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Abstract

In a regression setting, it is often of interest to quantify the importance of various features in 

predicting the response. Commonly, the variable importance measure used is determined by the 

regression technique employed. For this reason, practitioners often only resort to one of a few 

regression techniques for which a variable importance measure is naturally defined. Unfortunately, 

these regression techniques are often suboptimal for predicting the response. Additionally, because 

the variable importance measures native to different regression techniques generally have a 

different interpretation, comparisons across techniques can be difficult. In this work, we study a 

variable importance measure that can be used with any regression technique, and whose 

interpretation is agnostic to the technique used. This measure is a property of the true data-

generating mechanism. Specifically, we discuss a generalization of the analysis of variance 

variable importance measure and discuss how it facilitates the use of machine learning techniques 

to flexibly estimate the variable importance of a single feature or group of features. The 

importance of each feature or group of features in the data can then be described individually, 

using this measure. We describe how to construct an efficient estimator of this measure as well as 

a valid confidence interval. Through simulations, we show that our proposal has good practical 

operating characteristics, and we illustrate its use with data from a study of risk factors for 

cardiovascular disease in South Africa.
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1 | INTRODUCTION

Suppose that we have independent observations Z1, …, Zn drawn from an unknown 

distribution P0, known only to lie in a potentially rich class of distributions ℳ. We refer to 

ℳ as our model. Further, suppose that each observation Zi consists of (Xi, Yi), where 

Xi ≔ Xi1, …, Xip ∈ ℝp is a covariate vector and Y i ∈ ℝ is the outcome of interest. It is often 

of interest to understand the association between Y and X under P0. To do this, we generally 

consider the conditional mean function μ0 ≔ μP0, where for each P ∈ ℳ we define

μP(x) ≔ EP(Y ∣ X = x) . (1)

Estimation of μ0 is the canonical “predictive modeling” problem. There are many tools for 

estimating μ0: classical parametric techniques (eg, linear regression), and more flexible 

nonparametric or semiparametric methods, including random forests (Breiman, 2001), 

generalized additive models (Hastie and Tibshirani, 1990), loess smoothing (Cleveland, 

1979), and artificial neural networks (Barron, 1989), among many others. Once a good 

estimate of μ0 is obtained, it is often of scientific interest to identify the features that 

contribute most to the variation in μ0. For any given set s ⊆ {1, …, p} and distribution 

P ∈ ℳ, we may define the reduced conditional mean

μP , s(x) ≔ EP Y ∣ X−s = x−s , (2)

where for any vector υ and set r of indices the symbol υ−r denotes the vector of all 

components of υ with index not in r. Here, the set s can represent a single element or a 

group of elements. The importance of the elements in s can be evaluated by comparing μ0 

and μ0, s ≔ μP0, s. This strategy will be leveraged in this paper.

The analysis of variance (ANOVA) decomposition is the main classical tool for evaluating 

variable importance. There, μ0 is assumed to have a simple parametric form. While this 

facilitates the task at hand considerably, the conclusions drawn can be misleading in view of 

the high risk of model misspecification. For this reason, it is increasingly common to use 

nonparametric or machine learning-based regression methods to estimate μ0; in such cases, 

classical ANOVA results do not necessarily apply.

Recent work on evaluating variable importance without relying on overly strong modeling 

assumptions can generally be categorized as being either (i) intimately tied to a specific 

estimation technique for the conditional mean function or (ii) agnostic to the estimation 

technique used. The former category includes, for example, variable importance measures 

for random forests (Breiman, 2001; Ishwaran, 2007; Strobl et al., 2007; Grömping, 2009) 

and neural networks (see, eg, Olden et al., 2004), and ANOVA in linear models. Among 

these, ANOVA alone appears to readily allow valid statistical inference. Additionally, it is 

generally not possible to directly compare the importance assessment stemming from 

different methods: they usually measure different quantities and thus have different 

interpretations. The latter category includes, for example, nonparametric extensions of R2 

for kernel-based estimators, local polynomial regression, and functional regression (Doksum 

and Samarov, 1995; Yao et al., 2005; Huang and Chen, 2008); the marginalized mean 
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difference, EP0 EP0 Y ∣ X = x1, W − EP0 Y ∣ X = x0, W  (van der Laan, 2006; Chambaz et 

al., 2012; Sapp et al.,2014), where x1 and x0 are two meaningful reference levels of X, and 

W represent adjustment variables; and the mean difference in absolute deviations, 

EP0 Y − μ0(X) − Y − μ0, s(X)  (Lei et al., 2017). Methods in this latter category allow valid 

inference and have broad potential applicability. The appropriate measure to use depends on 

the scientific context.

We are interested in studying a variable importance measure that (i) is entirely agnostic to 

the estimation technique, (ii) allows valid inference, and (iii) provides a population-level 

interpretation that is well suited to scientific applications. In this work, we study a variable 

importance measure that satisfies each of these criteria, adding to the class of technique-

agnostic measures referenced above. In particular, we consider the ANOVA-based variable 

importance measure

ψ0, s ≔ ∫ μ0(x) − μ0, s(x) 2dP0(x)
varP0(Y ) . (3)

For a vector υ and a subset r of indices, we denote by υr the vector of all components of υ 
with index in r. Then, we may interpret (3) as the additional proportion of variability in the 

outcome explained by including Xs in the conditional mean. This follows from the fact that 

we can express ψ0,s as

1 −
EP0 Y − μ0(X) 2

varP0(Y ) − 1 −
EP0 Y − μ0, s(X) 2

varP0(Y ) ,

the difference in the population R2 obtained using the full set of covariates as compared to 

the reduced set of covariates only. Thus, the parameter we focus on is a simple 

generalization of the classical R2 measure of importance to a nonparametric model and is 

useful in any setting in which the mean squared error is a scientifically relevant population 

measure of predictiveness. This parameter is a function of P0 alone, in that it describes a 

property of the true data-generating mechanism and not of any particular estimation method. 

