog Is Essential for Viability both In Vitro and Independent of HflK/C. MBio 7, e00404–00416. 10.1128/mBio.00404-16 [PubMed: 27094329]
- Chung CT, Niemla SL, and Miller RH (1989). One-step preparation of competent *Escherichia coli*: transformation and storage of bacterial cells in the same solution. Proc Natl Acad Sci USA 86, 2172–2175. [PubMed: 2648393]
- Coburn J, Chege W, Magoun L, Bodary SC, and Leong JM (1999). Characterization of a candidate *Borrelia burgdorferi* ß3-chain integrin ligand identified using a phage display library. Mol Microbiol 34, 926–940. [PubMed: 10594819]
- Coburn J, and Cugini C (2003). Targeted mutation of the outer membrane protein P66 disrupts attachment of the Lyme disease agent, *Borrelia burgdorferi*, to integrin $a_v\beta_3$. Proc Natl Acad Sci USA 100, 7301–7306. [PubMed: 12748384]
- Coutte L, Botkin DJ, Gao L, and Norris SJ (2009). Detailed analysis of sequence changes occurring during *vlsE* antigenic variation in the mouse model of *Borrelia burgdorferi* infection. PLoS Pathog 5, e1000293. [PubMed: 19214205]
- Cuellar J, Pietikainen A, Glader O, Liljenback H, Soderstrom M, Hurme S, Salo J, and Hytonen J (2019). *Borrelia burgdorferi* Infection in Biglycan Knockout Mice. J Infect Dis 220, 116–126. 10.1093/infdis/jiz050 [PubMed: 30698707]
- Dinh T, and Bernhardt TG (2011). Using superfolder green fluorescent protein for periplasmic protein localization studies. J Bacteriol 193, 4984–4987. 10.1128/JB.00315-11 [PubMed: 21764912]
- Drecktrah D, Douglas JM, and Samuels DS (2010). Use of *rpsL* as a Counterselectable Marker in *Borrelia burgdorferi*. Appl Environ Microbiol 76, 985–987. 10.1128/AEM.02172-09 [PubMed: 19966024]
- Drecktrah D, Hall LS, Brinkworth AJ, Comstock JR, Wassarman KM, and Samuels DS (2020). Characterization of 6S RNA in the Lyme disease spirochete. Mol Microbiol 113, 399–417. 10.1111/mmi.14427 [PubMed: 31742773]
- Drecktrah D, Hall LS, Hoon-Hanks LL, and Samuels DS (2013). An inverted repeat in the *ospC* operator is required for induction in *Borrelia burgdorferi*. PLoS One 8, e68799. 10.1371/journal.pone.0068799 [PubMed: 23844242]
- Drecktrah D, and Samuels DS (2018). Genetic Manipulation of *Borrelia* Spp. Curr Top Microbiol Immunol 415, 113–140. 10.1007/82_2017_51 [PubMed: 28918538]
- Dulebohn DP, Bestor A, Rego RO, Stewart PE, and Rosa PA (2011). The *Borrelia burgdorferi* linear plasmid lp38 is dispensable for completion of the mouse-tick infectious cycle. Infect Immun 79, 3510–3517. [PubMed: 21708994]
- Dulebohn DP, Bestor A, and Rosa PA (2013). *Borrelia burgdorferi* linear plasmid 28–3 confers a selective advantage in an experimental mouse-tick infection model. Infect Immun 81, 2986–2996. 10.1128/IAI.00219-13 [PubMed: 23753630]
- Dunham-Ems SM, Caimano MJ, Pal U, Wolgemuth CW, Eggers CH, Balic A, and Radolf JD (2009). Live imaging reveals a biphasic mode of dissemination of *Borrelia burgdorferi* within ticks. Journal of Clinical Investigation 119, 3652–3665. 10.1172/JCI39401
- Earnhart CG, Leblanc DV, Alix KE, Desrosiers DC, Radolf JD, and Marconi RT (2010). Identification of residues within ligand-binding domain 1 (LBD1) of the *Borrelia burgdorferi* OspC protein required for function in the mammalian environment. Mol Microbiol 76, 393–408. 10.1111/i.1365-2958.2010.07103.x [PubMed: 20199597]
- Earnhart CG, Rhodes DV, and Marconi RT (2011). Disulfide-mediated oligomer formation in *Borrelia burgdorferi* outer surface protein C, a critical virulence factor and potential Lyme disease vaccine candidate. Clinical and vaccine immunology: CVI 18, 901–906. 10.1128/CVI.05004-11
- Eggers CH, Caimano MJ, Clawson ML, Miller WG, Samuels DS, and Radolf JD (2002). Identification of loci critical for replication and compatibility of a *Borrelia burgdorferi* cp32 plasmid and use of a cp32-based shuttle vector for expression of fluorescent reporters in the Lyme disease spirochaete. Mol Microbiol 43, 281–295. [PubMed: 11985709]

Eggers CH, Caimano MJ, and Radolf JD (2004). Analysis of promoter elements involved in the transcriptional initiation of RpoS-dependent *Borrelia burgdorferi* genes. J Bacteriol 186, 7390–7402. [PubMed: 15489451]

