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DAAM2 is elevated 
in the circulation and placenta 
in pregnancies complicated by fetal 
growth restriction and is regulated 
by hypoxia
Natasha de Alwis1,2,3,4,5, Sally Beard1,2,3,4,5, Natalie K. Binder1,2,3,5, Natasha Pritchard2,3,5, 
Tu’uhevaha J. Kaitu’u‑Lino2,3,5, Susan P. Walker3,5, Owen Stock2,5, Katie Groom6, 
Scott Petersen7, Amanda Henry8, Joanne M. Said5,9, Sean Seeho10, Stefan C. Kane5,11, 
Lisa Hui2,3,4,5, Stephen Tong2,3,5 & Natalie J. Hannan1,2,3,4,5*

Previously, we identified increased maternal circulating DAAM2 mRNA in pregnancies complicated 
by preterm fetal growth restriction (FGR). Here, we assessed whether circulating DAAM2 mRNA 
could detect FGR, and whether the DAAM2 gene, known to play roles in the Wnt signalling pathway 
is expressed in human placenta and associated with dysfunction and FGR. We performed linear 
regression analysis to calculate area under the ROC curve (AUC) for DAAM2 mRNA expression in the 
maternal circulation of pregnancies complicated by preterm FGR. DAAM2 mRNA expression was 
assessed across gestation by qPCR. DAAM2 protein and mRNA expression was assessed in preterm 
FGR placenta using western blot and qPCR. DAAM2 expression was assessed in term cytotrophoblasts 
and placental explant tissue cultured under hypoxic and normoxic conditions by qPCR. Small 
interfering RNAs were used to silence DAAM2 in term primary cytotrophoblasts. Expression of 
growth, apoptosis and oxidative stress genes were assessed by qPCR. Circulating DAAM2 mRNA was 
elevated in pregnancies complicated by preterm FGR [p < 0.0001, AUC = 0.83 (0.78–0.89)]. Placental 
DAAM2 mRNA was detectable across gestation, with highest expression at term. DAAM2 protein 
was increased in preterm FGR placentas but demonstrated no change in mRNA expression. DAAM2 
mRNA expression was increased in cytotrophoblasts and placental explants under hypoxia. Silencing 
DAAM2 under hypoxia decreased expression of pro-survival gene, BCL2 and oxidative stress marker, 
NOX4, whilst increasing expression of antioxidant enzyme, HMOX-1. The increased DAAM2 associated 
with FGR and hypoxia implicates a potential role in placental dysfunction. Decreasing DAAM2 may 
have cytoprotective effects, but further research is required to elucidate its role in healthy and 
dysfunctional placentas.

The placenta is a unique organ developed in pregnancy, acting as the interface between the maternal and fetal 
systems. Healthy placental development creates a high flow, low resistance blood delivery system to facilitate 
the supply of oxygen and nutrients and removal of waste products. This exchange is essential for optimal fetal 
growth, and as such, appropriate placental development is crucial to establish a healthy pregnancy. Aberrant 
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placentation can progress to serious pregnancy complications such as fetal growth restriction, which is respon-
sible for significant perinatal morbidity and mortality1.

In the first trimester of pregnancy, cytotrophoblasts, a cell type unique to the placenta regulate the remodel-
ling of maternal spiral arteries. The cytotrophoblasts replace endothelial cells, whilst simultaneously expanding 
the vessel lumen, as well as forming trophoblast plugs2,3. These plugs create a low oxygen environment for initial 
placental and fetal development. When the trophoblast plugs disintegrate towards the end of the first trimester, 
the remodelled arteries can provide a high flow, low resistance blood supply to the placenta and fetus, restoring 
oxygen levels4.

Impaired trophoblast invasion and remodelling of the maternal spiral arteries causes placental insufficiency, 
resulting in impaired circulation to the placenta. Blood flow can become pulsatile, damaging the fragile placen-
tal tissue resulting in placental ischaemia and increased oxidative stress5. Furthermore, oxygen delivery may 
be compromised, generating variations in oxygen tension and periods of low oxygen referred to as placental 
hypoxia6. This failure in placental function can severely affect fetal development7.

Fetal growth restriction is a serious pregnancy complication where a fetus fails to reach its growth potential 
due to inadequate nutrient supply. The most common cause is uteroplacental insufficiency, where dysfunctional 
placentation and chronic hypoxia impair fetal growth and development5. Fetal growth restriction is associated 
with an increased risk of major perinatal injury, cardiovascular, respiratory and neurological morbidities and 
major risk of mortality, with early onset cases being most serious8–10. Despite being one of the most severe com-
plications of pregnancy, with up to 45% of non-anomalous stillbirths associated with fetal growth restriction11, 
there are still no treatments that improve placental insufficiency nor accurate means of early detection of placental 
dysfunction preceeding severe impairment to fetal growth. There is an urgent clinical need to develop better tests 
for placental insufficiency to decrease perinatal morbidity and mortality.

