
 

 

Since January 2020 Elsevier has created a COVID-19 resource centre with 

free information in English and Mandarin on the novel coronavirus COVID-

19. The COVID-19 resource centre is hosted on Elsevier Connect, the 

company's public news and information website. 

 

Elsevier hereby grants permission to make all its COVID-19-related 

research that is available on the COVID-19 resource centre - including this 

research content - immediately available in PubMed Central and other 

publicly funded repositories, such as the WHO COVID database with rights 

for unrestricted research re-use and analyses in any form or by any means 

with acknowledgement of the original source. These permissions are 

granted for free by Elsevier for as long as the COVID-19 resource centre 

remains active. 

 



International Journal of Biological Macromolecules 180 (2021) 375–384

Contents lists available at ScienceDirect

International Journal of Biological Macromolecules

j ourna l homepage: ht tp : / /www.e lsev ie r .com/ locate / i j b iomac
Review
Exploitation of polyphenols and proteins using nanoencapsulation for
anti-viral and brain boosting properties – Evoking a synergistic strategy
to combat COVID-19 pandemic
Nairah Noor a, Adil Gani a,b,⁎, Asir Gani a, Asima Shah a, Zanoor ul Ashraf a

a Laboratory of Functional Food and Nutraceuticals, Department of Food Science and Technology, University of Kashmir, Srinagar 190006, India
b Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, NJ 08901, United States
⁎ Corresponding author at: Department of Food Science
Kashmir, Srinagar 190006, India.

E-mail address: Adil.gani@gmail.com (A. Gani).

https://doi.org/10.1016/j.ijbiomac.2021.03.028
0141-8130/© 2021 Elsevier B.V. All rights reserved.
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 29 October 2020
Received in revised form 31 January 2021
Accepted 4 March 2021
Available online 11 March 2021

Keywords:
Lectins
Caffeine
Cocoa flavonoids
Nanoencapsulation
Quercetin
Theworld is currently under the threat of COVID pandemic and has focused every dimension of research in find-
ing a cure to this novel disease. In this current situation, people are facing mental stress, agony, fear, depression
and other associated symptomswhich are taking a toll on their overall mental health. Nanoencapsulation of cer-
tain brain boosting polyphenols including quercetin, caffeine, cocoa flavanols and proteins like lectins can be-
come new area of interest in the present scenario. Besides the brain boosting benefits, we have also
highlighted the anti- viral activities of these compounds which we assume can play a possible role in combating
COVID-19 given to their previous history of action against certain viruses. This review outlines the
nanoencapsulation approaches of such synergistic compounds as a novel strategy to take the ongoing research
a step ahead and also provides a new insight in bringing the role of nanotechnology in addressing the issues re-
lated to COVID pandemic.

© 2021 Elsevier B.V. All rights reserved.
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1. Introduction

As the current scenario of COVID-19 has left all the healthworkers in
an adverse situation it becomes equally important for researchers to
and Technology, University of
devise the strategy for formulation of drugs and therapies that have
potential to alleviate the symptoms of emerging pandemic. The disease
was first reported inWuhan, in December 2019 and declared pandemic
byWorld HealthOrganization (WHO) onMarch 11th 2020 labeling it as
5th registered pandemic after 1918 Spanish influenza. As of 27th
September 2020, Covid-19 has already caused 32,925,668 positive
cases and 995,352 deaths worldwide [1]. Some of the common behav-
iors observed in the prevailing situation are anxiety, confusion and
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Table 2
Summary of the natural compounds with brain boosting activity.

S.
no

Brain boosting
compounds

Category Reported mechanism of action

1 Epigallocatechin
gallate (EGCG)

Polyphenol Cross (BBB) model and protect neurons from
oxidative-stress-induced cell death [28]8

2 Resveratrol Polyphenol - Modulate growth of dendrites and
axons [29]

- Decrease neuroinflammation [30]
- Activates protein kinase C gamma that

help in neuroprotection [31]
3 Lectins

• Con A
• Dvl

Protein - Release of proinflammatory cytokines
like IL-1β and IL-18

- Induce intracellular Ca2+ mobilization
- Reduce apoptosis and ROS generation [32]

4 Chlorogenic acid
(CGA)

Polyphenols Reduce proinflammatory
Mediators [33]

5 Caffeine Polyphenols Bring down oxidative
Stress which plays role in depression &
pathophysiology of anxiety [33]

6 Ferulic acid Polyphenols - Decrease depressive behavior and pain
decreased

- Reduce neuroinflammation
- Regulate oxidative/antioxidant defense

[33]

BBB-human blood–brain barrier, Con A-concanavalin A, Dvl-Dioclea violacea.

Table 1
Summary of some polyphenols with anti-viral properties, their possible mode of action
and target virus.

S.
no

Antiviral polyphenols Reported mechanism of
action

Effective against
virus

1. Quercetin Inhibits viral entry and
translation

Ebola virus [12]
Polio virus [13]
Hepatitis C [14]
Coronavirus [15]
Mango virus [16]
Pseudorabies
virus [17]

2 Resveratrol - Inhibits replication, pro-
tein synthesis, gene
expression, and nucleic
acid synthesis of virus

- Inhibits viral attachment.