- Eggers CH, Gray CM, Preisig AM, Glenn DM, Pereira J, Ayers RW, Alshahrani M, Acabbo C, Becker MR, Bruenn KN, et al. (2016). Phage-mediated horizontal gene transfer of both prophage and heterologous DNA by phiBB-1, a bacteriophage of *Borrelia burgdorferi*. Pathog Dis 74, ftw107. 10.1093/femspd/ftw107 [PubMed: 27811049]
- Elbir H, Gimenez G, Robert C, Bergstrom S, Cutler S, Raoult D, and Drancourt M (2012). Complete genome sequence of *Borrelia crocidurae*. J Bacteriol 194, 3723–3724. 10.1128/JB.00118-12 [PubMed: 22740657]
- Elbir H, Sitlani P, Bergstrom S, and Barbour AG (2017). Chromosome and Megaplasmid Sequences of *Borrelia anserina* (Sakharoff 1891), the Agent of Avian Spirochetosis and Type Species of the Genus. Genome Announc 5, e00018–00017. 10.1128/genomeA.00018-17 [PubMed: 28302772]
- Elias AF, Bono JL, Kupko JJ, Stewart PE, Krum JG, and Rosa PA (2003). New antibiotic resistance cassettes suitable for genetic studies in *Borrelia burgdorferi*. J Mol Microbiol Biotechnol 6, 29–40. [PubMed: 14593251]
- Elias AF, Stewart PE, Grimm D, Caimano MJ, Eggers CH, Tilly K, Bono JL, Akins DR, Radolf JD, Schwan TG, et al. (2002). Clonal polymorphism of *Borrelia burgdorferi* strain B31 MI: implications for mutagenesis in an infectious strain background. Infect Immun 70, 2139–2150. [PubMed: 11895980]
- Ellis TC, Jain S, Linowski AK, Rike K, Bestor A, Rosa PA, Halpern M, Kurhanewicz S, and Jewett MW (2013). *In vivo* expression technology identifies a novel virulence factor critical for *Borrelia burgdorferi* persistence in mice. PLoS Pathog 9, e1003567. 10.1371/journal.ppat.1003567 [PubMed: 24009501]
- Falkow S (1988). Molecular Koch's postulates applied to microbial pathogenicity. Rev Infect Dis 10 (suppl 2), S274–S276. [PubMed: 3055197]
- Falkow S (2004). Molecular Koch's postulates applied to bacterial pathogenicity a personal recollection 15 years later. Nat Rev Microbiol 2, 67–72. [PubMed: 15035010]
- Filonov GS, Piatkevich KD, Ting LM, Zhang J, Kim K, and Verkhusha VV (2011). Bright and stable near-infrared fluorescent protein for in vivo imaging. Nat Biotechnol 29, 757–761. 10.1038/nbt.1918 [PubMed: 21765402]
- Fine LM, Earnhart CG, and Marconi RT (2011). Genetic transformation of the relapsing fever spirochete *Borrelia hermsii*: stable integration and expression of green fluorescent protein from linear plasmid 200. J Bacteriol 193, 3241–3245. 10.1128/JB.05037-11 [PubMed: 21551306]
- Fine LM, Miller DP, Mallory KL, Tegels BK, Earnhart CG, and Marconi RT (2014). The *Borrelia hermsii* factor H binding protein FhbA is not required for infectivity in mice or for resistance to human complement *in vitro*. Infect Immun 82, 3324–3332. 10.1128/IAI.01892-14 [PubMed: 24866803]
- Fingerle V, Goettner G, Gern L, Wilske B, and Schulte-Spechtel U (2007). Complementation of a *Borrelia afzelii* OspC mutant highlights the crucial role of OspC for dissemination of *Borrelia afzelii* in *Ixodes ricinus*. Int J Med Microbiol 297, 97–107. [PubMed: 17267282]
- Frank KL, Bundle SF, Kresge ME, Eggers CH, and Samuels DS (2003). *aadA* confers streptomycin resistance in *Borrelia burgdorferi*. J Bacteriol 185, 6723–6727. [PubMed: 14594849]
- Fraser CM, Casjens S, Huang WM, Sutton GG, Clayton R, Lathigra R, White O, Ketchum KA, Dodson R, Hickey EK, et al. (1997). Genomic sequence of a Lyme disease spirochaete, *Borrelia burgdorferi*. Nature 390, 580–586. [PubMed: 9403685]
- Ge Y, Old IG, Saint Girons I, and Charon NW (1997). Molecular characterization of a large *Borrelia burgdorferi* motility operon which is initiated by a consensus sigma70 promoter. J Bacteriol 179, 2289–2299. [PubMed: 9079915]
- Gilbert MA, Morton EA, Bundle SF, and Samuels DS (2007). Artificial regulation of *ospC* expression in *Borrelia burgdorferi*. Mol Microbiol 63, 1259–1273. [PubMed: 17257307]
- Gilmore RD, Brandt KS, and Hyde JA (2014). *pncA* and *bptA* are not sufficient to complement *Ixodes scapularis* colonization and persistence by *Borrelia burgdorferi* in a linear plasmid lp25-deficient background. Infect Immun 82, 5110–5116. 10.1128/IAI.02613-14 [PubMed: 25245809]

Gossen M, and Bujard H (1992). Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc Natl Acad Sci USA 89, 5547–5551. [PubMed: 1319065]

- Griffin BA, Adams SR, and Tsien RY (1998). Specific covalent labeling of recombinant protein molecules inside live cells. Science 281, 269–272. 10.1126/science.281.5374.269 [PubMed: 9657724]
- Grimm D, Eggers CH, Caimano MJ, Tilly K, Stewart PE, Elias AF, Radolf JD, and Rosa PA (2004). Experimental assessment of the roles of linear plasmids lp25 and lp28–1 of *Borrelia burgdorferi* throughout the infectious cycle. Infect Immun 72, 5938–5946. [PubMed: 15385497]
- Grimm D, Tilly K, Bueschel DM, Fisher MA, Policastro PF, Gherardini FC, Schwan TG, and Rosa PA (2005). Defining plasmids required by *Borrelia burgdorferi* for colonization of tick vector *Ixodes scapularis* (Acari: Ixodidae). J Med Entomol 42, 676–684. [PubMed: 16119559]
- Groshong AM, Dey A, Bezsonova I, Caimano MJ, and Radolf JD (2017). Peptide Uptake Is Essential for *Borrelia burgdorferi* Viability and Involves Structural and Regulatory Complexity of its Oligopeptide Transporter. MBio 8, e02047–02017. 10.1128/mBio.02047-17 [PubMed: 29259089]
- Groshong AM, Gibbons NE, Yang XF, and Blevins JS (2012). Rrp2, a prokaryotic enhancer-like binding protein, is essential for viability of *Borrelia burgdorferi*. J Bacteriol 194, 3336–3342. 10.1128/JB.00253-12 [PubMed: 22544267]
- Guyard C, Raffel SJ, Schrumpf ME, Dahlstrom E, Sturdevant D, Ricklefs SM, Martens C, Hayes SF, Fischer ER, Hansen BT, et al. (2013). Periplasmic flagellar export apparatus protein, FliH, is involved in post-transcriptional regulation of FlaB, motility and virulence of the relapsing fever spirochete *Borrelia hermsii*. PLoS One 8, e72550. 10.1371/journal.pone.0072550 [PubMed: 24009690]
- Hayes B, Jewett M, and Rosa P (2010). A *lacZ* reporter system for use in *Borrelia burgdorferi*. Appl Environ Microbiol 76, 7407–7412. [PubMed: 20851957]
- Hayes BM, Dulebohn DP, Sarkar A, Tilly K, Bestor A, Ambroggio X, and Rosa PA (2014). Regulatory protein BBD18 of the lyme disease spirochete: essential role during tick acquisition? MBio 5, e01017–01014. 10.1128/mBio.01017-14
- Hayes F (2003). Transposon-based strategies for microbial functional genomics and proteomics. Annu Rev Genet 37, 3–29. [PubMed: 14616054]
- Hillman C, Stewart PE, Strnad M, Stone H, Starr T, Carmody A, Evans TJ, Carracoi V, Wachter J, and Rosa PA (2019). Visualization of Spirochetes by Labeling Membrane Proteins With Fluorescent Biarsenical Dyes. Frontiers in cellular and infection microbiology 9, 287. 10.3389/ fcimb.2019.00287 [PubMed: 31482073]
- Hübner A, Revel AT, Nolen DM, Hagman KE, and Norgard MV (2003). Expression of a *luxS* gene is not required for *Borrelia burgdorferi* infection of mice via needle inoculation. Infect Immun 71, 2892–2896. [PubMed: 12704164]
- Hübner A, Wang X, Nolen DM, Popova TG, Cabello FC, and Norgard M (2001). Expression of *Borrelia burgdorferi* OspC and DbpA is controlled by a RpoN-RpoS regulatory pathway. Proc Natl Acad Sci USA 98, 12724–12729. [PubMed: 11675503]
- Hunfeld KP, and Brade V (2006). Antimicrobial susceptibility of *Borrelia burgdorferi* sensu lato: what we know, what we don't know, and what we need to know. Wien Klin Wochenschr 118, 659–668. [PubMed: 17160604]
- Hunfeld KP, Kraiczy P, Kekoukh K, Schafer V, and Brade V (2002). Standardised in vitro susceptibility testing of Borrelia burgdorferi against well-known and newly developed antimicrobial agents - possible implications for new therapeutic approaches to Lyme disease. Int J Med Microbiol 291, 125–137. [PubMed: 12141737]
- Hyde JA, and Skare JT (2018). Detection of Bioluminescent *Borrelia burgdorferi* from *In Vitro* Cultivation and During Murine Infection. Methods Mol Biol 1690, 241–257. 10.1007/978-1-4939-7383-5_18 [PubMed: 29032549]
- Hyde JA, Weening EH, Chang M, Trzeciakowski JP, Hook M, Cirillo JD, and Skare JT (2011a). Bioluminescent imaging of *Borrelia burgdorferi* in vivo demonstrates that the fibronectin-binding protein BBK32 is required for optimal infectivity. Mol Microbiol 82, 99–113. 10.1111/j.1365-2958.2011.07801.x [PubMed: 21854463]