In this work, we provide a framework for building a nonparametric efficient estimator of 

ψ0,s that permits valid statistical inference.

We emphasize that the purpose of the variable importance measure we study here is not to 

offer insight into the characteristics of any particular algorithm, but rather to describe the 

importance of variables in predicting the outcome in the population. This is in contrast to 

common algorithm-specific measures of variable importance. If a tool for interpreting black-

box algorithms is desired, other approaches to variable importance may be preferred, as 

referenced above.

Care must be taken in building point and interval estimators for ψ0,s when μ0 and μ0,s are not 

known to belong to simple parametric families. In particular, when μ0 and μ0,s are estimated 

using flexible methods, simply plugging estimates of these regression functions into (3) will 
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not yield a regular and asymptotically linear, let alone efficient, estimator of ψ0,s. In this 

paper, we propose a simple method that, given sufficiently accurate estimators of μ0 and μ0,s, 

yields an efficient point estimator for ψ0,s and a confidence interval with asymptotically 

correct coverage. We show that this method—based on ideas from semiparametric theory—

is equivalent to simply plugging in estimates of μ0 and μ0,s into the difference in R2 values. 

In Williamson et al. (2020), we generalize this phenomenon and provide results for plug-in 

estimators of a large class of variable importance measures.

We note that, while variable importance is related to variable selection, these paradigms may 

have distinct goals. In variable selection, it is typically of interest to create the best predictive 

model based on the current data, and this model may include only a subset of the available 

variables. There are many contributions in both technique-specific (see, eg, Breiman, 2001; 

Friedman, 2001; Loh, 2002) and nonparametric (see, eg, Doksum et al., 2008) selection. The 

goal in variable importance is to assess the extent to which (subsets of) features contribute to 

improving the population-level predictive power of the best possible outcome predictor 

based on all available features. Of course, variable importance can be used as part of the 

process of variable selection. To highlight the distinction between importance and selection, 

it may be useful to consider a scenario in which two perfectly correlated covariates X1 and 

X2 are available. Neither covariate has importance relative to the other, but the variables may 

be highly important as a pair. A variable importance procedure considering individual and 

grouped features would identify this, whereas a variable selection procedure would likely 

choose only one of X1 or X2 for use in prediction.

This paper is organized as follows. We present some properties of the parameter we consider 

and give our proposed estimator in Section 2. In Section 3, we provide empirical evidence 

that our proposed estimator outperforms both the naive plug-in ANOVA-based estimator and 

an ordinary least squares-based estimator in settings where the covariate vector is low- or 

moderate-dimensional and the data-generating mechanism is nonlinear. In Section 4, we 

apply our method on data from a retrospective study of heart disease in South African men. 

We provide concluding remarks in Section 5. Technical details and an illustration based on 

the landmark Boston housing data are provided in the Supporting Information.

2 | VARIABLE IMPORTANCE IN A NONPARAMETRIC MODEL

2.1 | Parameter of interest

We work in a nonparametric model ℳ with only restriction that, under each distribution P in 

ℳ, the distribution of Y given X = x must have a finite second moment for P-almost every x. 

For given s ⊆ {1, …, p} and P ∈ ℳ, based on the conditional means (1) and (2), we define 

the statistical functional

Ψs(P ) ≔ ∫ μP(x) − μP , s(x) 2dP (x)
varP(Y ) (4)
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= 1 − EP Y − μP(X) 2

varP(Y ) − 1 − EP Y − μP , s(X) 2

varP(Y ) . (5)

This is the nonparametric measure of variable importance we focus on. The value of Ψs(P) 

measures the importance of variables in the set {Xj}j∈s relative to the entire covariate vector 

for predicting outcome Y under the data-generating mechanism P. Using observations Z1, 

…, Zn independently drawn from the true, unknown joint distribution P0 ∈ ℳ, we aim to 

make efficient inference about the true value ψ0,s = Ψs(P0).

This parameter is a nonparametric extension of the usual ANOVA-derived measure of 

variable importance in parametric models. We first note that ψ0,s ∈ [0, 1]. Furthermore, ψ0,s 

= 0 if and only if Y is conditionally uncorrelated with every transformation of Xs given X−s. 

In addition, the value of ψ0,s is invariant to linear transformations of the outcome and to a 

large class of transformations of the feature vector, as detailed in the Supporting 

Information. As such, common data normalization steps may be performed without impact 

on ψ0,s. Finally, ψ0,s can be seen as a ratio of the extra sum of squares, averaged over the 

joint feature distribution, to the total sum of squares. The value of ψ0,s is thus precisely the 

improvement in predictive performance, in terms of standardized mean squared error, that 

can be expected if we build a model using all of X versus only X−s. If we assume simple 

linear regression models for μ0 and μ0,s, then ψ0,s is precisely the usual difference in R2 

between nested models.

We want to reiterate here that, in contrast to simple parametric approaches to variable 

importance, our functional Ψs simply maps any candidate data-generating mechanism to a 

positive number. This definition does not require a parametric specification of μ0 or μ0,s. 

While this is usual for non- or semiparametric inference problems, it is different from 

classical approaches to variable importance.