HSV [18]
Influenza [19]
Rhinovirus [20]
MERS-CoV [21]

3 Fisetin, rutin Induce inhibition of cytokine
expression and synthesis

H1N1 [22]

4 Catechin
Epicatechin
Epicatechingallate

Inhibits viral binding. Sindabis virus
[23]

5 Morin, galangin Inhibits NLRP3
inflammasome

Poliovirus 1
HSV-1 & 2
RSV
HCV
CDV
SARS-CoV [22]

6 Kaempferol Inhibits secretion of many
cytokines including IL-6 and
IL-8.

Human
cytomegalovirus
Coxsackie B virus
[24,25]

7 Myricetin Inhibits ATPase activity SARS-CoV [26]
8 Theaflavin Inhibits RdRp activity SARS-CoV-2 [26]
9 Caffeine Promising inhibitors for

3-chymotrypsin-like protease
of SARS-CoV-2

SARS-CoV-2 [27]

10 Tingenone Inhibits SARS-CoV 3CLpro SARS-CoV [26]
11 Quercetin-3-β-galactoside Competitively inhibits

SARS-CoV 3CLpro
SARS-CoV [26]

12 Emodin Blocks the binding of S
protein to ACE2

SARS-CoV [26]

HSV-herpes simplex virus, MERS-CoV-Middle East respiratory syndrome coronavirus,
H1N1-influenza A virus, RSV-respiratory syncytial virus, CA-Coxsackievirus, CDV-canine
distemper virus, SARS–CoV severe acute respiratory syndrome coronavirus.
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fearwhich can take a toll on themental health of people [2]. In a study, it
was reported that COVID-19 situation triggered various mental issues
like difficulty in sleep, social media distress and paranoia of acquiring
this viral infection in 12.5%, 36.4% and 37.8% participants and 80%of par-
ticipants neededmental healthcare [2]. This state of mindmay result in
the development of oxidative stress and loss of immunity which may
further aggravate the symptoms. So we assume that if we exploit
some naturally occurring anti-viral and brain-boosting compounds
this may provide a new insight into the ongoing research to combat
these inflictions of COVID-19. These brain boosting compounds if ac-
companied with the anti-viral activities can be a good area to dig into
as no chemical therapeutic medicine is available to deal with this pan-
demic till date. In this review we have highlighted some brain boosting
and anti-viral compounds derived naturally like quercitin, caffeine,
lectins from banana (Banlec) and cocoa flavonoidswhichmight prevent
the neurons against apoptosis and oxidative stress (in case of quercitin)
[3], provide anti-depressant effects (in case of caffeine & lectin) [4,5]
and act as a neuro-protectant in case of cocoa flavonoid [6]. These com-
pounds have reported anti-viral activities, like quercetin has inhibitory
action against 3CLpro and PLpro protease of SARS and 3CLpro protease of
Middle Eastern respiratory syndrome virus (MERS) [7], caffeine has
anti-viral activity against human immunodeficiency virus type I (HIV-
1) [8], lectin (Banlec) displayed anti-viral activity against influenza vi-
ruses [9] and flavonoids can inhibit the fusion of viral membrane with
that of the lysosome [10]. By application of this synergistic approach
alleviation of the associated symptoms of COVID-19 might be
projected. To carry these compounds to their target sites, we fore-
see nanoencapsulation as a novel tool. The emerging field of nano-
technology has made a significant impact on the target delivery of
nutraceuticals and therapeutics. The use of nanocarrier system
presents an attractive strategy to provide for the target delivery
of these health promoting compounds into the intracellular com-
partments. Moreover the application of nanotechnology in food
and drug delivery systems has shown enhanced thermal stability,
oral bioavailability and water solubility [11]. So in this review, we
have summed up some of the brain boosting as well as anti-viral
compounds and highlighted the means of nano-encapsulating
these synergistic compounds which may pave a way in strategizing
the formulation of therapeutics for combating the adverse condi-
tions of COVID-19.

2. Synergistic approach (brain boosting and anti-viral target com-
pounds and their mode of action)

The prospectus of anti-viral and brain boosting compounds derived
from natural sources is more promising and some of these can grab a
great deal of attention in coming years owing to their initial reports of
anti-viral and brain stimulating effects. The domain of their health pro-
moting factors is very wide which can have great scope amid this pan-
demic situation. The natural compounds including polyphenols and
proteins have been studied over years to explore their anti-viral
and brain stimulating effects. Summary of natural compounds with
their anti-viral and brain boosting properties are given in Tables 1
and 2.