Hyde JA, Weening EH, and Skare JT (2011b). Genetic transformation of *Borrelia burgdorferi*. Curr Protoc Microbiol Chapter 12, Unit 12C 14. 10.1002/9780471729259.mc12c04s20

- Iyer R, Caimano MJ, Luthra A, Axline D Jr., Corona A, Iacobas DA, Radolf JD, and Schwartz I (2015). Stage-specific global alterations in the transcriptomes of Lyme disease spirochetes during tick feeding and following mammalian host adaptation. Mol Microbiol 95, 509–538. 10.1111/mmi.12882 [PubMed: 25425211]
- Jackson-Litteken CD, Zalud AK, Ratliff CT, Latham JI, Bourret TJ, Lopez JE, and Blevins JS (2019).
 Assessing the Contribution of an HtrA Family Serine Protease During *Borrelia turicatae*Mammalian Infection. Frontiers Cellular Infection Microbiology 9, 290. 10.3389/
 fcimb.2019.00290
- Jacob F, and Monod J (1961). Genetic regulatory mechanisms in the synthesis of proteins. J Mol Biol 3, 318–356. [PubMed: 13718526]
- Jacobs MB, Norris SJ, Phillippi-Falkenstein KM, and Philipp MT (2006). Infectivity of the highly transformable BBE02⁻ lp56⁻ mutant of *Borrelia burgdorferi*, the Lyme disease spirochete, via ticks. Infect Immun 74, 3678–3681. [PubMed: 16714602]
- Jain S, Showman AC, and Jewett MW (2015). Molecular dissection of a Borrelia burgdorferi in vivo essential purine transport system. Infect Immun 83, 2224–2233. 10.1128/IAI.02859-14 [PubMed: 25776752]
- Jain S, Sutchu S, Rosa PA, Byram R, and Jewett MW (2012). Borrelia burgdorferi harbors a transport system essential for purine salvage and mammalian infection. Infect Immun 80, 3086–3093. 10.1128/IAI.00514-12 [PubMed: 22710875]
- James AE, Rogovskyy AS, Crowley MA, and Bankhead T (2016). Characterization of a DNA Adenine Methyltransferase Gene of *Borrelia hermsii* and Its Dispensability for Murine Infection and Persistence. PLoS One 11, e0155798. 10.1371/journal.pone.0155798 [PubMed: 27195796]
- James AE, Rogovskyy AS, Crowley MA, and Bankhead T (2018). Cis-acting DNA elements flanking the variable major protein expression site of *Borrelia hermsii* are required for murine persistence. MicrobiologyOpen 7, e00569. 10.1002/mbo3.569 [PubMed: 29250931]
- Jewett MW, Byram R, Bestor A, Tilly K, Lawrence K, Burtnick MN, Gherardini F, and Rosa PA (2007a). Genetic basis for retention of a critical virulence plasmid of *Borrelia burgdorferi*. Mol Microbiol 66, 975–990. [PubMed: 17919281]
- Jewett MW, Jain S, Linowski AK, Sarkar A, and Rosa PA (2011). Molecular characterization of the Borrelia burgdorferi in vivo-essential protein PncA. Microbiology 157, 2831–2840. 10.1099/ mic.0.051706-0 [PubMed: 21778210]
- Jewett MW, Lawrence K, Bestor AC, Tilly K, Grimm D, Shaw P, VanRaden M, Gherardini F, and Rosa PA (2007b). The critical role of the linear plasmid lp36 in the infectious cycle of *Borrelia burgdorferi*. Mol Microbiol 64, 1358–1374. [PubMed: 17542926]
- Jewett MW, Lawrence KA, Bestor A, Byram R, Gherardini F, and Rosa PA (2009). GuaA and GuaB are essential for *Borrelia burgdorferi* survival in the tick-mouse infectious cycle. J Bacteriol 191, 6231–6241. [PubMed: 19666713]
- Judson N, and Mekalanos JJ (2000). Transposon-based approaches to identify essential bacterial genes. Trends Microbiol 8, 521–526. [PubMed: 11121763]
- Kasumba IN, Bestor A, Tilly K, and Rosa PA (2015). Use of an endogenous plasmid locus for stable in *trans* complementation in *Borrelia burgdorferi*. Appl Environ Microbiol 81, 1038–1046. 10.1128/ aem.03657-14 [PubMed: 25452278]
- Kawabata H, Norris SJ, and Watanabe H (2004). BBE02 disruption mutants of *Borrelia burgdorferi* B31 have a highly transformable, infectious phenotype. Infect Immun 72, 7147–7154. [PubMed: 15557639]
- Knight SW, Kimmel BJ, Eggers CH, and Samuels DS (2000). Disruption of the *Borrelia burgdorferi gac* gene, encoding the naturally synthesized GyrA C-terminal domain. J Bacteriol 182, 2048–2051. [PubMed: 10715016]
- Knight SW, and Samuels DS (1999). Natural synthesis of a DNA-binding protein from the C-terminal domain of DNA gyrase A *in Borrelia burgdorferi*. Embo J 18, 4875–4881. [PubMed: 10469665]
- Krishnavajhala A, Wilder HK, Boyle WK, Damania A, Thornton JA, Perez de Leon AA, Teel PD, and Lopez JE (2017). Imaging of *Borrelia turicatae* Producing the Green Fluorescent Protein Reveals