In a recent multi-center cohort study, we used next generation sequencing to measure cell-free RNA in the 
blood of pregnant women with preterm fetal growth restriction, fetal acidemia in utero, and stillbirth. Our study 
identified significantly altered mRNA signatures in the maternal circulation where there was placental insuffi-
ciency, preterm fetal growth restriction and fetal hypoxia12. Dishevelled Associated Activator of Morphogenesis 
2 (DAAM2) was one of the most differentially regulated genes identified. DAAM2 mRNA was elevated in the 
circulation of women with preterm fetal growth restriction. Whether these circulating mRNAs originated from 
the dysfunctional placenta was not established in that study.

DAAM2 is known for its role in the Wnt signalling pathway13,14. Recently, the first study to report on Daam2 
in the placenta demonstrated a role in placental vascularization and establishment of the maternal–fetal blood 
supply in mice15. However, there are no published studies investigating DAAM2 expression or function in the 
human placenta.

In this study, we aimed to assess whether DAAM2 was expressed in the human placenta and whether gene 
expression or protein production was altered by gestation, or placental dysfunction associated with preterm 
fetal growth restriction. We also set out to explore possible functional roles for DAAM2 in the placenta related 
to growth and dysfunction.

Results
DAAM2 is increased in the circulation of pregnancies complicated by fetal growth restric‑
tion.  Using next-generation sequencing, we initially discovered DAAM2 expression was increased in the 
maternal circulation of pregnancies complicated by preterm fetal growth restriction (FGR) in the FOX study 
cohort12. The majority of the fetal growth restricted cases were significantly growth restricted with a median 
birthweight centile (using intrauterine fetal charts16) of 0.1 (interquartile range 0.0–0.4; see Table 1 for baseline 
clinical characteristics of women in the FOX study).

Here, in the current study we have further analysed the quantitative PCR data presented in our previous 
study12 to specifically determine the ability of DAAM2 to detect preterm FGR. We log-transformed circulating 
DAAM2 mRNA expression, demonstrating a highly significant increase (p < 0.0001) in circulating DAAM2 
mRNA in pregnancies complicated by preterm fetal growth restriction (Fig. 1a) compared to gestation-matched 
controls. Additionally, we examined whether maternal circulating DAAM2 mRNA was altered between cases of 
preterm FGR where fetal acidemia (associated with increased risk of perinatal death17) was apparent (determined 
by an umbilical artery blood pH < 7.2 (indicating acidosis) versus pH ≥ 7.2 (not acidotic)). We did not detect 
further altered expression of DAAM2 in the circulation with fetal hypoxia (Supplementary Fig. S1).

To determine whether DAAM2 RNA could provide a useful test, we performed logistic regression analysis. 
This provided a test with an area under the receiver operating characteristic (ROC) curve of 0.83 (Fig. 1b). At 
a specificity of 90.1% (i.e. a 10% screen positive rate) the test had 63.2% sensitivity in identifying preterm fetal 
growth restriction, with a positive likelihood ratio of 6.4. Thus, circulating DAAM2 mRNA expression demon-
strated potential to highlight pregnancies at serious risk of preterm fetal growth restriction and may be useful in 
a multi-marker test. However, use as a lone marker would require further validation, with comparison to current 
clinical detection of high-risk pregnancies.

We also found no change in DAAM2 expression when we sub-analysed the cases by coexistent gestational 
hypertension or preeclampsia (Supplementary Fig. S2). Assessment between 28 and 32 weeks in the control sam-
ples revealed no significant increase in DAAM2 expression in the maternal circulation with advancing gestation 
(data not shown). DAAM2 mRNA was not altered by fetal gender (data not shown).

DAAM2 is expressed in human placenta and increases with advancing gestation.  DAAM2 
expression was identified in human placental tissue at all gestations examined (first trimester, second trimes-
ter and term). There was no significant change in expression between first trimester (7–10 weeks) and second 
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Table 1.   Patient characteristics for cases of Fetal Growth Restriction (FGR) and control cohorts as part of 
the FOX study.  Data are n (%), mean (SD), or median (IQR). Comparison between FGR cases and gestation 
matched controls is by chi squared analysis and t-test. Each control contributed two blood samples for the 
analysis, at 28 and 32 weeks gestation. This was done to correct for possible changes in RNA concentrations 
across gestational age. a We used fetal weight reference charts to determine centiles (Hadlock formula, except 
fetal sex was corrected for).