2.1. Quercetin

(2-(3,4-Dihydroxyphenyl)-3,5,7-trihydroxy-4H-chromen-4-one) is
the most widely available flavonoid compound present in green tea
and has been reported to prevent neurons against apoptosis and oxida-
tive stress [3]. Over the years,flavonoids have been recognized as agents
that affect the central nervous system in a beneficial manner including
the stimulation of neuronal regeneration, enhancement of neuron func-
tionality, ability to prevent the susceptible neurons and inducing
neurogenesis [34–37]. Quercetin also has the ability to prevent cell ap-
optosis in hippocampus which is considered as the centre of processing
376
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the spatial memory and presents a clear view that it can be used as a
novel agent to treat oxidative stress [3,38]. It has anti-viral activity
against RNA viruses due to its ability to inhibit reverse transcriptase of
these viruses [39]. This feature can enable it to find great application
in medicine as commonly used inhibitors including acyclovir and arabi-
nosides have toxic nature and are not only lethal to viral cells but also
damage the normal cells [39]. Apart from this, docking studies reveal
that quercetin exhibits an inhibitory effect on Akt activity enabling cell
survival, inhibits Cs2+-ATPase, ATPase of sarcoplasmic reticulum, pro-
tein disulfide isomerase and binds to CLUT1 thereby inhibiting glucose
efflux [40]. Also quercetin (100 μg) has been employed as the main in-
gredient in Gene-Eden-VIR/Novirin which is a patented herbal broad-
spectrum antiviral treatment and was subsequently studied for its
anti-viral activity against betacoronavirus [41]. The samples of COVID-
19 patients depicted that COVID-19 strain is a betacoronavirus having
close resemblance to human severe acute respiratory syndrome
(SARS-CoV) accounting to 79.5% sequence identity [42], 96% identical
3-chymotrypsine-like protease (3CLpro) amino acid sequences [41]. In
a 2012, a study carried out by Nguyen et al. reported that quercetin in
combination with epigallocatechin gallate displayed inhibitory effect
against 3CLpro the main protease of SARS exhibiting an IC50 of 73 μM
in vitro [43]. Quercetin has also shown its inhibitory action against
3CLpro and PLpro protease of SARS with IC50 value of 52.7 μM and
8.6 μM and 3CLpro protease of Middle Eastern respiratory syndrome
virus (MERS) with IC50 value of 34.8 μM in vitro [7]. Further quercetin
can regulate the unfolded protein response (UPR) of cells and as
coronaviruses use UPR for the completion of their life cycle so ad-
ministration of quercetin can have inhibitory effects on their activity
via modulation of the mentioned pathway [44]. A generalized mech-
anism of action of polyphenols on entry of viral particles is given in
Fig. 1.

2.2. Caffeine

The most widely available sources of caffeine include coffee, tea,
chocolate bars, cocoa beverages and soft drinks etc. Caffeine (1, 3, 7-
trimethylxanthine) is the major psychostimulant that has been studied
for its antagonist reaction towards adenosine receptors and for
Fig. 1. Mechanism of action of polyphenols in preven
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inhibition of phosphodiesterase 3 (PDE3) [45]. With the result, caffeine
has been associated with numerous mechanisms that describe the pa-
thology of depression [33]. Recent years saw a great work highlighting
the role of caffeine in affecting the neuroinflammatory hypotheses of
depression including tryptophan catabolism, oxidative stress and in-
flammation [33]. These pharmacological effects of caffeine have made
it a potent source of increasing alertness, as a stimulator of CNS and re-
laxant of smooth muscles [46]. In vivo studies have also revealed the
anti-depressant effects of caffeine and it has been reported that the
chronic administration of 8 mg/kg/day was able to reduce the symp-
toms of depression and the hippocampal secretion of serotonin and do-
pamine levels were comparable to that of the tricyclic deimipramine
(10 mg/kg/day), which is the common anti-depressant [4]. Apart from
these brain-boosting effects, caffeine has also displayed the anti-viral
activity against human immunodeficiency virus type I (HIV-1) [8]. An
essential step of replication for this virus involves (HIV-1) DNA integra-
tion and this stage is usually accompanied with damage to cellular DNA
and therefore needs certain cellular repair proteins for its completion
which includes ATR (ataxia telangiectasia and Rad3 related), DNA-PK
(DNA-dependent protein kinase) and in some cases, ATM (ataxia telan-
giectasia mutated). Caffeine has shown to inhibit ATR and ATM kinases
which form a potent target site for anti-HIV therapeutics [8]. This ten-
dency of caffeine can reduce the replication rate of HIV-1 life-cycle.
This property of the caffeine can make it an attractive agent to be in-
cluded in various COVID drug formulations. The immunomodulatory ef-
fect of caffeine has been attributed to antagonist activity of its adenosine
receptors and cAMP-phosphodiesterase which work in a dose depen-
dent manner [47]. Also caffeine treatment lowered the growth rate of
tumors which was possibly due to the antagonist activity of adenosine
A2A receptor. The activation of A2A receptors of T cells by adenosine re-
sults in reduction of CTL proliferation, cytokines (TNF-α and IFN-γ) pro-
duction and expression of programmed cell death [48]. Caffeine has also
been studied for anti-HCV drugs and reported replication of HCV by
preventing its replication. The mechanism of action has not been
ascertained yet. Also the expression of certain proteins such as heat
shock protein 90 (HSP90), COX-2 and Ras-ERK also reduced in cells
resulting in inhibition of HCV replication [49]. The long term consump-
tion of caffeine has also been observed to elevate IFN-γ [50]. Thus it can
ting entry of negative strand RNA into host cell.