- Persistent Colonization of the *Ornithodoros turicata* Midgut and Salivary Glands from Nymphal Acquisition through Transmission. Appl Environ Microbiol 83, e02503–02516. 10.1128/AEM.02503-16 [PubMed: 27986725]
- Kuleshov KV, Margos G, Fingerle V, Koetsveld J, Goptar IA, Markelov ML, Kolyasnikova NM, Sarksyan DS, Kirdyashkina NP, Shipulin GA, et al. (2020). Whole genome sequencing of *Borrelia miyamotoi* isolate Izh-4: reference for a complex bacterial genome. BMC Genomics 21, 16. 10.1186/s12864-019-6388-4 [PubMed: 31906865]
- Kumru OS, Schulze RJ, Slusser JG, and Zuckert WR (2010). Development and validation of a FACS-based lipoprotein localization screen in the Lyme disease spirochete *Borrelia burgdorferi*. BMC microbiology 10, 277. 10.1186/1471-2180-10-277 [PubMed: 21047413]
- Kurtti TJ, Munderloh UG, Johnson RC, and Ahlstrand GG (1987). Colony formation and morphology in *Borrelia burgdorferi*. J Clin Microbiol 25, 2054–2058. [PubMed: 3693538]
- Labandeira-Rey M, Seshu J, and Skare JT (2003). The absence of linear plasmid 25 or 28–1 of *Borrelia burgdorferi* dramatically alters the kinetics of experimental infection via distinct mechanisms. Infect Immun 71, 4608–4613. [PubMed: 12874340]
- Labandeira-Rey M, and Skare JT (2001). Decreased infectivity in *Borrelia burgdorferi* strain B31 is associated with loss of linear plasmid 25 or 28–1. Infect Immun 69, 446–455. [PubMed: 11119536]
- Latham JI, and Blevins JS (2018). Generation of Conditional Mutants in *Borrelia burgdorferi*. Methods Mol Biol 1690, 225–239. 10.1007/978-1-4939-7383-5_17 [PubMed: 29032548]
- Lawrenz MB, Kawabata H, Purser JE, and Norris SJ (2002). Decreased electroporation efficiency in *Borrelia burgdorferi* containing linear plasmids lp25 and lp56: impact on transformation of infectious *Borrelia*. Infect Immun 70, 4851–4858. [PubMed: 12183529]
- Lee WY, Moriarty TJ, Wong CH, Zhou H, Strieter RM, van Rooijen N, Chaconas G, and Kubes P (2010). An intravascular immune response to *Borrelia burgdorferi* involves Kupffer cells and iNKT cells. Nat Immunol 11, 295–302. 10.1038/ni.1855 [PubMed: 20228796]
- Lenhart TR, and Akins DR (2010). *Borrelia burgdorferi* locus BB0795 encodes a BamA orthologue required for growth and efficient localization of outer membrane proteins. Mol Microbiol 75, 692–709. 10.1111/j.1365-2958.2009.07015.x [PubMed: 20025662]
- Lescot M, Audic S, Robert C, Nguyen TT, Blanc G, Cutler SJ, Wincker P, Couloux A, Claverie JM, Raoult D, et al. (2008). The genome of *Borrelia recurrentis*, the agent of deadly louse-borne relapsing fever, is a degraded subset of tick-borne *Borrelia duttonii*. PLoS Genet 4, e1000185. [PubMed: 18787695]
- Li X, Pal U, Ramamoorthi N, Liu X, Desrosiers DC, Eggers CH, Anderson JF, Radolf JD, and Fikrig E (2007a). The Lyme disease agent *Borrelia burgdorferi* requires BB0690, a Dps homologue, to persist within ticks. Mol Microbiol 63, 694–710. 10.1111/j.1365-2958.2006.05550.x [PubMed: 17181780]
- Li X, Pal U, Ramamoorthi N, Liu X, Desrosiers DC, Eggers CH, Anderson JF, Radolf JD, and Fikrig E (2007b). The Lyme disease agent *Borrelia burgdorferi* requires BB0690, a Dps homologue, to persist within ticks. Mol Microbiol 63, 694–710. [PubMed: 17181780]
- Lin B, Short SA, Eskildsen M, Klempner MS, and Hu LT (2001). Functional testing of putative oligopeptide permease (Opp) proteins of *Borrelia burgdorferi:* a complementation model in *opp(-) Escherichia coli*. Biochim Biophys Acta 1499, 222–231. [PubMed: 11341969]
- Lin T, and Gao L (2018). Genome-Wide Mutagenesis in *Borrelia burgdorferi*. Methods Mol Biol 1690, 201–223. 10.1007/978-1-4939-7383-5_16 [PubMed: 29032547]
- Lin T, Gao L, Zhang C, Odeh E, Jacobs MB, Coutte L, Chaconas G, Philipp MT, and Norris SJ (2012). Analysis of an ordered, comprehensive STM mutant library in infectious *Borrelia burgdorferi*: insights into the genes required for mouse infectivity. PLoS One 7, e47532. 10.1371/journal.pone.0047532 [PubMed: 23133514]
- Lin T, Troy EB, Hu LT, Gao L, and Norris SJ (2014). Transposon mutagenesis as an approach to improved understanding of *Borrelia* pathogenesis and biology. Frontiers in cellular and infection microbiology 4, 63. 10.3389/fcimb.2014.00063 [PubMed: 24904839]
- Liveris D, Mulay V, and Schwartz I (2004). Functional properties of *Borrelia burgdorferi recA*. J Bacteriol 186, 2275–2280. [PubMed: 15060028]

Lopez JE, Schrumpf ME, Raffel SJ, Policastro PF, Porcella SF, and Schwan TG (2008). Relapsing fever spirochetes retain infectivity after prolonged *in vitro* cultivation. Vector Borne Zoonotic Dis 8, 813–820. 10.1089/vbz.2008.0033 [PubMed: 18637723]