For building an efficient estimator of ψ0,s, it is critical to consider the differentiability of Ψs 

as a functional. Specifically, we have that (4) is pathwise differentiable with respect to the 

unrestricted model (see, eg, Bickel et al., 1998). Pathwise differentiable functionals 

generally admit a convenient functional Taylor expansion that can be used to characterize 

the asymptotic behavior of plug-in estimators. An analysis of the pathwise derivative allows 

us to determine the efficient influence function (EIF) of the functional relative to the 

statistical model (Bickel et al., 1998). The EIF plays a key role in establishing efficiency 

bounds for regular and asymptotically linear estimators of the true parameter value, and 

most importantly, in the construction of efficient estimators, as we will highlight below. For 

convenience, we will denote the numerator of Ψs(P) by Θs(P) : = ∫{μP(x) − μP,s(x)}2dP(x). 

The EIFs of Θs and of Ψs relative to the nonparametric model ℳ are provided in the 

following lemma.

Lemma 1. The parameters Θs and Ψs are pathwise differentiable at each P ∈ ℳ relative to 
ℳ, with EIFs φP,s and φP , S*  relative to ℳ, respectively, given by
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φP , s* :z 2 y − μP (x) μP (x) − μP , s(x) + μP (x) − μP , s(x) 2 − Θs(P ),

φP , s* :z
2 y − μP (x) μP (x) − μP , s(x) + μP (x) − μP , s(x) 2

varP (Y ) − Θs(P )
y − EP (Y )
varP (Y )

2
.

A linearization of the evaluation of Θs at P ∈ ℳ around P0 can be expressed as

Θs(P ) = Θs P0 + ∫ φP , s(z)d P − P0 (z) + Rs P , P0 , (6)

where Rs(P, P0) is a remainder term from this first-order expansion around P0. The explicit 

form of Rs(P, P0) is provided in Section 2.3 and can be used to algebraically verify this 

representation. For any given estimator P ∈ ℳ of P0, we can write

Θs(P ) − Θs P0 = ∫ φP , s(z)d P − P0 (z) + Rs P , P0

= ∫ φP , s(z)d ℙn − P0 (z) + Rs P , P0 − 1
n ∑

i = 1

n
φPn, s Zi

= 1
n ∑

i = 1

n
φP0, s Zi + Rs P , P0 + Hs, n P , P0 − 1

n ∑
i = 1

n
φP , s Zi ,

(7)

where ℙn is the empirical distribution based on Z1, …, Zn, 

Hs, n P , P0 ≔ ∫ φP , S(z) − φP0, s(z) d ℙn − P0 (z) is an empirical process term, and we have 

made repeated use of the fact that φP,s(Z) has mean zero under P for any P ∈ ℳ. This 

representation is critical for characterizing the behavior of the plug-in estimator Θs(P ). The 

four terms on the right-hand side in (7) can be studied separately. The first term is an 

empirical average of mean-zero transformations of Z1, …, Zn. The second term is an 

empirical process term, and the third term is a remainder term. Both of these second-order 

terms can be shown to be asymptotically negligible under certain conditions on P . The 

fourth term can be thought of as the bias incurred from flexibly estimating the conditional 

means (1) and (2) and will generally tend to zero slowly. This bias term motivates our choice 

of estimator for ψ0,s in Section 2.2. We will employ one particular bias correction method, 

and the large-sample properties of our proposed estimator will be determined by the first 

term in (7).

2.2 | Estimation procedure

Writing the numerator Θs of the parameter of interest as a statistical functional suggests a 

natural estimation procedure. If we have estimators μ and μs of μ0 and μ0,s, respectively—

obtained through any method that we choose, including machine learning techniques—a 

natural plug-in estimator of θ0,s : = Θs(P0) is given by
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θnaive,s ≔ ∫ μ(x) − μs(x) 2dℙn(x)

= 1
n ∑

i = 1

n
μ Xi − μs Xi

2 .
(8)

In turn, this suggests using, with Y n denoting the empirical mean of Y1, …, Yn,

ψnaive,s ≔
θnaive,s

varℙn(Y ) =
1
n ∑i = 1

n μ Xi − μs Xi
2

1
n ∑i = 1

n Yi − Y n
2

as a simple estimator of ψ0,s. We refer to this as the naive estimator. This simple estimator 

involves hidden trade-offs. On the one hand, it is easy to construct given estimators μ and 

μS. On the other hand, it does not generally enjoy good inferential properties. If a flexible 

technique is used to estimate μ0 and μ0,s, constructing μ and μS usually entails selecting 

tuning parameter values to achieve an optimal bias-variance trade-off for μ0 and μ0,s, 

respectively. This is generally not the optimal bias-variance trade-off for estimating the 

parameter of interest ψ0,s, a key fact from non- and semiparametric theory. The estimator 

ψnaive,s has a variance decreasing at a parametric rate, with little sensitivity to the tuning of μ
and μS, because of the involved marginalization over the feature distribution. However, it 

inherits much of the bias from μ and μS. Some form of debiasing is thus needed, as we 

discuss below. In particular, the estimator ψnaive,s is generally overly biased, in the sense that 

its bias does not tend to zero sufficiently fast to allow consistency at rate n−1/2, let alone 

efficiency. This is problematic, in particular, because it renders the construction of valid 

confidence intervals difficult, if not impossible.

Instead, we consider the simple one-step correction estimator

θn, s ≔ θnaive,s + 1
n ∑

i = 1

n
φP , s Zi

of θ0,s, which, in view of (7), is asymptotically efficient under certain regularity conditions. 