Image of Fig. 1


Table 3
Summary of anti-viral lectins and their EC50 values against SARS-CoV inVero and Crandell
feline kidney cells.
Adapted from the study of Keyaerts et al. [53] with permission from Elsevier.
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be considered as potential candidate for further investigations in SARS-
COV-2 interventions [51].

2.3. Lectins from banana (Banlec)

Lectins are the category of proteins that have the ability to bind car-
bohydrates that contain at least one non-catalytic domainwhich can at-
tach itself reversibly to a particular saccharide [52]. The lectin isolated
from banana binds particularly to glucose and mannose. These are pro-
posed to possess antiviral properties due to the ability to bind to differ-
ent types of glycans (having high densities of glycoproteins) which are
present on the surfaces of viruses (Fig. 2). Due to the presence of two
key glycoproteins in influenza viruses namely, hemagglutinin (HA)
and neuraminidase (NA), which play a major role in the replication
cycle of influenza virus lectins have shown a potential anti-viral activity
against influenza viruses. Furthermore, these viral glycoproteins serve
the other functions such as binding the sialic acid-containing cell recep-
tors and the viral membrane with the endosomal membrane, breaking
the sialic acid entities resulting in release of virus and aggregation of
the new virus particles [9]. The sensitivity of corona virus towardsman-
nose specific lectins has been reported earlier in severe acute respira-
tory syndrome. The mechanism of their action towards corona virus
has been attributed to their property to inhibit the viral attachment in
early stages of replication and also decelerating the development of
virus by binding towards the end of infection cycle [53]. But the use of
lectins against the influenza viruses has limited applicability owing to
their mutagenicity which results in inflammatory side effects [54]. In
this context, an engineered banana lectin has been developed by induc-
ing themutation of single amino acid from histidine to threonine at po-
sition 84 called as (H84T BanLec, H84T) [9]. H84T when administered
intranasally, is highly effective against avian influenza (in vitro), epi-
demic, pandemic, and fatal viral influenza infection (in vivo) [9]. How-
ever, the effects via other routes of administration and overall safety
need an in-depth research. EC50 values of rBanLec H84T for H1NI and
H3N2 virus were reported to be ranging from 1 to 4 μg/mL and 0.06 to
0.1 μg/mL and for HCV genotypes ranging from 8.8 to 20.8 nM [55].
Also in vitro studies have revealed that lectin from bananas can modu-
late the immune cells [56]. In a study carried in 2012 Dimitrijevic et al.
reported that the oral administration of recombinant banana lectin in
mice displayed a reaction with the mucosal membranes and triggered
the formation of anti-bodies [58]. Also it has been reported that banana
lectin through the medium of peripheral human cell cultures can pro-
duce IgG4 [59]. In a study carried in 2006, Allen et al. reported that a
fructose binding lectin was isolated from Del Monte banana and it had
the ability to induce cytokine interferon-gamma expression and inhibit
the activity of HIV-1 reverse transcriptase and were subsequently sug-
gested in anti-HIV formulation [60]. Since lectin has demonstrated a
high anti-viral activity in the influenza type infections, focused and in
depth study will provide more evidences in using these anti-viral com-
pounds in drug formulations to combat COVID-19. In terms of brain
boosting activity, lectins from marine alga Solieria filiformis lectin (SfL)
Fig. 2. Binding of lectins (protein) to spike glycoprotein of corona virus.
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reported anti-depressant effects in mice which were mostly due to its
interaction with the dopaminergic system [61].

Another lectin ConBr obtained from Brazilian bean C. brasiliensis
having affinity formannose/glucose displayed ananti-depressant action
by activating monoaminergic system in mice using forced swimming
test [62]. Also it was shown that ConBr could prevent cell death, cause
blocking of seizures, act as the inhibitor of N-methyl-D-aspartate
(NMDA) receptor activation and can block the hippocampal neurotoxic-
ity triggered by glutamate in vitro and quinolinic acid in vivo demon-
strating the neuroprotective action via modulation of glutamatergic
system [5,62]. So with the proven brain boosting activity of lectins,
lectins from banana can also be looked into for similar effects and
projected as a novel compound to combat the depressive and viral con-
ditions of COVID-19. The summary of some anti-viral lectins with their
EC50 values against SARS-CoV are given in Table 3.