- Lopez JE, Wilder HK, Hargrove R, Brooks CP, Peterson KE, Beare PA, Sturdevant DE, Nagarajan V, Raffel SJ, and Schwan TG (2013). Development of genetic system to inactivate a *Borrelia turicatae* surface protein selectively produced within the salivary glands of the arthropod vector. PLoS neglected tropical diseases 7, e2514. 10.1371/journal.pntd.0002514 [PubMed: 24205425]
- Lybecker MC, and Samuels DS (2007). Temperature-induced regulation of RpoS by a small RNA in *Borrelia burgdorferi*. Mol Microbiol 64, 1075–1089. [PubMed: 17501929]
- Mahan MJ, Slauch JM, and Mekalanos JJ (1993). Selection of bacterial virulence genes that are specifically induced in host tissues. Science 259, 686–688. [PubMed: 8430319]
- Margolis N, Hogan D, Tilly K, and Rosa PA (1994). Plasmid location of *Borrelia* purine biosynthesis gene homologs. J Bacteriol 176, 6427–6432. [PubMed: 7961392]
- Margos G, Hepner S, Mang C, Marosevic D, Reynolds SE, Krebs S, Sing A, Derdakova M, Reiter MA, and Fingerle V (2017). Lost in plasmids: next generation sequencing and the complex genome of the tick-borne pathogen *Borrelia burgdorferi*. BMC Genomics 18, 422. 10.1186/s12864-017-3804-5 [PubMed: 28558786]
- Medrano MS, Policastro PF, Schwan TG, and Coburn J (2010). Interaction of *Borrelia burgdorferi* Hbb with the p66 promoter. Nucleic Acids Res 38, 414–427. 10.1093/nar/gkp1027 [PubMed: 19910373]
- Miller JC, von Lackum K, Woodman ME, and Stevenson B (2006). Detection of *Borrelia burgdorferi* gene expression during mammalian infection using transcriptional fusions that produce green fluorescent protein. Microb Pathog 41, 43–47. [PubMed: 16723206]
- Miller SC, Porcella SF, Raffel SJ, Schwan TG, and Barbour AG (2013). Large linear plasmids of *Borrelia* species that cause relapsing fever. J Bacteriol 195, 3629–3639. 10.1128/JB.00347-13 [PubMed: 23749977]
- Moriarty TJ, Norman MU, Colarusso P, Bankhead T, Kubes P, and Chaconas G (2008). Real-time high resolution 3D imaging of the Lyme disease spirochete adhering to and escaping from the vasculature of a living host. PLoS Pathog 4, e1000090. [PubMed: 18566656]
- Motaleb MA, Pitzer JE, Sultan SZ, and Liu J (2011). A novel gene inactivation system reveals altered periplasmic flagellar orientation in a *Borrelia burgdorferi fliL* mutant. J Bacteriol 193, 3324–3331. 10.1128/JB.00202-11 [PubMed: 21441522]
- Nickoloff JA (1995). Electroporation Protocols for Microorganisms (Totowa, New Jersey: Humana Press).
- Norris SJ, Howell JK, Odeh EA, Lin T, Gao L, and Edmondson DG (2011). High-throughput plasmid content analysis of *Borrelia burgdorferi* B31 by using Luminex multiplex technology. Applied and Environmental Microbiology 77, 1483–1492. 10.1128/AEM.01877-10 [PubMed: 21169439]
- Novak EA, Sekar P, Xu H, Moon KH, Manne A, Wooten RM, and Motaleb MA (2016). The *Borrelia burgdorferi* CheY3 response regulator is essential for chemotaxis and completion of its natural infection cycle. Cell Microbiol 18, 1782–1799. 10.1111/cmi.12617 [PubMed: 27206578]
- Oehler S, Amouyal M, Kolkhof P, von Wilcken-Bergmann B, and Müller-Hill B (1994). Quality and position of the three lac operators of *E. coli* define efficiency of repression. EMBO J 13, 3348–3355. [PubMed: 8045263]
- Ouyang Z, Haq S, and Norgard MV (2010). Analysis of the *dbpBA* upstream regulatory region controlled by RpoS in *Borrelia burgdorferi*. J Bacteriol 192, 1965–1974. 10.1128/JB.01616-09 [PubMed: 20118265]
- Parveen N, Cornell K, Bono J, Chamberland C, Rosa P, and Leong J (2006). Bgp, a secreted GAG-binding protein of *Borrelia burgdorferi* strain N40, displays nucleosidase activity and is not essential for infection of immunodeficient mice. Infect Immun 74, 3016–3020. [PubMed: 16622242]
- Paster BJ, Stackebrandt E, Hespell RB, Hahn CM, and Woese CR (1984). The phylogeny of the spirochetes. Syst Appl Microbiol 5, 337–351.

Pedelacq JD, Cabantous S, Tran T, Terwilliger TC, and Waldo GS (2006). Engineering and characterization of a superfolder green fluorescent protein. Nat Biotechnol 24, 79–88. 10.1038/nbt1172 [PubMed: 16369541]

- Phelan JP, Kern A, Ramsey ME, Lundt ME, Sharma B, Lin T, Gao L, Norris SJ, Hyde JA, Skare JT, et al. (2019). Genome-wide screen identifies novel genes required for *Borrelia burgdorferi* survival in its *Ixodes* tick vector. PLoS Pathog 15, e1007644. 10.1371/journal.ppat.1007644 [PubMed: 31086414]
- Pich OQ, Burgos R, Planell R, Querol E, and Pinol J (2006). Comparative analysis of antibiotic resistance gene markers in *Mycoplasma genitalium*: application to studies of the minimal gene complement. Microbiology 152, 519–527. [PubMed: 16436439]
- Purser JE, Lawrenz MB, Caimano MJ, Radolf JD, and Norris SJ (2003). A plasmid-encoded nicotinamidase (PncA) is essential for infectivity of *Borrelia burgdorferi* in a mammalian host. Mol Microbiol 48, 753–764. [PubMed: 12694619]
- Purser JE, and Norris SJ (2000). Correlation between plasmid content and infectivity in *Borrelia burgdorferi*. Proc Natl Acad Sci USA 97, 13865–13870. [PubMed: 11106398]
- Putteet-Driver AD, Zhong J, and Barbour AG (2004). Transgenic expression of RecA of the spirochetes *Borrelia burgdorferi* and *Borrelia hermsii* in *Escherichia coli* revealed differences in DNA repair and recombination phenotypes. J Bacteriol 186, 2266–2274. [PubMed: 15060027]
- Radolf JD and Samuels DS (2021). Lyme Disease and Relapsing Fever Spirochetes: Genomics, Molecular Biology, Host Interactions and Disease Pathogenesis (Norfolk, UK: Caister Academic Press). 10.21775/9781913652616
- Raffel SJ, Battisti JM, Fischer RJ, and Schwan TG (2014). Inactivation of genes for antigenic variation in the relapsing fever spirochete *Borrelia hermsii* reduces infectivity in mice and transmission by ticks. PLoS Pathog 10, e1004056. 10.1371/journal.ppat.1004056 [PubMed: 24699793]
- Raffel SJ, Williamson BN, Schwan TG, and Gherardini FC (2018). Colony formation in solid medium by the relapsing fever spirochetes *Borrelia hermsii* and *Borrelia turicatae*. Ticks and tick-borne diseases 9, 281–287. 10.1016/j.ttbdis.2017.11.001 [PubMed: 29169853]
- Ramsey ME, Hyde JA, Medina-Perez DN, Lin T, Gao L, Lundt ME, Li X, Norris SJ, Skare JT, and Hu LT (2017). A high-throughput genetic screen identifies previously uncharacterized *Borrelia burgdorferi* genes important for resistance against reactive oxygen and nitrogen species. PLoS Pathog 13, e1006225. 10.1371/journal.ppat.1006225 [PubMed: 28212410]
- Rego RO, Bestor A, and Rosa PA (2011). Defining the plasmid-encoded restriction-modification systems of the Lyme disease spirochete *Borrelia burgdorferi*. J Bacteriol 193, 1161–1171. JB. 01176–10 [pii] 10.1128/JB.01176-10 [PubMed: 21193609]
- Rego RO, Bestor A, Stefka J, and Rosa PA (2014). Population bottlenecks during the infectious cycle of the Lyme disease spirochete *Borrelia burgdorferi*. PLoS One 9, e101009. 10.1371/journal.pone.0101009 [PubMed: 24979342]
- Restrepo BI, and Barbour AG (1994). Antigen diversity in the bacterium *B. hermsii* through "somatic" mutations in rearranged *vmp* genes. Cell 78, 867–876. [PubMed: 8087853]
- Revel AT, Blevins JS, Almazan C, Neil L, Kocan KM, de la Fuente J, Hagman KE, and Norgard MV (2005). *bptA* (*bbe16*) is essential for the persistence of the Lyme disease spirochete, *Borrelia burgdorferi*, in its natural tick vector. Proc Natl Acad Sci USA 102, 6972–6977. [PubMed: 15860579]
- Revel AT, Talaat AM, and Norgard MV (2002). DNA microarray analysis of differential gene expression in *Borrelia burgdorferi*, the Lyme disease spirochete. Proc Natl Acad Sci USA 99, 1562–1567. [PubMed: 11830671]
- Richards CL, Lawrence KA, Su H, Yang Y, Yang XF, Dulebohn DP, and Gherardini FC (2015). Acetyl-Phosphate Is Not a Global Regulatory Bridge between Virulence and Central Metabolism in *Borrelia burgdorferi*. PLoS One 10, e0144472. 10.1371/journal.pone.0144472 [PubMed: 26681317]
- Ristow LC, Miller HE, Padmore LJ, Chettri R, Salzman N, Caimano MJ, Rosa PA, and Coburn J (2012). The beta(3)-integrin ligand of *Borrelia burgdorferi* is critical for infection of mice but not ticks. Mol Microbiol 85, 1105–1118. 10.1111/j.1365-2958.2012.08160.x [PubMed: 22758390]