This estimator is obtained by correcting for the excess bias of the naive plug-in estimator 

θnaive,s using the empirical average of the estimated EIF as a first-order approximation of 

(minus) this bias (see, eg, Pfanzagl, 1982). We note that to compute θn, s it is not necessary 

to obtain an estimator P  of the entire distribution P0. Instead, estimators μ and μS of μ0 and 

μ0,s suffice. The variance of Y under P0 may simply be estimated using the empirical 

variance. It is easy to verify that the resulting estimator of ψ0,s simplifies to
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ψn, s ≔ θn, s
varℙn(Y )

= ψnaive,s +
∑i = 1

n 2 Y i − μ Xi μ Xi − μs Xi

∑i = 1
n Y i − Y n

2 .
(9)

This estimator adjusts for the inadequate bias-variance trade-off performed when flexible 

estimators μ and μs are tuned to be good estimators of μ0 and μ0,s rather than being tuned for 

the end objective of estimating ψ0,s. Simple algebraic manipulations yield that ψn, s is 

equivalent to the plug-in estimator

1 −
1
n ∑i = 1

n Y i − μ Xi
2

varℙn(Y ) − 1 −
1
n ∑i = 1

n Y i − μs Xi
2

varℙn(Y ) (10)

obtained by viewing ψ0,s as a difference in population R2 values, as in (5). As indicated 

above, semiparametric theory indicates that plug-in estimators based on flexible regression 

algorithms typically require bias correction if the latter are not tuned towards the target of 

inference, as in (9).

Algorithm 1

Estimating ψ0,s

1: Choose a technique to estimate the conditional means μ0 and μ0,s, eg, ensemble learning with various predictive 
modeling algorithms (Wolpert, 1992);

2: μ ← Regress Y on X using the technique from step (1) to estimate μ0;

3: μs ← Regress μ(X) on X−s using the technique from step (1) to estimate μ0,s;

4: ψn, S

1
n ∑i = 1

n Yi − μs Xi
2 − 1

n ∑i = 1
n Yi − μ Xi

2

1
n ∑i = 1

n Yi − Y n
2 , as in Equation (10).

Interestingly, as we note from above, this is needed when constructing a plug-in estimator 

based on the ANOVA representation (4) of ψ0,s but not based on its difference-in-R2 

representation (5).

While we are not constrained to any particular estimation method to construct μ and μs, we 

have found one particular strategy to work well in practice. Using any specific predictive 

modeling technique to regress the outcome Y on the full covariate vector X and then on the 

reduced covariate vector X−s does not take into account that the two conditional means are 

related and will generally result in incompatible estimates. Specifically, we have that 

μ0, s(x) = EP0 μ0(X) ∣ X−s = x−s , which we can take advantage of to produce the following 

sequential regression estimating procedure: (i) regress Y on X to obtain an estimate μ of μ0, 

and then (ii) regress μ(X) on X−s to obtain an estimate μs of μ0,s.
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The final estimation procedure we recommend for ψ0,s consists of estimator ψn, s, where the 

conditional means involved are estimated using flexible regression estimators based on the 

sequential regression approach; see Algorithm 1 for explicit details. This may also be 

embedded in a split-sample validation scheme, by first creating training and validation sets, 

then obtaining μ and μs on the training set as outlined above, and finally, obtaining an 

estimator of ψ0,s by using the validation data along with predictions from the conditional 

mean estimators on the validation data. This can be extended to a cross-fitted procedure 

given in Algorithm 2 and discussed in the Supporting Information.

2.3 | Asymptotic behavior of the proposed estimator

By studying the remainder term RS P , P0  and the empirical process term Hs, n P , P0 , we 

can establish appropriate conditions on μ and μs under which the proposed estimator ψn, s is 

asymptotically efficient. This allows us to determine the asymptotic distribution of the 

proposed estimator and, therefore, to propose procedures for performing valid

Algorithm 2

Estimating ψ0,s using V-fold cross fitting

1: Choose a technique to estimate the conditional means μ0 and μ0,s;

2: Generate a random vector Bn ∈ {1,…, V}n by sampling uniformly from {1,…, V} with replacement, and denote by 
Dj the subset of observations with index in {i :Bn,i = j} for j = 1,…, V.

3: for υ = 1,…, V do

4: μυ ← Regress Y on X using the data in ∪j≠υDj using the technique from step (1) to estimate μ0

5: μs, υ ← Regress μυ(X) on X−s using the data in ∪j≠υDj to estimate μ0,s;

6: ψn, S
υ ∑i ∈ Dj Yi − μs, υ Xi

2 − ∑i ∈ Dj Yi − μυ Xi
2

∑i ∈ Dj Yi − Y n
2 , as in Equation (10);

7: end for

8: ψn, s
cv 1

V ∑υ = 1
V ψn, s

υ
.

inference on ψ0,s. Below, we will make reference to the following conditions, in which we 

have defined the conditional outcome variance τ0
2:x varP0(Y ∣ X = x).

(A1) max ∫ μs(x) − μ0(x) 2dP0 x , ∫ μs(x) − μ0, s(x) 2 = oP n−1/2 ;

(A2) there exists a P0-Donsker class G0 such that P0 φP , s ∈ G0 1;

(A3) there exists a constant K > 0 such that each of μ0, μ0, μ0, s, and τ0
2 has range 

contained uniformly in (−K, +K) with probability tending to one as sample size tends 

to +∞.

First, it is straightforward to verify that linearization (6) holds with second-order remainder 

term Rs(P, P0) = ∫ {μP,s(x) − μ0,s(x)}2dP0(x) − ∫ {μP(x) − μ0(x)}2dP0(x). It follows then that 

condition (A1) suffices to ensure that RS P , P0  is asymptotically negligible, that is, that 
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RS P , P0 = oP n−1/2 . Each of the second-order terms in condition (A1) can feasibly be 

made negligible, even while using flexible regression techniques, including generalized 

additive models (Hastie and Tibshirani, 1990), to estimate the conditional mean functions. 