2.4. Cocoa flavonoids

There is a high demand for cocoa and its derivatives worldwide
given to their great sensory attributes. It is a rich source of polyphenols
especially the flavonoids like (+)–catechin, (−)-epicatechin, and their
dimmers like B1 (PB1) and procyanidins B2 (PB2) [63]. The daily intake
of the cocoa flavanols have been reported to enhance sensitivity of insu-
lin, decrease the blood pressure and fat oxidation andmost importantly
improve the brain function by increasing the flow of blood in the brain
via spiked vasodilation [64–66]. The proper functioning of brain and the
neuroprotection in mammals has been linked to the neurotrophic fac-
torswhichplay a key role in such regulation [67]. Also there are growing
evidences that suggest the association between the neurotropic factors,
brain and the polyphenolic compounds. Polyphenols are classified fla-
vonoids, stilbenes, phenolic acids, and lignans. Their neuroprotective ac-
tivities have been investigated in animal model studies indicating their
ability to affect various pathological states of the nervous system includ-
ing the modulation and protection against building up of ROS and
oxidative stress, inflammation, dysfunctioning of mitochondria, accu-
mulation of metals and all those processes that lead to the neurodegen-
erative diseases [6]. Furthermore, polyphenol and flavonoid rich diets
have also been linked to alleviate the risks associated with neurodegen-
erative diseases such as Parkinson's disease, Alzheimer's disease,
Huntington's disease, stroke and multiple sclerosis [6,68]. The mecha-
nism of their neuroprotective action and cognition activity is due to
their modulatory effects on gene expression and cell death process via
neuronal pathways. For instance, flavonoids inhibit MAP kinase cas-
cades like p38 or signaling of ERK1/2which affects the cytokine produc-
tion and transcription factors like TNF-α, NF-κB and interleukins in iNOS
that are the key determinants of the neuro-inflammatory response in
the CNS [69–71]. The recent study on human Alzheimer's disease
S. no Lectins EC50 (μg/ml) CC50 (μg/ml)

1 GlcNAc-specific agglutinins
• PallGlcNac ˃100 ˃100
• Nictaba 1.7 ± 0.3 ˃100

2 Man/GalNAc-specific agglutinins
• TL C II 38 ± 0 >50

3 Mannose-specific agglutinins
• APA 0.45 ± 0.08 >100
• CA 4.9 ± 0.8 >100
• EHA 1.8 ± 0.3 >100

4 Gal-specific agglutinins
• Morniga G II 50 ± 13 >100

5 Man/Glc-specific agglutinins
• Cladistris 7.4 ± 0.2 >100

GlcNac: N-acetyl glucosamine, Man: mannose, Gal: galactose, GalNAc: N-acetyl
galactosamine.

Image of Fig. 2
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using an in vitro model, revealed that the polyphenolic extract of cocoa
spiked the BDNF/TrkB signaling pathway thereby increasing neuropro-
tection [72]. Also its regular consumption has been linked to improved
cognition and decrease in the risks associated with Alzheimer disease
(AD) [46,73]. The principle flavanol present in cocoa is epi-catechin
and plays the great role in regulating the vascular function such as reg-
ulation of blood pressure and vascular tone due to increase in the bio-
availability of nitric oxide [74]. Also cocoa flavonols can accumulate in
hippocampus which aids in improving the memory and learning [75].
There has been a growing research which provides great evidence that
intake of the cocoa–derived products and chocolate consumption can
aid in improvingmemory and attention in people with decrease in cog-
nition thereby improving the neurocognitive and neuroprotective func-
tions [74] (Fig. 3).

In terms of the anti-viral activities, flavonoids can influence the IgM
and IgG in blood circulation and many such polyphenolic extracts have
been associated with the anti-viral activities against poxviruses, influ-
enza, HIV-1 and herpes [76]. Although no in depth study has been
made with respect to the anti-viral activity of polyphenols extracted
from cocoa, but in general polyphenols, particularly flavonoids has
been reported to inhibit the fusion of viral membrane with that of the
lysosome [10]. The underlying mechanism of this anti-viral activity of
the flavonoids is still unknown but it is assumed that flavonoids inhibit
PG's that help in fusion of cell membranes [77]. Also, flavonoids have
been reported to inhibit the proton pump which acidifies and activates
lysosomes [78]. Another anti-viral property of flavonoids is the produc-
tion of IFNs. These compounds exhibit their anti-viral effects through
modifying the process of phosphorylation behavior of protein transla-
tion eIFs (eukaryotic initiation factors) resulting in stoppage of biosyn-
thesis of all proteins including that of viral proteins, production of
nucleases that attack the genome of virus and fortifying themembranes
[79]. In vitro studies have shown that flavonoids also exhibit the anti-
viral activity against human immune deficiency virus (HIV) [80].