Rosa P, Samuels DS, Hogan D, Stevenson B, Casjens S, and Tilly K (1996). Directed insertion of a selectable marker into a circular plasmid of *Borrelia burgdorferi*. J Bacteriol 178, 5946–5953. [PubMed: 8830691]

- Rosa PA, and Hogan D (1992). Colony formation by *Borrelia burgdorferi* in solid medium: clonal analysis of osp locus variants. In Proceeding of the First International Conference on Tick Borne Pathogens at the Host-Vector Interface, Munderloh UG, and Kurtti TJ, eds. (University of Minnesota, St. Paul, Minn.), pp. 95–103.
- Rosa PA, Tilly K, and Stewart PE (2005). The burgeoning molecular genetics of the Lyme disease spirochaete. Nature Rev Microbiol 3, 129–143. [PubMed: 15685224]
- Ruzic-Sabljic E, Podreka T, Maraspin V, and Strle F (2005). Susceptibility of *Borrelia afzelii* strains to antimicrobial agents. Int J Antimicrob Agents 25, 474–478. [PubMed: 15871918]
- Sadziene A, Wilske B, Ferdows MS, and Barbour AG (1993). The cryptic *ospC* gene of *Borrelia burgdorferi* B31 is located on a circular plasmid. Infect Immun 61, 2192–2195. [PubMed: 8478109]
- Salama NR, and Manoil C (2006). Seeking completeness in bacterial mutant hunts. Curr Opin Microbiol 9, 307–311. [PubMed: 16616873]
- Sambri V, and Lovett MA (1990). Survival of *Borrelia burgdorferi* in different electroporation buffers. Microbiologica 13, 79–83. [PubMed: 2308532]
- Sambrook J, Fritsch EF, and Maniatis T (1989). Molecular Cloning. A Laboratory Manual, 2nd edn (Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press).
- Samuels DS (1995). Electrotransformation of the spirochete *Borrelia burgdorferi*. In Methods in Molecular Biology, Nickoloff JA, ed. (Totowa, NJ: Humana Press, Inc.), pp. 253–259.
- Samuels DS (2006). Antibiotic resistance in *Borrelia burgdorferi*: applications for genetic manipulation and implications for evolution. In NATO Advanced Research Workshop on Molecular Biology of Spirochetes, Cabello FC, Hulinska D, and Godfrey HP, eds. (Prague, Czech Republic: IOS Press, Amsterdam), pp. 56–70.
- Samuels DS, Drecktrah D, and Hall LS (2018). Genetic Transformation and Complementation. Methods Mol Biol 1690, 183–200. 10.1007/978-1-4939-7383-5_15 [PubMed: 29032546]
- Samuels DS, and Garon CF (1997). Oligonucleotide-mediated genetic transformation of *Borrelia burgdorferi*. Microbiology 143, 519–522. [PubMed: 9043127]
- Samuels DS, Mach KE, and Garon CF (1994a). Genetic transformation of the Lyme disease agent *Borrelia burgdorferi* with coumarin-resistant *gyrB*. J Bacteriol 176, 6045–6049. [PubMed: 7928965]
- Samuels DS, Marconi RT, Huang WM, and Garon CF (1994b). *gyrB* mutations in coumermycin A₁-resistant *Borrelia burgdorferi*. J Bacteriol 176, 3072–3075. [PubMed: 8188609]
- Sarkar A, Hayes BM, Dulebohn DP, and Rosa PA (2011). Regulation of the virulence determinant OspC by *bbd18* on linear plasmid lp17 of *Borrelia burgdorferi*. J Bacteriol 193, 5365–5373. 10.1128/jb.01496-10 [PubMed: 21784941]
- Sartakova M, Dobrikova E, and Cabello FC (2000). Development of an extrachromosomal cloning vector system for use in *Borrelia burgdorferi*. Proc Natl Acad Sci USA 97, 4850–4855. [PubMed: 10781091]
- Sartakova ML, Dobrikova EY, Motaleb MA, Godfrey HP, Charon NW, and Cabello FC (2001). Complementation of a nonmotile *flaB* mutant of *Borrelia burgdorferi* by chromosomal integration of a plasmid containing a wild-type *flaB* allele. J Bacteriol 183, 6558–6564. [PubMed: 11673425]
- Schulze RJ, and Zuckert WR (2006). *Borrelia burgdorferi* lipoproteins are secreted to the outer surface by default. Mol Microbiol 59, 1473–1484. [PubMed: 16468989]
- Schwan TG, Raffel SJ, and Battisti JM (2020). Transgenic functional complementation with a transmission -associated protein restores spirochete infectivity by tick bite. Ticks and tick-borne diseases 11, 101377. 10.1016/j.ttbdis.2020.101377 [PubMed: 32005628]
- Seshu J, Esteve-Gassent MD, Labandeira-Rey M, Kim JH, Trzeciakowski JP, Hook M, and Skare JT (2006). Inactivation of the fibronectin-binding adhesin gene *bbk32* significantly attenuates the infectivity potential of *Borrelia burgdorferi*. Mol Microbiol 59, 1591–1601. [PubMed: 16468997]

Shigekawa K, and Dower WJ (1988). Electroporation of eukaryotes and prokaryotes: a general approach to the introduction of macromolecules into cells. BioTechniques 6, 742–751. [PubMed: 3273636]