Characteristics FGR cases (n = 128) Controls (n = 42) P

Maternal age, years 32 (6) 30 (6) 0.13

Nulliparity 80 (63%) 38 (45%) 0.013

Body-mass index, kg/m2 27 (6) 24 (5) 0.0009

Smoking during pregnancy 17 (13%) 6 (7%) 0.16

Diabetes during pregnancy 15 (12%) 8 (10%) 0.60

Chronic hypertension 12 (9%) 0 (0%) 0.004

Preeclampsia 63 (49%) 3 (4%) < 0.00001

Absent or reversed end diastolic flow in umbilical artery 58 (45%) – –

Median gestational age at blood sampling (wks) 30.5 (28.6–32.1) 30.0 (28–32.1) 0.21

Gestational age at delivery (wks) 30.5 (28.6–32.1) 39.4 (39–40.2) < 0.00001

Birthweight, g 1023 (315) 3594 (480) < 0.00001

Birthweight centiles, corrected for gestationa (median and interquartile range) 0.1 (0.0–0.4) 40.8 (27.9–60.9) < 0.00001

Male sex 71 (55%) 46 (55%) 0.92

Umbilical artery pH, median 7.27 (7.22–7.3) –

Umbilical artery pH < 7.2 22 (17.2%) –

Neonatal deaths within 42 days of birth 2 (2%) 0 (0%) 0.42

Figure 1.   Expression of DAAM2 mRNA in the maternal circulation from pregnancies complicated by preterm 
fetal growth restriction (FOX Study). DAAM2 mRNA data is expressed as log expression; error bars are 
median ± IQR. AUC = 0.83; 95% Confidence Interval (0.78–0.89). ****p < 0.0001.
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trimester (24–29 weeks) samples. However, a significant increase in expression was observed between the term 
and first trimester samples (p = 0.008; Fig. 2). DAAM2 expression was also significantly higher at term compared 
to second trimester gestation (p = 0.034; Fig. 2). Thus, placental DAAM2 expression increases with advancing 
gestation.

DAAM2 protein is increased in placental tissue from pregnancies affected by fetal growth 
restriction.  There was no significant difference in DAAM2 mRNA expression in placental tissue from preg-
nancies complicated by preterm fetal growth restriction (≤ 34 weeks gestation) compared to gestation-matched 
preterm control placenta (Fig.  3a). However, placental DAAM2 protein was significantly increased in preg-
nancies complicated by preterm fetal growth restriction, compared to gestation-matched control placentas 
(p = 0.049; Fig. 3b,c, Supplementary Fig. S3).

DAAM2 expression is increased under hypoxia in term placental tissue and isolated cyto‑
trophoblasts.  Under hypoxic conditions, DAAM2 mRNA expression was significantly increased in both 
term cytotrophoblasts (p = 0.005; Fig. 4a) and term placental explants (p = 0.040; Fig. 4b), compared to control 
cells and tissues cultured under normoxic conditions.

Knockdown of DAAM2 in primary cytotrophoblasts.  In isolated primary cytotrophoblasts, siRNA 
directed against DAAM2 significantly decreased expression of DAAM2 mRNA by approximately 80%, under 
both normoxic (p < 0.0001; Fig. 5a) and hypoxic (p < 0.0001; Fig. 5b) conditions. Importantly, siRNA against 
DAAM2 did not negatively affect cell survival at either oxygen tension (Supplementary Fig. S4).

Silencing DAAM2 alters expression of apoptosis and oxidative stress markers under 
hypoxia.  To assess the potential functional roles of DAAM2 in the placenta, we assessed expression of 
important genes in pathways of growth, apoptosis and oxidative stress in cytotrophoblasts where DAAM2 had 
been silenced under hypoxic conditions.

Under hypoxic conditions, knockdown of DAAM2 did not affect the expression of genes involved in placen-
tal growth and proliferation: epidermal growth factor receptor (EGFR) and insulin-like growth factor 2 (IGF2) 
(Fig. 6a,b, respectively). Silencing DAAM2 did not alter expression of the pro-apoptotic gene, BCL2 Associated X 
(BAX) (Fig. 6c), but significantly decreased pro-survival B-cell lymphoma 2 (BCL2) mRNA expression (p = 0.011; 
Fig. 6d). mRNA expression of oxidative stress marker, NADPH oxidase 4 (NOX4) was significantly decreased 
with DAAM2 knockdown compared to the negative siRNA control (p = 0.048; Fig. 6e), whilst the anti-oxidant 
gene, heme oxygenase 1 (HMOX-1) was significantly increased (p = 0.0002, Fig. 6f).