3. Nano–based delivery systems previously used for target release of
quercetin, caffeine, lectins and flavonoids

Nanotechnology has been widely used to carry out the target deliv-
ery of nutraceuticals and other therapeutics. The engineered nanoparti-
cles possess high surface to volume ratio, good absorption properties
and many bioactive components including resveratrol, curcumin, poly-
phenols, genistein, lycopene, anthocyanins and quercetin have been
subjected to nanoencapsulation to combat the poor water solubility,
low oral bioavailability and low taste profiles. Various techniques of
Fig. 3. Neuroprotective fun
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encapsulating these target compounds have been explored including
the designing of various nanocarrier systems including liposomes,
nanosuspensions, nanoemulsions, nanodimensionsal lipid transporters,
host matrices or micelles made up of polysaccharides, nanometer
phytosomes proteins or their conjugates or complexes and solid lipid
nanoparticles (SLNs) [81]. In addition to these, many inclusion com-
plexes made up of amylose and cyclodextrins, nanotransporters like
yeast cells, nanogels, nanofibres and nanosponges fabricated from poly-
saccharides and lipids have been employed for nanoencapsulation [82].
With the massive research going in the field of nanoscience, different
carrier systems have been employed to carry forth the bioactive com-
pounds. A novel approach for designing the nano-delivery system may
be the structuring of colloidal delivery system [83]. A number of such
delivery systems including starch nanocomposites and chitosan-
coated liposomes have been used to encapsulate curcumin [84,85]. Sim-
ilarly for encapsulating resveratrol soy protein isolates have been used
as wall materials [86]. For quercetin delivery a novel strategy was
employed by encapsulating the bioactive in nanostructures like nano-
tubes and conjugates [87–90]. Also, superparamagnetic iron oxide
nanoparticles (SPION) have been used as the carriers of quercetin
owing to superparamagnetic nature, high ratio of spin polarization
and elevated conductivity [91]. The use of this delivery system has
added features like sensitivity to diagnostic tests, target delivery to am-
yloid beta (Aβ) in the brain arteries, inhibition of microglial cells, detec-
tion of DNA and magnetic resonance imaging (MRI) [92–95]. Still the
toxicity of SPION is a major issue in its rapid commercialization.

For caffeine, which is an amphiphilic drug having considerable lipo-
lytic activity, many host compounds have been used as wall materials
including liposomes, concentrated protein hydrogels, poly- (epsilon-
caprolactone) polymer, cyclodextrins, niosomes, PLGA-mPEG copoly-
mers and silica [96]. Encapsulation controls the release of caffeine and
ensures its stability from rapid degradation, enables its target delivery
and masks the bitter taste of caffeine [46]. In 2014, Bagheri et al. pre-
pared the nano-particles of caffeine (300 nm) loaded in bioactive pep-
tides (whey proteins) which were further encapsulated in alginate
microparticles resulting in a more stable system and accounted for the
slow release of caffeine in the gastric fluid [97]. A copolymerized tem-
perature and pH- sensitive nanogel termed as poly (NIPAM-co-AAc)
comprising of poly (N-isopropylacrylamide) (polyNIPAM) and 5%
acrylic acid (AAc) was used as a drug carrier system for delivery of caf-
feine [98]. It was shown that in vitro diffusion of caffeine loaded in poly
(NIPAM-co-AAc) at 2–4 °C enhanced the delivery of caffeine by the mag-
nitude of 3.5 as compared to the saturated solution of caffeine. Since the
nanogelswere stimuli-responsive, so the release of encapsulant (caffeine)
ctions of polyphenols.

Image of Fig. 3
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wasdirected by the changes in its temperaturewhichwas themajor stim-
uli for release of caffeine. Nanostructures like electrospun nanofibres have
also been a recent area of interest in drug delivery systems and many
polymers have been investigated for their applicability to form nano fi-
bres like fibrinogen, collagen, poly (lactic acid), chitosan and poly (d,L-
lactide-co-glycolide) [99]. Electrospun poly (lactic-co-glycolic acid) fibre
meshes have been employed as the carrier system to release retinoic
acid [100], electrospun poly (dl-lactide) nanofibres have been used for
controlled release of paracetamol [101] and electrospun nanofibres
made frompoly- caprolactonehave beenused for the drugmetronidazole
benzoate for treatment of periodontal diseases [102]. A similar attempt
with respect to these electrospun nanofibres as medium to act delivery
systems have been put forth [99]. The workers employed electrospun
polyvinyl-alcohol nanofibres as oral fast-dissolving delivery system and
the results displayed that caffeine was released in a burst about 100%
within 60 s from such nanofibres.

The latest nano carrier system has been produced using the gold
nanoparticles (Au NPs), which serve as the affinity probes for the trap-
ping lectins like BanLec [103] Con A [104–106], and ricin B [107–109]. In
a study carried out by Selvaprakash & Chen functionalized gold nano-
particles (AuNPs) were generated from chicken egg white (cew) pro-
teins. The obtained Au@cew nanoparticles were then encapsulated
within ovalbumin, whose surface was enriched with hybrid mannose
and Galβ (1→ 4) GlcNAc terminated glycan ligands. Thus the complex
generated from such fabrication i.e. Au@cew NPs encapsulating hybrid
mannose andGalβ (1→ 4)GlcNAcwere used to bind the specific lectins.
The workers used various model lectins including banana lectin, conca-
navalin A and ricin B that possess certain bindingmoieties towards par-
ticular sugars likemannose, glucose, and β-lactose. The results revealed
that Au@cewnanoparticles can bind lectins and selectively release them
using specific sugar moieties like glucose, mannose and β-lactose as the
releasing agents from Au@cew NP-lectin conjugates [110].