- Showman AC, Aranjuez G, Adams PP, and Jewett MW (2016). Gene *bb0318* Is Critical for the Oxidative Stress Response and Infectivity of *Borrelia burgdorferi*. Infect Immun 84, 3141–3151. 10.1128/IAI.00430-16 [PubMed: 27550932]
- Skare JT, Shaw DK, Trzeciakowski JP, and Hyde JA (2016). In Vivo Imaging Demonstrates That *Borrelia burgdorferi ospC* Is Uniquely Expressed Temporally and Spatially throughout Experimental Infection. PLoS One 11, e0162501. 10.1371/journal.pone.0162501 [PubMed: 27611840]
- Sohaskey CD, Arnold C, and Barbour AG (1997). Analysis of promoters in *Borrelia burgdorferi* by use of a transiently expressed reporter gene. J Bacteriol 179, 6837–6842. [PubMed: 9352937]
- Sohaskey CD, Zuckert WR, and Barbour AG (1999). The extended promoters for two outer membrane lipoprotein genes of *Borrelia* spp. uniquely include a T-rich region. Mol Microbiol 33, 41–51. [PubMed: 10411722]
- Srivastava SY, and de Silva AM (2008). Reciprocal expression of *ospA* and *ospC* in single cells of *Borrelia burgdorferi*. J Bacteriol 190, 3429–3433. [PubMed: 18359818]
- Steere AC (2001). Lyme Disease. N Engl J Med 345, 115-125. [PubMed: 11450660]
- Stevenson B, Bono JL, Elias A, Tilly K, and Rosa P (1998). Transformation of the Lyme disease spirochete *Borrelia burgdorferi* with heterologous DNA. J Bacteriol 180, 4850–4855. [PubMed: 9733687]
- Stewart PE, Byram R, Grimm D, Tilly K, and Rosa PA (2005). The plasmids of *Borrelia burgdorferi*: essential genetic elements of a pathogen. Plasmid 53, 1–13. [PubMed: 15631949]
- Stewart PE, Chaconas G, and Rosa P (2003). Conservation of plasmid maintenance functions between linear and circular plasmids in *Borrelia burgdorferi*. J Bacteriol 185, 3202–3209. [PubMed: 12730180]
- Stewart PE, Hoff J, Fischer E, Krum JG, and Rosa PA (2004). Genome-wide transposon mutagenesis of *Borrelia burgdorferi* for identification of phenotypic mutants. Appl Environ Microbiol 70, 5973–5979. [PubMed: 15466540]
- Stewart PE, and Rosa PA (2008). Transposon mutagenesis of the Lyme disease agent *Borrelia burgdorferi*. Methods Mol Biol 431, 85–95. [PubMed: 18287749]
- Stewart PE, Thalken R, Bono JL, and Rosa P (2001). Isolation of a circular plasmid region sufficient for autonomous replication and transformation of infectious *Borrelia burgdorferi*. Mol Microbiol 39, 714–721. [PubMed: 11169111]
- Stoenner HG, Dodd T, and Larsen C (1982). Antigenic variation in *B. hermsii*. J Exp Med 156, 1297–1311. [PubMed: 7130900]
- Strnad M, and Rego ROM (2020). The need to unravel the twisted nature of the *Borrelia burgdorferi* sensu lato complex across Europe. Microbiology. 10.1099/mic.0.000899
- Strother KO, Broadwater A, and de Silva A (2005). Plasmid requirements for infection of ticks by *Borrelia burgdorferi*. Vector Borne Zoonotic Dis 5, 237–245. [PubMed: 16187892]
- Strother KO, Hodzic E, Barthold SW, and de Silva AM (2007). Infection of mice with Lyme disease spirochetes constitutively expressing outer surface proteins A and B. Infect Immun 75, 2786–2794. [PubMed: 17371860]
- Sultan SZ, Sekar P, Zhao X, Manne A, Liu J, Wooten RM, and Motaleb MA (2015). Motor rotation is essential for the formation of the periplasmic flagellar ribbon, cellular morphology, and *Borrelia burgdorferi* persistence within *Ixodes scapularis* tick and murine hosts. Infect Immun 83, 1765–1777. 10.1128/IAI.03097-14 [PubMed: 25690096]
- Takacs CN, Kloos ZA, Scott M, Rosa PA, and Jacobs-Wagner C (2018). Fluorescent Proteins, Promoters, and Selectable Markers for Applications in the Lyme Disease Spirochete *Borrelia burgdorferi*. Appl Environ Microbiol 84, e01824–01818. 10.1128/AEM.01824-18 [PubMed: 30315081]
- Tilly K, Bestor A, Jewett MW, and Rosa P (2007). Rapid clearance of Lyme disease spirochetes lacking OspC from skin. Infect Immun 75, 1517–1519. [PubMed: 17158906]

Tilly K, Bestor A, and Rosa PA (2016). Functional equivalence of OspA and OspB, but not OspC, in tick colonization by *Borrelia burgdorferi*. Infect Immun 84, 1565–1573. 10.1128/IAI.00063-16 [PubMed: 26953324]

- Tilly K, Elias AF, Bono JL, Stewart P, and Rosa P (2000). DNA exchange and insertional inactivation in spirochetes. J Mol Microbiol Biotechnol 2, 433–442. [PubMed: 11075915]
- Tilly K, Elias AF, Errett J, Fischer E, Iyer R, Schwartz I, Bono JL, and Rosa P (2001). Genetics and regulation of chitobiose utilization in *Borrelia burgdorferi*. J Bacteriol 183, 5544–5553. [PubMed: 11544216]
- Tilly K, Grimm D, Bueschel DM, Krum JG, and Rosa P (2004). Infectious cycle analysis of a *Borrelia burgdorferi* mutant defective in transport of chitobiose, a tick cuticle component. Vector Borne Zoonotic Dis 4, 159–168. [PubMed: 15228817]
- Tilly K, Hauser R, Campbell J, and Ostheimer J (1993). Isolation of *dnaJ, dnaK*, and *grpE* homologues from *Borrelia burgdorferi* and complementation of *Escherichia coli* mutants. Mol Microbiol 7, 359–369. [PubMed: 8459764]
- Tilly K, Krum JG, Bestor A, Jewett MW, Grimm D, Bueschel D, Byram R, Dorward D, Stewart P, and Rosa P (2006). *Borrelia burgdorferi* OspC protein required exclusively in a crucial early stage of mammalian infection. Infect Immun 74, 3554–3564. [PubMed: 16714588]
- Trevors JT, Chassy BM, Dower WJ, and Blaschek HP (1992). Electrotransformation of bacteria by plasmid DNA. In Guide to electroporation and electrofusion, Chang DC, Chassy BM, Saunders JA, and Sowers AE, eds. (San Diego: Academic Press), pp. 265–290.
- Troy EB, Lin T, Gao L, Lazinski DW, Camilli A, Norris SJ, and Hu LT (2013). Understanding barriers to *Borrelia burgdorferi* dissemination during infection using massively parallel sequencing. Infect Immun 81, 2347–2357. 10.1128/IAI.00266-13 [PubMed: 23608706]
- Troy EB, Lin T, Gao L, Lazinski DW, Lundt M, Camilli A, Norris SJ, and Hu LT (2016). Global Tn-seq analysis of carbohydrate utilization and vertebrate infectivity of *Borrelia burgdorferi*. Mol Microbiol 101, 1003–1023. 10.1111/mmi.13437 [PubMed: 27279039]
- Valdivia RH, Cormack BP, and Falkow S (2006). The uses of green fluorescent protein in prokaryotes. Methods Biochem Anal 47, 163–178. [PubMed: 16335713]
- Verhey TB, Castellanos M, and Chaconas G (2019). Antigenic variation in the Lyme spirochete: detailed functional assessment of recombinational switching at *vlsE* in the JD1 strain of *Borrelia burgdorferi*. Mol Microbiol 111, 750–763. 10.1111/mmi.14189 [PubMed: 30580501]
- Wager B, Shaw DK, Groshong AM, Blevins JS, and Skare JT (2015). BB0744 Affects Tissue Tropism and Spatial Distribution of *Borrelia burgdorferi*. Infect Immun 83, 3693–3703. 10.1128/ IAI.00828-15 [PubMed: 26150534]
- Wang XG, Scagliotti JP, and Hu LT (2004). Phospholipid synthesis in *Borrelia burgdorferi: BB0249* and *BB0721* encode functional phosphatidylcholine synthase and phosphatidylglycerolphosphate synthase proteins. Microbiology 150, 391–397. [PubMed: 14766917]
- Weening EH, Parveen N, Trzeciakowski JP, Leong JM, Hook M, and Skare JT (2008). *Borrelia burgdorferi* lacking DbpBA exhibits an early survival defect during experimental infection. Infect Immun 76, 5694–5705. [PubMed: 18809667]
- Whetstine CR, Slusser JG, and Zuckert WR (2009). Development of a single-plasmid-based regulatable gene expression system for *Borrelia burgdorferi*. Appl Environ Microbiol 75, 6553–6558. 10.1128/AEM.02825-08 [PubMed: 19700541]
- Wilder HK, Raffel SJ, Barbour AG, Porcella SF, Sturdevant DE, Vaisvil B, Kapatral V, Schmitt DP, Schwan TG, and Lopez JE (2016). Transcriptional Profiling the 150 kb Linear Megaplasmid of *Borrelia turicatae* Suggests a Role in Vector Colonization and Initiating Mammalian Infection. PLoS One 11, e0147707. 10.1371/journal.pone.0147707 [PubMed: 26845332]
- Wormser GP (2006). Clinical practice. Early Lyme disease. N Engl J Med 354, 2794–2801. [PubMed: 16807416]
- Xu Q, Seemanapalli SV, McShan K, and Liang FT (2006). Constitutive expression of outer surface protein C diminishes the ability of *Borrelia burgdorferi* to evade specific humoral immunity. Infect Immun 74, 5177–5184. [PubMed: 16926410]