We thus turn our attention to Hs, n P , P0 . By empirical process theory, we have that 

Hs, n P , P0 = oP n−1/2  provided, for example, ∫ φP , S(z) − φP0, s(z) 2dP0 z  tends to zero in 

probability and condition (A2) holds (Lemma 19.24 of van der Vaart, 2000). For the former, 

uniform consistency of μ and μS under L2(P0) suffices under condition (A3). We note that if 

there is a known bound on the outcome support, condition (A3) will readily be satisfied 

provided the learning algorithms used incorporate this knowledge. For the latter, the set of 

possible realizations of μ and μS must become sufficiently restricted with probability 

tending to one as sample size grows. This condition is satisfied if, for example, the uniform 

sectional variation norm of φPn, S is bounded with probability tending to one (Gill et al., 

1995). When using flexible machine learning-based regression estimators, there may be 

reason for concern regarding the validity of condition (A2). In such cases, using the cross-

fitted estimator ψn, S
cv  may circumvent this condition. While this cross-fitted estimator is only 

slightly more complex, we restrict attention here to studying the simpler estimator and leave 

study of the cross-fitted estimator to the Supporting Information.

The following theorem describes the asymptotic behavior of the proposed estimator.

Theorem 1. Provided conditions (A1)–(A3) hold, ψn, s is asymptotically linear with 

influence function φP0, s* . In particular, this implies that (a) ψn, s tends to ψ0,s in probability, 

and if ψ0,s ∈ (0, 1) (b) n1/2 ψn, s − ψ0, s  tends in distribution to a mean-zero Gaussian 

random variable with variance σ0, s
2 ≔ ∫ φP0, s* (z)2dP0(z).

A natural plug-in estimator of σ0, S
2  is given by σn, s

2 ≔ 1
n ∑i = 1

n φP0, s* Zi
2, where φP0, S*  is any 

consistent estimator of φP0, s* . For example, φP0, s*  may be taken to be φP0, s*  with μ0, μ0,s, 

EP0(Y ), varP0(Y ), and θ0,s replaced by μ, μs, Y n, varℙn(Y ), and θn, s, respectively. In view of 

the asymptotic normality of n1/2 ψn, s − ψ0, s , an asymptotically valid (1 − α) × 100% Wald-

type confidence interval for ψ0,s ∈ (0, 1) can be obtained as ψn, s ± q1 − α/2σn, sn−1/2, where 

qβ is the β-quantile of the standard normal distribution.

To underscore the importance of using the proposed debiased procedure, we recall that, in 

contrast to ψn, s, the naive ANOVA-based estimator is generally not asymptotically linear 

when flexible (eg, machine learning based) estimators of the involved regression are used. It 

will usually be overly biased, resulting in a rate of convergence slower than n−1/2. 

Constructing valid confidence intervals based on the naive estimator can thus be difficult. It 

may be tempting to consider bootstrap resampling as a remedy. However, this is not 

advisable since, besides the computational burden of such an approach, there is little theory 

to justify using the standard nonparametric bootstrap in this context, particularly for the 

naive ANOVA-based estimator (Shao, 1994).
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2.4 | Behavior under the zero-importance null hypothesis

This work focuses on efficient estimation of a population-level algorithm-agnostic variable 

importance measure using flexible estimation techniques and on describing how valid 

inference may be drawn when the set s of features under evaluation does not have degenerate 

importance. Specifically, we have restricted our attention to cases in which ψ0,s ∈ (0, 1) 

strictly and provided confidence intervals valid in such cases. It may be of interest, however, 

to test the null hypothesis ψ0,s = 0 of zero importance. Developing valid and powerful tests 

of this particular null hypothesis is difficult. Because the null hypothesis is on the boundary 

of the parameter space, φP0, s is identically zero under this null, and a higher order expansion 

may be required to construct and characterize the behavior of an appropriately-regularized 

estimator of θ0,s—and thus of ψ0,s—with good power. However, the parameters Θs and Ψs 

are generally not second-order pathwise differentiable in nonparametric models, and so 

higher order expansions cannot easily be constructed. There may be hope in using 

approximate second-order gradients, as outlined in Carone et al. (2018), though this remains 

an open problem. A crude alternative solution based on sample splitting is investigated in 

Williamson et al. (2020). To highlight the difficulties that arise under this particular null 

hypothesis, we conducted a simulation study for a setting in which one of the variables has 

zero importance. The results from this study are provided in the next section.

3 | EXPERIMENTS ON SIMULATED DATA

We now present empirical results describing the performance of the proposed estimator (9) 

compared to that of the naive plug-in estimator (8). In all implementations, we use the 

sequential regression estimating procedure described in Algorithm 1 for each feature or 

group of interest to compute compatible estimates of the required regression functions, and 

we compute nominal 95% Wald-type confidence intervals as outlined in Section 2.3.

3.1 | Low-dimensional vector of features

We consider here data generated according to the following specification:

X1, X2
iid Uniform ( − 1, 1) and  

ϵ N(0, 1) independent of  X1, X2
Y = X1

2 X1 + 7
5 + 25

9 X2
2 + ϵ .

We generated 1000 random datasets of size n ∈ {100, 300, 500, 700, 1000, 2000, …, 8000} 

and considered in each case the importance of X1 and of X2. The true value of the variable 

importance measures implied by this data-generating mechanism can be shown to be ψ0,1 ≈ 
0.158 and ψ0,2 ≈ 0.342. This nonlinear setting helps to highlight the drawbacks of relying 

on a simple parametric model to estimate the conditional means.