For flavanols, which belongs to the category of polyphenols, low
water solubility due to high molecular weight may be a constraint for
their bioavailability [111]. Also their stability in the gastro intestinal
tract is very poor and degrades easily in acidic medium. In a study car-
ried out byMcGhie andWalton, at a pH of intestinal tract, anthocyanins
displayed poor stability [112]. Similarly, for polyphenol like EGCG, pH
below1.5 resulted in poor stabilitywhereas nanoencapsulation resulted
in the doubling of stability at pH 1.2 [113]. In general encapsulation of
polyphenols in generated nanoparticles increases their water solubility
as shown by encapsulation of curcumin in the chitosan or (poly-lactic-
co-glycolic acid) nanoparticles [114–119]. Since the site of absorption
of polyphenols is the small intestine and because the epithelia of small
intestine have no specific receptors, so the polyphenols are transported
via passive diffusion [120,121]. Nanoparticles encapsulating polyphe-
nols can improve the transportation by inducing paracellular or trans-
cellular mechanism [122]. Also nanoparticles can disrupt the tight
junctions of the epithelial cells which favours the entry of these poly-
phenols. Overall nanoencapsulation of these synergistic compounds
may become a good area of research in the coming times due to role
of these bioactives as an anti viral and brain boosting system.

4. Can nano-technology based approaches work?

The delivery of anti-viral drugs into the upper respiratory tract is
often exposed to a number of hurdles including lower flow of blood,
small surface area, presence of a mucus layer trapping the inhaled enti-
ties and filtration of foreign bodies [123]. The ideal environment for the
effective drug delivery might be the presence of large surface area and
ciliated cells which are present in the lower respiratory tract but even
these pose certain challenges including branched alveolar macrophages
and presence of phospholipids, proteins and mucins which acts as sur-
factants and decrease drug efficiency [124]. To address these issues,
nano delivery system can be employed due to their enhanced features.
A novel strategy of applying nanotechnology has been demonstrated
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recently in which Novochizol, a potential COVID-19 drug has been for-
mulated using an advanced delivery system. The drug delivery system
is comprised of a nanoparticle-based aerosol in which chitosan nano-
particles (forming the polysaccharide delivery system) adheres to the
wall of lung epithelia and provides for sustained release [125].

Similarly silica nanoparticles having exceptionally good chemical
stability and biocompatibility are good candidates for the encapsulating
nucleic acids. The silica based nanoparticles can bemodified to bind spe-
cific oligonucleotideswith varying dimensions includingDNA, RNA, and
siRNA [126]. The recent development in this regard has been observed
in case of an anti-viral vaccine named, Nuvec® proposed by a pharma
company. The company proposes to develop the nano-delivery system
for vaccines andmedicines employing novel silica-nanoparticles having
irregular surfaces functionalized with polyethylenimine for carrying
nucleic acids. This functionalized surface binds nucleic acids such as
mRNA/pDNA and protects these from the nucleic enzymes. Besides
this Nuvec® will neither not pose any harm to the cell membrane as
compared to the lipid based delivery systems nor inflict any inflamma-
tory response at the site of injection. The mechanism of action of func-
tionalized silica nanoparticles is elucidated in Fig. 4.

Talking about plant based therapeutics, the herbal metal nanoparti-
cles obtained by green technology presents a novel strategy for combat-
ing the chronic respiratory disorders due to the minimal toxicity,
physiological compatibility, scalability and cost effectiveness [128].
The metal nanoparticles derived from plant source offers an ability to
block the entry of viral particles inside the healthy cells which prevents
the propagation of these viral particles [129]. Apart from these benefits,
the unique magnetic, physicochemical and optical properties of the
metal nanoparticles enable them to be modified into a sensor to detect
the presence of virus or evaluate the buildup of metabolites generated
by the virus infection.