Silencing DAAM2 did not affect expression of any of these genes under normoxic conditions (Supplementary 
Fig. S5).

Figure 2.   DAAM2 expression in placentas from first trimester, second trimester and term gestation. Expression 
of DAAM2 is significantly increased at term compared to first trimester and second trimester. There is no 
change in DAAM2 expression between first trimester and second trimester. Data presented as fold change from 
first trimester, mean ± SEM. *p < 0.05. First trimester; n = 6, 7–9 weeks. Second trimester; n = 4, 24–29 weeks. 
Term; n = 9; 38–39 weeks.
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Figure 3.   DAAM2 mRNA and protein in preterm placental tissue (≤ 34 weeks). (a) DAAM2 mRNA expression 
assessed by qPCR. (b) Representative western blot and (c) densitometric analysis of DAAM2 protein. DAAM2 
mRNA expression was not significantly changed in fetal growth restricted (FGR; n = 14) tissue compared to 
preterm control (PT; n = 10) tissue. Relative levels of DAAM2 protein were significantly higher in fetal growth 
restricted (n = 16) placental tissue compared to preterm control (n = 9) tissue. Protein and mRNA data presented 
as fold change from control ± SEM. *p < 0.05. Full western blot images are presented in Supplementary Fig. S3.

Figure 4.   Expression of DAAM2 mRNA in primary cytotrophoblasts and placental explant tissue under 
normoxic (8% O2) and hypoxic (1% O2) conditions. Cytotrophoblast (a) and placental explant (b) expression 
of DAAM2 mRNA is significantly upregulated under hypoxic conditions, compared to normoxic control. Data 
presented as fold change from control ± SEM. *p < 0.05, **p < 0.01. n = 4–5 experimental replicates (each sample 
from a different patient), with each experiment performed in triplicate.
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Discussion
In this paper, we identified that circulating DAAM2 mRNA has potential to detect fetal growth restriction (FGR), 
is expressed in the human placenta throughout gestation and is dysregulated with hypoxia and in disease settings. 
Furthermore, silencing DAAM2 alters stress markers in the placenta.

DAAM2 is a key regulator of the Wnt signaling pathway, an ancient and evolutionarily conserved pathway 
that regulates crucial aspects of cell fate determination, cell migration, cell polarity, neural patterning and organo-
genesis during embryonic development13,14. The first study to report on Daam2 in the placenta was published 
recently, demonstrating a potential role in placental vascularization and the establishment of the maternal–fetal 
blood supply in mice15. Importantly, there are no published studies investigating DAAM2 function in the human 
placenta.

Previously, we identified increased DAAM2 mRNA in the circulation of women whose pregnancies were 
complicated by early onset fetal growth restriction by next generation sequencing12. However, in that report 
we did not explore DAAM2 expression further as a marker for fetal growth restriction as we focused on other 
genes, nor did we perform mechanistic studies in the placenta or explore the potential source for the elevated 
mRNA in the maternal circulation.

In this study, we performed a further analysis of circulating DAAM2 mRNA concentrations where we char-
acterised the diagnostic potential of DAAM2. We found that circulating DAAM2 mRNA identified preterm 
FGR with an area under the ROC curve (AUC) of 0.83. This suggests DAAM2 may have potential to predict the 
risk of preterm FGR. However, as noted in our prior report, a possible limitation as a clinical biomarker is that 
circulating levels of DAAM2 mRNA may be altered by the administration of corticosteroids12. Thus, further 
studies are needed to determine whether this differential expression in the circulation remains in a population 
that has not received corticosteroids.

Regardless of biomarker status, our data (combined with the recent report in animal models showing the gene 
plays an important role in placental development15) suggest DAAM2 may be involved in placental development, 
fetal growth and the pathological condition of fetal growth restriction. The current study demonstrates for the 
first time that DAAM2 is expressed by the human placenta. We confirmed expression of DAAM2 in first trimes-
ter, second trimester and term placenta, but interestingly found that DAAM2 expression was highest at term. 
DAAM2 expression was detected as early as seven weeks gestation, suggesting a possible role for DAAM2 in early 
placental vascularistion and establishment of the maternal–fetal blood supply, as seen in mice15. Both mouse and 
human placenta are hemochorial, and both contain fetal capillaries surrounded by layers of trophoblasts directly 
bathing in maternal blood18. However, there are also key differences between mouse and human placental vas-
cularisation, thus further investigation is needed to explore the potential role for DAAM2 in the first trimester.