To obtain μ, μ1, and μ2, we fit locally constant loess smoothing using the R function loess 

with tuning selected to minimize a fivefold cross-validated estimate of the empirical risk 

based on the squared error loss function. Loess smoothing was chosen because it is a data-

adaptive algorithm with an efficient implementation, and it satisfies the minimum 
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convergence rate condition outlined in Section 2.3, allowing us to numerically verify our 

theoretical results. Because we obtained the same trends using locally constant kernel 

regression, we do not report summaries from these additional simulations here. This fact 

nevertheless highlights the ease of comparing results from two different estimation 

techniques.

We computed the naive and proposed estimators and respective confidence intervals for each 

replication and compared these to a parametric difference in R2 based on simple linear 

regression using ordinary least squares (OLS). Because a simple asymptotic distribution for 

the naive estimator is unavailable, a percentile bootstrap approach with 1000 bootstrap 

samples was used in an attempt to obtain approximate confidence intervals based on ψnaive,j. 

For each estimator, we then computed the empirical bias scaled by n1/2 and the empirical 

variance scaled by n. Our output for the estimated bias includes confidence intervals for the 

true bias based on the resulting draws from the bootstrap sampling distribution. Finally, we 

computed the empirical coverage of the nominal 95% confidence intervals constructed.

Figure 1 displays the results of this simulation. In the left panel, we note that the scaled 

empirical bias of the proposed estimator decreases towards zero as n tends to infinity, 

regardless of which feature we remove. Also, we see that both the naive estimator and the 

OLS estimator have substantial bias that does not tend to zero faster than n−1/2. This 

coincides with our expectations: the naive estimator involves an inadequate bias-variance 

trade-off with respect to the parameter of interest and does not include any debiasing; the 

OLS estimator is based on a misspecified mean model. Though there is very substantial bias 

reduction from using the proposed estimator, we see that its scaled bias appears to dip 

slightly below zero for large n. We expect for larger n to see this scaled bias for the proposed 

estimator get closer to zero; numerical error in our computations may explain why this does 

not exactly happen. These results provide empirical evidence that the debiasing step is 

necessary to account for the slow rates of convergence in estimation of ψ0,s introduced 

because μ0 and μ0,s are flexibly estimated.

In the middle panel of Figure 1, we see that the variance of the proposed estimator is close to 

that of the naive estimator—we have thus not suffered much from removing excess bias in 

our estimation procedure. The variance of the OLS estimator is the smallest of the three: 

using a parametric model tends to result in a smaller variance. The ratio of the variance of 

the naive estimator to that of the proposed estimator is near one for all n considered and 

ranges between approximately 0.8 and 1.2 in our simulation study. Finally, in the right-hand 

panel, we see that as sample size grows, coverage increases for the confidence interval based 

on the proposed estimator and approaches the nominal level. In contrast, the coverage of 

intervals based on both the naive estimator and the OLS estimator decreases instead and 

quickly becomes poor.

3.2 | Testing the zero-importance null hypothesis

We now consider data generated according to the following specification:
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X1, X2
iid Uniform ( − 1, 1) and 

ϵ N(0, 1) independent of  X1, X2 ; Y = 25
9 X1

2 + ϵ

We generated 1000 random datasets of size n ∈ {100, 300, 500, 700, 1000, 2000, 3000} and 

again considered in each case the importance of X1 and of X2. The true value of the variable 

importance measures implied by this data-generating mechanism can be shown to be ψ0,1 ≈ 
0.407 and ψ0,2 = 0. We estimated the conditional means and summarized the results of this 

simulation as in the previous simulation.

Figure 2 displays the results of this simulation. In the left-hand panel, we observe that the 

proposed estimator has smaller scaled bias in magnitude than the naive estimator when we 

remove the feature with nonzero importance. However, when we remove the feature with 

zero importance, the proposed estimator has slightly higher bias. While this is somewhat 

surprising, it likely is due to the additive correction in the one-step construction being 

slightly too large. The scaled bias of the proposed estimator tends to zero as n increases for 

both features, which is not true of the naive estimator. In the middle panel, we see that we 

have not incurred excess variance by using the proposed estimator. In the right-hand panel, 

we see that both estimators have close to zero coverage for the parameter under the null 

hypothesis, but that the proposed estimator has higher coverage than the naive estimator for 

the predictive feature. These results highlight that more work needs to be done for valid 

testing and estimation under this boundary null hypothesis. While our current proposal 

yields valid results for the predictive feature, even in the presence of a null feature, ensuring 

valid inference for null features themselves remains an important challenge.

3.3 | Moderate-dimensional vector of features

We consider one setting in which the features are independent and a second in which groups 

of features are correlated. In setting A, we generated data according to the following 

specification:

X1, X2, …, X15
iidN(0, 4) and 

ϵ N(0, 1) independent of  X1, X2, …, X15

Y = I( − 2, + 2) X1 ⋅ X1 + I( − ∞, 0] X2 + I(0, + ∞) X3 +
X6
4

3
+

X7
4

5
+ 7

3cos
X11

2 + ϵ .

In setting B, the covariate distribution was modified to include clustering. Specifically, we 

generated (X1, X2, …, X15) ~ MVN15(μ, Σ), where the mean vector is

μ = 3 × (0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0) − 2 × (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1)

and the variance–covariance matrix is block-diagonal with blocks

1 0.15 0.15
0.15 1 0.15
0.15 0.15 1

,
1 0.5 0.5

0.5 1 0.5
0.5 0.5 1

 and 
1 0.85 0.85

0.85 1 0.85
0.85 0.85 1
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and all other off-diagonal entries equal to zero. The random error ϵ and the outcome Y are 

then generated as in setting A. In both settings, we generated 500 random datasets of size n 
∈ {100, 300, 500, 1000} and considered the importance of the feature sets {1, 2, 3, 4, 5}, {6, 

…, 10}, and {11, …, 15} for each sample size. The true value of the variable importance 

measures corresponding to each of the considered groups in both settings is given in Table 1. 