A latest entry in application of nanotechnology in combating COVID-
19 comes from the development of nanotheranostics which involves
the delivery of theranostic nanoparticles that carry the therapeutic
drug. The systemprovides an efficient approach of preventing the trans-
mission of COVID-19 virus as the drug can be delivered via alternative
routes apart from being delivered via intranasal delivery route. The sys-
tem caters to the needs of the challenges faced bymucosal routes,main-
tains an effective concentration of drug at the point of infectionwithout
any side effects on the healthy cells [130]. The agents under this delivery
system have been classified as inorganic, organic and virus like self-
assembling protein nanoparticles. Quantum dots have also been pro-
posed to act as antiviral agents. “Quantum dots (QDs),” also called as
“semiconductor nanomaterials,” are based on longterm fluorescence
imaging of cellular processes. Their size ranges from 1 to 10 nm with
tunable optical wavelength. As such these can be used as a novel probes
for molecular imaging [131]. The use of QDs in combating SARS-CoV-2
infections can become a great area of research owing to its ability to
be traceable under specific wavelength of light, to be tunable to desired
range of sizes (1–10 nm) and shape. Owing to their nano size and shape,
QDs can easily penetrate SARS-CoV-2 with size ranging from 60 and
140 nm [132]. QDs can also not only sequester the S protein of SARS-
CoV-2 due to their positive surface charge but their cationic surface
charge can also interact with negative RNA strand of the virus, creating
reactive oxygen species within SARS-CoV-2. [133]. In a study reported
by Du et al., reported the antiviral activity of carbon dots (CDs) against
respiratory syndrome virus, pseudorabies virus and porcine reproduc-
tive virus [134]. CDs can activate interferonstimulated genes in particu-
lar interferon-α which can suppress viral replication. In a recent study
by Loczechin et al., CDs were prepared by hydrothermal conjugation
and carbonization with boronic acid (carbon quantum dots-3) and
were observed to show anti-viral activity against pathogenic human co-
ronavirus in a dose-dependent manner [135].

Overall nanoparticles can deliver range of anti-viral moieties
and target both the adaptive as well as innate immune system.
The nanodimensions and the flexibility are the key features for



Fig. 4. Functionalized silica nanoparticles as an effective delivery system to deliver DNA/RNA in anti-viral vaccines.
Adapted from study of Theobald [127] with permission from Elsevier.
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developing a vaccine in future. Nanoparticles can not only be ad-
ministered orally but intranasal, subcutaneous and intramuscular
routes are also an option. The potential of nanotechnology in fight-
ing this deadly disease has not only been realized in context of de-
veloping a nano-vaccine but by delivering the nano-based anti-
viral agents. In case of former, scientists have proposed the design-
ing of the virus-like nanoparticles i.e. NANOparticles (1c-SApNPs) a
self assembling protein bearing SARSCoV-like 2 protein spikes
(StatNano.com). As reported the system can stimulate the immune
system to generate anti-bodies which can be detrimental to corona-
virus and ultimately offer the first hand protection against real
SARS-CoV-2 virus [136]. The system exploits the characteristic
properties of high surface area to volume ratio of nanoparticles in
association of the virus surface proteins to evoke an immune re-
sponse. The system has certain shortcomings as well, particularly
in terms of manufacturing and cost effectiveness of the process. To
overcome these short comings, novel vaccines based on messenger
RNA (mRNA) have been suggested. These produce viral proteins
through the action of host body on synthetic mRNA of the virus.
The development of such nanovaccines using nanotechnology has
a tremendous potential of bringing forth the possibilities of elimi-
nating this deadly virus. For instance, angiotensin-converting en-
zyme 2 (ACE2) receptor is a known receptor for SARS-CoV and
related human respiratory coronavirus NL63 present in the lung pa-
renchyma and epithelium of air passage [137]. So a strategy of de-
veloping the SARS-CoV nanovaccine will lie in the delivery of the
oral synthetic mRNAwhich will target the interaction sites between
SARS-CoV and ACE2 and thus uplift the immunostimulatory effect
of vaccine. Apart from these nanovaccines, which seems to the reli-
able possibility, other immune boosting anti-viral agents can also be
targeted for inhibiting the either the replication or entry of virus.
For this purpose nano based vehicles have already entered in line
for instance, nanoparticles attached to ligands have shown the abil-
ity to act as a barrier on the cell wall to prevent the entry of virus.
Another preventive strategy has shown that polyphenols have in-
trinsic anti-viral properties which can enhance the synthesis of
pro-inflammatory cytokines and interferon-stimulating genes
(ISGs) by the host cells and these can retard the production of
negative-strand RNA of the virus and prevent the entry of viral par-
ticles inside the cell membrane [138,139]. Since the virus are
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structurally different and phylogenetically apart, so the vaccines
which will be developed in future will be virus specific. In such a sit-
uation, a promising strategy will be to develop broad spectrum anti-
viral nanoparticles which will help in prevention and treatment of
COVID-19. So reviewing the novel anti-viral agents and their nano
based delivery systems might generate an approach of devising
the treatment to combat COVID-19.

5. Conclusions

The overall scenario created by this pandemic has put a tremendous
pressure on the workers to look into every possibility to come with the
anti-virals and associated compounds that can alleviate the COVID
symptoms. The mental agony and trauma inflicted upon the COVID pa-
tients and generalmasses has surpassed like never before. So it becomes
the need of the hour to focus the research towards those naturally oc-
curring substances which can help to reduce these complications as
no chemical therapeutic is available till date. In order to provide com-
prehensive information of such compounds we have reviewed some
naturally occurring compounds including quercitin, lectin, caffeine and
cocoa flavonoids for their brain stimulating and anti-viral activities. Fur-
ther we have summed up few nano-carrier systems for such synergistic
compounds. Nanoencapsulation of these target compounds may pro-
vide a new area of research to derive the benefits and modify the phar-
macologically active part of these compounds.
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