Consistent with our discovery in the maternal circulation, we identified an increase in DAAM2 protein 
in human placental tissue from pregnancies complicated by early onset fetal growth restriction. However, no 
differences were detected in placental DAAM2 mRNA expression. It is important to note that in the placental 
samples available to examine DAAM2 mRNA expression, there was a significant difference in gestational age 
between our controls and fetal growth restriction-complicated pregnancies. It is difficult to ascertain whether 
this difference is clinically significant, but given we identified a difference in DAAM2 expression across gestation, 
this may confound interpretation of the mRNA findings. Examination of a larger cohort of early onset cases and 
gestation-matched controls would be of value to clarify these discrepant findings. Additionally, as with all studies, 
mRNA expression is not always translated to protein production, hence may be a point of difference. Importantly, 
in these placental studies we assessed DAAM2 protein and mRNA expression in samples where corticosteroids 
were given in both the controls and pregnancies complicated by fetal growth restriction. Therefore, the finding 
of increased production of DAAM2 in the control and fetal growth restricted placentas are not confounded by 
corticosteroid administration. The control placentas used in these studies were carefully selected, minimising 

Figure 5.   Knockdown of DAAM2 under normoxic (8% O2) and hypoxic (1% O2) conditions. Cytotrophoblast 
expression of DAAM2 mRNA was significantly knocked down under both normoxic (A) and hypoxic 
conditions with siRNA against DAAM2 (siDAAM2) compared to the negative control siRNA (siNegative). Data 
presented as fold change from control ± SEM. ****p < 0.0001. n = 3 experimental replicates (each sample from a 
different patient), with each experiment performed in triplicate.
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confounding effects. However, given the control placental tissue was obtained from preterm deliveries, it remains 
that they are not perfect controls.

Placental hypoxia plays an important role in placental dysfunction, and consequently is a contributing factor 
to the pathophysiology of fetal growth restriction6. Accordingly, we examined DAAM2 expression in the placenta 
under hypoxic conditions, finding that DAAM2 mRNA expression was increased in both isolated cytotropho-
blasts and placental explant tissue. This suggests that hypoxia regulates DAAM2 expression, and is consistent 
with the dramatically increased DAAM2 mRNA in the maternal circulation of pregnancies complicated by severe 
fetal growth restriction12.

Given our finding that DAAM2 was increased in the dysfunctional placenta, we examined whether reducing 
its expression could be beneficial and confer protection or enhance expression of growth associated genes. Silenc-
ing DAAM2 expression in primary cytotrophoblasts under hypoxia did not impair cell viability, suggesting that 
DAAM2 is not essential for trophoblast cell survival. Loss of DAAM2 did not alter expression of IGF2 and EGFR, 
key genes whose dysregulation has been found to be associated with impaired placental development and fetal 
growth restriction19–21, thus DAAM2 is unlikely to be driving these pathways. Additionally, the pro-apoptotic 

Figure 6.   Effect of DAAM2 knockdown on expression of cell growth, apoptosis and oxidative stress genes 
under hypoxia (1% O2). Knockdown of DAAM2 with siRNA (siDAAM2) significantly decreased (d) BCL2, (e) 
NOX4 and increased (f) HMOX-1 mRNA expression compared to the negative siRNA control (siNegative), but 
had no effect on (a) EGFR, (b) IGF2 or (c) BAX. Data presented as fold change from control ± SEM. *p < 0.05, 
***p < 0.001. n = 3 experimental replicates (each sample from a different patient), with each experiment 
performed in triplicate.
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gene BAX22 was not altered with DAAM2 suppression. However, silencing DAAM2 decreased expression of the 
pro-survival gene, BCL2. It is important to note that in addition to its pro-survival role, BCL2 also acts through 
non-canonical pathways, including regulation of mitrochondrial membrane permeabilization and oxidative 
stress23,24. It is therefore unsurprising that silencing DAAM2 also altered expression of NOX4, a marker of oxi-
dative stress25. Silencing DAAM2 also increased mRNA expression of the cytoprotective antioxidant enzyme 
HMOX-126–28. Decreasing oxidative stress in the placenta may have important benefits, especially when hypoxia 
is driving damage and dysfunction. These findings suggest DAAM2 may have an important role in placental 
dysfunction, and suppressing DAAM2 in the placenta could be beneficial. Future studies examining the effect 
of excess DAAM2 may facilitate our understanding of the function of DAAM2 in the placenta.

While a clear role for DAAM2 in the human placenta is not yet apparent, collectively these data and the 
identification of Daam2 in the murine placenta15 suggest important roles for DAAM2 in the placenta.