Results for the analysis of additional groupings are provided in the Supporting Information.

For each scenario considered, we estimated the conditional mean functions with gradient-

boosted trees (Friedman, 2001) fit using GradientBoostingRegressor in the sklearn module 

in Python. Gradient-boosted trees were used due to their generally favorable prediction 

performance and large degree of flexibility, with full knowledge that they are not guaranteed 

to satisfy the minimum rate condition outlined in Section 2.3. We used fivefold cross-

validation to select the optimal number of trees with one node as well as the optimal learning 

rate for the algorithm. We summarized the results of these simulations in the same manner as 

in the low-dimensional simulations.

The results for setting A are presented in Figure 3. From the top row, we note that as sample 

size increases, the scaled empirical bias of the proposed estimator approaches zero, whereas 

that of the naive estimator increases in magnitude across all subsets considered. From the 

bottom row, we observe that the empirical coverage of intervals based on the proposed 

estimator increases toward the nominal level as sample size increases and is uniformly 

higher than the empirical coverage of bootstrap intervals based on the naive estimator.

The results for setting B are presented in Figure 4. From the top row, we note some residual 

bias in the proposed estimator for s = {11, …, 15}. Larger samples may be needed to 

observe more thorough bias reduction—indeed, this group of features is that with the highest 

within-group correlation. Nevertheless, the scaled empirical bias of the proposed estimator 

approaches zero as sample size increases for both s = {1, …, 5} and s = {6, …, 10}. In all 

cases, the scaled empirical bias of the naive estimator increases in magnitude as sample size 

increases. In the bottom row, we again see that intervals based on the proposed estimator 

have uniformly higher coverage than those based on the naive estimator.

The proposed estimator performs substantially better than the naive estimator in these 

simulations, though higher levels of correlation appear to be associated with relatively 

poorer point and interval estimator performance. This suggests that it may be wise to 

consider in practice the importance of entire groups of correlated predictors rather than that 

of individual features. This is a sensible approach for dealing with correlated features, which 

necessarily render variable importance assessment challenging. In our simulations, the 

empirical coverage of proposed intervals for the importance of a group of highly correlated 

features approaches the nominal level as sample size increases, indicating that the proposed 

approach does yield good results in such cases.

Use of the proposed estimator results in better point and interval estimation performance 

than the naive estimator in the presence of null features. This is illustrated, for example, 

when evaluating the importance of the group (X1, …, X5), in which case most other features 

(ie, X8, X9, X10, X12, …, X15) have null importance. However, as before, we expect the 
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behavior of point and interval estimators for the variable importance of null features to be 

poorer. Additional work on valid estimation and testing under this null hypothesis is 

necessary.

4 | RESULTS FROM THE SOUTH AFRICAN HEART DISEASE STUDY DATA

We consider a subset of the data from the Coronary Risk Factor Study (Rosseauw et al., 
1983), a retrospective cross-sectional sample of 462 white males aged 15–64 in a region of 

the Western Cape, South Africa; these data are publicly available in Hastie et al. (2009). The 

primary aim of this study was to establish the prevalence of ischemic heart disease risk 

factors in this high-incidence region. For each participant, the presence or absence of 

myocardial infarction (MI) at the time of the survey is recorded, yielding 160 cases of MI. In 

addition, measurements on two sets of features are available: behavioral features, including 

cumulative tobacco consumption, current alcohol consumption, and type A behavior, a 

behavioral pattern linked to stress (Friedman and Rosenman, 1971); and biological features, 

including systolic blood pressure, low-density lipoprotein (LDL) cholesterol, adiposity 

(similar to body mass index), family history of heart disease, obesity, and age.

We considered the importance of each feature separately, as well as that of these two groups 

of features, when predicting the presence or absence of MI. We estimated the conditional 

means using the sequential regression estimating procedure outlined in Section 2.2 and using 

the Super Learner (van der Laan et al., 2007) via the SuperLearner R package. The Super 

Learner is a particular implementation of stacking (Wolpert, 1992), and the resulting 

estimator is guaranteed to have the same risk as the oracle estimator, asymptotically, along 

with finite-sample guarantees (van der Laan et al., 2007). Our library of candidate learners 

consists of boosted trees, generalized additive models, elastic net, and random forests 

implemented in the R packages gbm, gam, glmnet, and randomForest, respectively, each 

with varying tuning parameters. Tenfold cross-validation was used to determine the optimal 

convex combination of these learners chosen to minimize the cross-validated mean-squared 

error. This process allowed the Super Learner to determine the optimal tuning parameters for 

the individual algorithms as part of its optimal combination, and our resulting estimator of 

the conditional means is the optimal convex combination of the individual algorithms. 

Finally, we produced confidence intervals based on the proposed estimator alone, since as 

we have seen earlier, intervals based on the naive estimator are generally invalid.

The results are presented in Figure 5. The ordering is slightly different in the two plots; this 

is not surprising, since the one-step procedure should eliminate excess bias in the naive 

estimator introduced by estimating the conditional means using flexible learners. We find 

that biological factors are more important than behavioral factors. The most important 

individual feature is family history of heart disease; family history has been found to be a 

risk factor of MI in previous studies. It appears scientifically sensible that both groups of 

features are more important than any individual feature besides family history.