Yang X, Alani SM, and Norgard MV (2003). The response regulator Rrp2 is essential for the expression of major membrane lipoproteins in *Borrelia burgdorferi*. Proc Natl Acad Sci USA 100, 11001–11006. [PubMed: 12949258]

- Yang XF, Pal U, Alani SM, Fikrig E, and Norgard MV (2004). Essential role for OspA/B in the life cycle of the Lyme disease spirochete. J Exp Med 199, 641–648. [PubMed: 14981112]
- Ye M, Zhang JJ, Fang X, Lawlis GB, Troxell B, Zhou Y, Gomelsky M, Lou Y, and Yang XF (2014). DhhP, a cyclic di-AMP phosphodiesterase of *Borrelia burgdorferi*, is essential for cell growth and virulence. Infect Immun 82, 1840–1849. 10.1128/IAI.00030-14 [PubMed: 24566626]
- Zhang JR, Hardham JM, Barbour AG, and Norris SJ (1997). Antigenic variation in Lyme disease borreliae by promiscuous recombination of VMP-like sequence cassettes. Cell 89, 275–285. [PubMed: 9108482]
- Zhang JR, and Norris SJ (1998). Kinetics and *in vivo* induction of genetic variation of *vlsE* in *Borrelia burgdorferi*. Infect Immun 66, 3689–3697. [PubMed: 9673250]
- Zhang X, Yang X, Kumar M, and Pal U (2009). BB0323 function is essential for *Borrelia burgdorferi* virulence and persistence through tick-rodent transmission cycle. J Infect Dis 200, 1318–1330. 10.1086/605846 [PubMed: 19754308]
- Zückert WR, and Meyer J (1996). Circular and linear plasmids of Lyme disease spirochetes have extensive homology: characterization of a repeated DNA element. J Bacteriol 178, 2287–2298. [PubMed: 8636030]

Table 1.

selectable markers for Borrelia

ANTIBIO	TIC RESISTAN	ANTIBIOTIC RESISTANCE CASSETTES				
gene	promoter	origin	resistance	$selection \ (\mu g \ ml^{-1}) comments$	comments	reference
gyrB301	Native (gyrB)	gyrB301 Native (gyrB) B. burgdorferi chromosome	$coumermycinA_1$	0.2–5	high rate of recombination at endogenous gyrB locus; pleiotropic effects	(Samuels et al., 1994)
aphl	flgB, flaB	<i>E. coli</i> Tn <i>903</i>	kanamycin	200–400	first widely used selectable marker in Borrelia	(Bono et al., 2000; Battisti et al., 2006)
ermC	native	Staphylococcus aureus	erythromycin	0.03-0.06	some Borrelia strains are resistant to erythromycin	(Sartakova et al., 2000)
aacCI	flgB, flaB	Pseudomonas aeruginosa Tn 1696	gentamicin	40	selection with this marker can be variable in E \it{coli}	(Elias et al., 2003)
aadA	flgB, flaB	Shigella flexneri plasmid R100	streptomycin <i>a</i>	50	aconfers resistance to both streptomycin and spectinomycin	(Frank et al., 2003; Jewett et al., 2007a)
psd_{Bb}	flgB	Aspergillus terreus	blasticidin	10–160	codon-optimized for Borrelia	(Takacs et al., 2018)
hph_{Bb}	flgB	E. coli	hygromycin	0.2–0.3	codon-optimized for Borrelia	(Takacs et al., 2018)

^aStreptomycin is used for selection in B. burgdorferi because spontaneous resistance to spectinomycin is high, whereas spectinomycin is used in E coli, because many strains are resistant to streptomycin.

Author Manuscript

Author Manuscript

reporter genes for Borrelia

Table 2.

REPORTER	APPLICATION(S)	LIMITATION(S)	REFERENCE(S)
Borrelia burgdorferi			
cat (chloramphenicol acetyl transferase)	<i>in vitro</i> gene expression	requires radioactivity or ELISA	(Sohaskey et al., 1997; Alverson et al., 2003)
$\mathit{lacZ}(eta ext{-}\mathit{galactosidase})$	in vitro gene expression; colorimetric detection in liquid and solid medium; easy blue/white screening	requires X-gal substrate	(Hayes et al., 2010)
FLUORESCENT REPORTERS (listed below)	in vitro and in vivo gene expression; cellular localization of fusion proteins; in vivo imaging of individual spirochetes in ticks and mice	fluorescence parameters vary among reporters and alleles; not all reporters tested for <i>in vivo</i> applications	
GFP, mEGFP. msfGFP (Green Fluorescent Protein)			(Carroll et al., 2003; Eggers et al., 2004; Moriarty et al., 2008; Dunham-Ems et al., 2009; Takacs et al., 2018)
YFP, mCitrine, msfYFP (Yellow Fluorescent Protein)			(Eggers et al., 2002; Takacs et al., 2018)
CFP, mCerulean, msfCFP (Cyan Fluorescent Protein)			(Eggers et al., 2002; Takacs et al., 2018)
mRFP, mCherry (Red Fluorescent Protein)			(Schulze and Zuckert, 2006; Takacs et al., 2018)
dTomato (Orange Fluorescent Protein)			(Lee et al., 2010)