In this report, we demonstrated increases in DAAM2 expression in placentas complicated by early onset fetal 
growth restriction and hypoxia, indicating a potential role in the dysfunctional placenta. Additionally, we identi-
fied that placental expression of DAAM2 increases with advancing gestation, and that suppression of DAAM2 
enhanced cytoprotective gene pathways in hypoxic cytotrophoblasts. A strength of this study is the use of prized 
clinical samples, and collaboration with clinical expertise. Another strength of this study is the assessment of 
DAAM2 in primary placental cells and tissues, rather than cell lines. However, further studies are required to 
expand these findings and uncover the role of DAAM2 in the healthy and dysfunctional placenta.

Methods
Fetal OXygenation (FOX) Study.  Maternal peripheral blood was collected as part of the FOX Study 
as previously described12. In summary, blood was collected from 128 women with preterm growth restricted 
fetuses and from 42 women at matched gestations (28 and 34 weeks) with appropriately grown fetuses that pro-
gressed to birth at term, across six tertiary hospitals (in Australia and New Zealand). Table 1 provides the base-
line clinical characteristics of study participants in the FOX study. Samples were collected directly into PAXgene 
Blood RNA tubes (Pre-Analytix, Hombrechtikon, Switzerland) to maintain nucleic acid stability and processed 
according to manufacturer’s instructions. All blood samples were collected after corticosteroid administration, 
immediately prior to delivery.

Ethical approval was obtained from all institutions (Approval numbers: MHW R11/04, RWH + Sunshine 
Hospital 10/41, MMH 1928M, RHW 12/240, RNSH 1305-151M, NWH, ACH 12/NTA/96/AM02) and all women 
provided written, informed consent. Experiments were performed following the relevant institutional guidelines 
and regulations.

Preterm fetal growth restriction was defined as a customized birthweight < 10th centile (www.gesta​tion.net, 
Australian parameters) requiring iatrogenic delivery prior to 34 weeks gestation with uteroplacental insuffi-
ciency (asymmetrical growth + abnormal artery Doppler velocimetry ± oligohydramnios ± abnormal fetal vessel 
velocimetry). Fetal growth restriction due to infection, chromosomal or congenital abnormalities, and multiple 
pregnancy was excluded.

Fetal hypoxic status in the preterm growth restricted cohort was determined by collecting umbilical artery 
blood at birth and measuring the pH, where hypoxia was defined as pH < 7.2, and normoxia as pH ≥ 7.2.

Placental tissue collection.  Ethical approval was obtained from the Mercy Health Human Research Eth-
ics Committee (R11/34) and Austin Health Human Research Ethics Committee (HREC/18/Austin/44). Women 
presenting to the Mercy Hospital for Women (Heidelberg, Victoria) and The Northern Hospital (Epping, Victo-
ria) gave informed, written consent for the collection of tissue. Women presenting to the Broadmeadows Health 
Service (Broadmeadows, Victoria) gave informed, written consent for the collection of conceptus samples at sur-
gical termination of pregnancy. Experiments were performed following institutional guidelines and regulations.

First trimester placental tissue was obtained from conceptus material collected at surgical terminations of sin-
gleton pregnancies (7–10 weeks gestation) under general anaesthesia via curettage or a combination of aspiration 
and curettage (according to the surgeon’s preference). Placental tissue was identified and isolated from conceptus 
material, then washed in phosphate buffered saline (PBS). Placental tissue was transferred to RNAlater for 48 h, 
after which the tissue was snap frozen and stored at − 80 °C for subsequent analysis. Patient characteristics are 
described in Table 2.

Placentas were obtained from cases of preterm fetal growth restriction (delivery ≤ 34 weeks gestation), defined 
as customized birth weight < 10th centile according to Australian population charts29. Cases associated with 
congenital infection, chromosomal or congenital abnormalities, multiple pregnancies and preeclampsia were 
excluded.

Control healthy, term (delivery 37–40 weeks gestation) and preterm placentas (delivery ≤ 34 weeks gestation) 
were collected from normotensive pregnancies where a fetus of normal customized birth weight centile (> 10th 
centile relative to gestation) was delivered. Placentas with evidence of chorioamnionitis (confirmed by placental 
histopathology) were excluded.

Term and preterm placental tissue was collected within 30 min of delivery. Preterm delivery in our controls 
was predominantly for iatrogenic conditions including vasa previa, suspected placental abruption and fetal anae-
mia. For preterm (fetal growth restriction and control) tissue collection, samples from four sites of the placenta 
were washed in ice cold PBS and preserved in RNAlater for 48 h, after which the tissue was snap frozen and stored 
at − 80 °C for subsequent analysis. Patient characteristics are described in Tables 2, 3 and 4.

Placental explant isolation and culture.  Placentas were obtained from normal term pregnancies 
(> 37  weeks gestation) at elective Caesarean section for explant dissection. Placental explants were isolated 
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Table 2.   Patient characteristics for placental tissue used to assess DAAM2 expression across gestation.  
BMI data unavailable for n = 1 second trimester sample. a Significant difference between first trimester and 
second trimester samples. b Significant difference between second trimester and term samples. c Significant 
difference between first trimester and term samples.