We compared these results to a logistic regression model fit to these data. Based on the 

absolute values of z-statistics, logistic regression picks age as most important, followed by 

family history. This slight difference is captured in our uncertainty estimates (Figure 5): 
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there, we see that the point estimates for age and family history are close, and their 

confidence intervals largely overlap. We find the same pattern for LDL cholesterol and 

tobacco consumption, the third- and fourth-ranked variables by logistic regression. While 

our results match closely with the simplest approach to analyzing variable importance in 

these data, our proposed method is not dependent on a single estimation technique, such as 

logistic regression. The use of more flexible learners to estimate ψ0,s, as we have done in 

this analysis, renders our findings less likely to be driven by potential model 

misspecification.

5 | CONCLUSION

We have obtained novel results for a familiar measure of variable importance, interpreted as 

the additional proportion of variability in the outcome explained by including a subset of the 

features in the conditional mean outcome relative to the entire covariate vector. This 

parameter can be readily seen as a nonparametric extension of the classical R2-based 

measure, and it provides a description of the true relationship between the outcome and 

covariates rather than an algorithm-specific measure of association. We have also studied the 

properties of this parameter and derived its nonparametric EIF. We found that the form of the 

variable importance measure under consideration can have a dramatic impact on the ease 

with which efficient estimators may be constructed—for example, debiasing is needed for 

ANOVA-based plug-in estimators using flexible learners, but not for plug-in estimators 

based on the difference in R2 values. We provide general results describing this phenomenon 

in Williamson et al. (2020). Leveraging tools from semiparametric theory, we have described 

the construction of an asymptotically efficient estimator of the true variable importance 

measure built upon flexible, data-adaptive learners. We have studied the properties of this 

estimator, notably providing distributional results, and described the construction of 

asymptotically valid confidence intervals. In simulations, we found the proposed estimator 

to have good practical performance, particularly as compared to a naive estimator of the 

proposed variable importance measure. However, we found this performance to depend very 

much on whether or not the true variable importance measure equals zero. When it does, a 

limiting distribution is not readily available, and significant theoretical developments seem 

needed in order to perform valid and powerful inference. However, for those features with 

true importance, the behavior of point and interval estimates is not influenced by the 

presence of null features. While the parameter we have studied has broad interpretability, 

alternative measures of variable importance may also be useful in certain settings (eg, 

difference in the area under the receiver operating characteristic curve in the context of a 

binary outcome). We study such measures in Williamson et al. (2020).

For each candidate set of variables, the estimation procedure we proposed requires 

estimation of two conditional mean functions. To guarantee that our estimator has good 

properties, these conditional means must be estimated well. For this reason, and as was 

illustrated in our work, we recommend the use of model stacking with a wide range of 

candidate learners, ranging from parametric to fully nonparametric algorithms. This 

flexibility mitigates concerns regarding model misspecification. Additionally, we suggest the 

use of sequential regressions to minimize any incompatibility between the two conditional 

means estimated.
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A multiple testing issue arises when inference is desired on many feature subsets. Of course, 

a Bonferroni approach may be easily implemented. Alternatively, we could use a consistent 

estimator of the variance-covariance matrix for the importance of all subsets of features 

under study, obtained using the influence functions exhibited in this paper. This alternative 

multiple-testing adjustment has improved power over a Bonferroni-type approach. Strategies 

based on this approach are described, for example, in Dudoit and van der Laan (2007).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. 
Empirical bias (scaled by n1/2) with Monte Carlo error bars, empirical variance (scaled by 

n), and empirical coverage of nominal 95% confidence intervals for the proposed, naive, and 

OLS estimators for either feature, using loess smoothing with cross-validation tuning (in the 

case of the proposed and naive estimators). Circles, filled diamonds, and filled squares 

denote that we have removed X1; stars, crossed diamonds, and empty squares denote that we 

have removed X2.
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FIGURE 2. 
Empirical bias (scaled by n1/2) with Monte Carlo error bars, empirical variance (scaled by 

n), and empirical coverage of nominal 95% confidence intervals for the proposed and naive 

estimators for either feature, using loess smoothing with cross-validation tuning. Circles and 

filled diamonds denote that we have removed X1, while stars and crossed diamonds denote 

that we have removed X2. We operate under the null hypothesis for X2, that is, ψ0,2 = 0.
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FIGURE 3. 
Top row: empirical bias for the proposed and naive estimators scaled by n1/2 for setting A, 

based on gradient-boosted trees. Bottom row: empirical coverage of nominal 95% 

confidence intervals for the proposed and naive estimators for setting A, using gradient-

boosted trees. We consider all s combinations from Table 1. Diamonds denote the naive 

estimator, and circles denote the proposed estimator. Monte Carlo error bars are displayed 

vertically.
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FIGURE 4. 
Top row: empirical bias for the proposed and naive estimators scaled by n1/2 for setting B, 

using gradient-boosted trees. Bottom row: empirical coverage of nominal 95% confidence 

intervals for the proposed and naive estimators for setting B, using gradient-boosted trees. 

We consider all s combinations from Table 1. Diamonds denote the naive estimator, and 

circles denote the proposed estimator. Monte Carlo error bars are displayed vertically.
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FIGURE 5. 
Estimates from the South African heart disease study for the proposed and naive estimators 

of the variable importance parameter, on left and right, respectively. The Super Learner with 

library including the elastic net, generalized additive models, gradient boosted trees, and 

random forests, was used
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TABLE 1

Approximate values of ψ0,s for each simulation setting and group considered in the moderate-dimensional 

simulations in Section 3.3

Setting

Group A B

(X1,X2, … ,X5) 0.295 0.281

(X6,X7, … ,X10) 0.240 0.314

(X11,X12, … ,X15) 0.242 0.179
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