First trimester (n = 6) Second trimester (n = 4) Term (n = 9)

Maternal age, years Median (range) 29 (25–39) 23.5 (19–27)b 33 (27–30)b

Gestational age at sample collection, weeks Median (IQR) 8.6 (7.55–8.875)a,c 27.25 (24.95–28.2)a,b 39.10 (39.0–39.3)b,c

Body mass index (kg/m2) Median (IQR) 23.47 (21.83–26.94) 40.90 (24–41) 26.22 (24.05–29.40)

Parity no

0 2 0 1

1 3 4 4

 ≥ 2 1 0 4

Mode of delivery

Vaginal – 0 0

Caesarean Section – 4 9

Birth weight (g) Median (IQR) – 935 (736.3–1225)b 3360 (3050–3560)b

Table 3.   Patient characteristics of women with fetal growth restriction and control samples for gene 
(mRNA) expression studies.  BMI data unavailable for n = 3 preterm controls, n = 1 fetal growth restriction 
sample. *p < 0.05.

Preterm controls (n = 10) Fetal growth restriction (n = 14)

Maternal age, years Median (IQR) 34 (26.5–37.5) 30 (25.3–33.5)

Gestational age at delivery, weeks Median (IQR) 30 (29.4–31.6) 32.7 (30.9–34.0)*

Body mass index (kg/m2) Median (IQR) 28.4 (24.0–30.0) 25.8 (18.75–29.5)

Parity no. (%)

0 2 (20.0) 9 (64.3)

1 4 (40.0) 2 (14.3)

 ≥ 2 4 (40.0) 3 (21.4)

Highest SBP prior to delivery (mmHg) Median (IQR) 120 (110–126.3) 120 (115–126.3)

Highest DBP prior to delivery (mmHg) Median (IQR) 70 (67.5–76.25) 76.5 (70–83.5)*

Mode of delivery

Vaginal (%) 0 (0) 0 (0)

Caesarean Section (%) 10 (100) 14 (100)

Birth weight (g) Median (IQR) 1496 (1322–2011) 1182 (973–1658)

Table 4.   Patient characteristics of women with fetal growth restriction and gestation matched control 
samples for protein studies.  BMI data unavailable for n = 3 preterm control samples. *p < 0.05.

Preterm controls (n = 16) Fetal growth restriction (n = 9)

Maternal age, years Median (IQR) 28.5 (25.25–36.75) 29 (21–32.5)

Gestational age at delivery, weeks Median (IQR) 30 (29.4–32.08) 31.4 (30.7–33.3)

Body mass index (kg/m2) Median (IQR) 26 (21.65–32.15) 20 (18.25–27.7)

Parity no. (%)

0 5 (33.3) 7 (77.8)

1 8 (53.3) 1 (11.1)

≥ 2 2 (13.3) 1 (11.1)

Highest SBP prior to delivery (mmHg) Median (IQR) 120 (119.3–130.0) 120 (113.5–127.5)

Highest DBP prior to delivery (mmHg) Median (IQR) 70 (63.5–78.75) 78 (70–81.5)

Mode of delivery

Vaginal (%) 3 (20) 0 (0)

Caesarean Section (%) 12 (80) 9 (100)

Birth weight (g) Median (IQR) 1587 (1277–1976) 1000 (893.0–1375)*
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with maternal and fetal surfaces removed. Three small pieces of placenta totalling 10–15 mg of tissue per well 
were cultured in 24-well plates, each containing media made up of Gibco Dulbecco’s Modified Eagle Medium 
(DMEM; ThermoFisher Scientific, Scoresby, Vic), supplemented with 10% fetal calf serum (FCS; Sigma-Aldrich, 
St Louis, USA) and 1% Anti-Anti (AA; Life Technologies, Carlsbad, CA, USA). Explants were cultured under 
8% O2, 5% CO2 at 37 °C overnight (16–18 h). After replacement with fresh media (DMEM, 10% FCS, 1%AA), 
explant tissue was cultured at 37 °C for 24 h under 8% O2 (normoxic conditions) or 1% O2 (hypoxia). Following 
this, explant tissue was weighed, snap frozen and stored at − 80 °C for subsequent analysis.

Primary cytotrophoblast isolation and culture.  Human primary cytotrophoblasts were isolated from 
normal term placentas from elective Caesarean section as previously described30. The cells were plated in media 
(DMEM, 10% FCS, 1%AA) on fibronectin (10 µg/mL; BD Bioscience, USA) coated culture plates. Viable cells 
were incubated under 8% O2, 5% CO2 at 37 °C overnight to equilibrate. After replacement with fresh media, 
cytotrophoblasts were cultured at 37 °C for 24 h under 8% O2 (normoxic conditions) or 1% O2 (hypoxia). Fol-
lowing this, cells were collected for RNA extraction.

Silencing genes in primary cytotrophoblasts.  Small interfering RNA (siRNA) designed against 
DAAM2 (M-014010-00-0005; Dharmacon, Lafayette, CA, USA) or a negative siRNA control (Qiagen, Valen-
cia, CA, USA) were combined with lipofectamine (RNAiMax; Invitrogen) in optimem (ThermoFisher Scien-
tific) to complex for 20 min at room temperature. After equilibration of the isolated cytotrophoblasts overnight 
(described above), fresh trophoblast media (DMEM, 10% FCS, no AA) was added to each well and siRNA 
complexes added in a dropwise manner. Cytotrophoblast cells with siRNA were cultured at 37 °C for 48 h under 
8% O2 (normoxic conditions) or 1% O2 (hypoxia). Following this, media and cells were collected for subsequent 
analysis.

MTS cell viability assay.  Cell viability was assessed following siRNA treatment using the MTS assay, 
CellTiter 96-AQueous One Solution (Promega, Madison WI) according to manufacturer instructions.

Quantitative real time polymerase chain reaction (qPCR).  Total RNA was extracted from whole 
blood via PAXgene Blood miRNA Kit (Pre-Analytix, Hombrechtikon, Switzerland) according to manufacturer’s 
instructions, as described previously12. RNA was extracted from placental tissue (collected from first trimester, 
preterm and term gestations), cultured explants and isolated primary cytotrophoblasts using the Qiagen RNeasy 
Mini Kit, according to the manufacturer’s instructions. RNA concentration was quantified using a Nanodrop 2000 
spectrophotometer (ThermoFisher Scientific, Waltham, MA). RNA was converted to cDNA using the Applied 
Biosystems High-Capacity cDNA Reverse Transcription Kit (Thermofisher), as per manufacturer’s instructions 
on the iCycler iQ5 (Biorad) or MiniAmp Thermal Cycler (Applied Biosystems, CA, USA). Quantitative Taqman 
PCR was performed to quantify mRNA expression of DAAM2, BAX, BCL2, EGFR, IGF2, NOX4 and HMOX-
1 (Hs00322497_m1, Hs00180269_m1, Hs00608023_m1, Hs01076078_m1, Hs04188276_m1, Hs00418356_m1, 
and Hs01110250_m1 respectively; Life Technologies), as well as reference genes for blood: YHWAZ, B2M and 
GUSB (Hs01122454_m1, Hs00187842_m1, Hs00939627_m1; Life Technologies), cytotrophoblast cells: YWHAZ 
and explants and placental tissue: TOP1 and CYC1 (Hs01122454_m1, Hs00243257_m1, and Hs00357717_m1 
respectively; Life Technologies). Stability of reference genes was confirmed for each tissue type and used appro-
priately. Taqman qPCR was performed on the CFX384 (Biorad) or QuantStudio 5 (Applied Biosystems) with the 
following run conditions: 50 °C for 2 min, 95 °C for 10 min, 95 °C for 15 s, 60 °C for 1 min or 50 °C for 2 min, 
95 °C for 20 s, 95 °C for 3 s, 60 °C for 30 s (40 cycles). All data were normalized to the appropriate reference gene 
as an internal control and calibrated against the average Ct of the control samples. All cDNA samples were run 
in duplicate.

Western blot analysis.  Protein lysates were extracted from placental tissue from early onset preterm fetal 
growth restricted pregnancies (≤ 34 weeks) using RIPA lysis buffer containing proteinase and phosphatase inhib-
itors (Sigma Aldrich). Protein concentrations were assessed with Pierce BCA Protein Assay Kit (ThermoFisher 
Scientific). Placental lysates (20 µg) were separated on 10% gels and PVDF membranes (Millipore; Billerica, 
MA, United States). Membranes were blocked with 5% skim milk, prior to overnight incubation with DAAM2 
primary antibody at 1:500 in 5% skim milk/TBS-T (GTX33141, Sapphire Bioscience, NSW, Australia). Blots 
were incubated with anti-rabbit secondary antibody at 1:2500 in 5% skim milk for 1 h (W401; Promega, VIC, 
Australia). Membranes were developed with enhanced chemiluminescence reagent (GE Healthcare Life Sci-
ences, NSW, Australia) and detected using the ChemiDoc XRS (BioRad). β-actin acted as the loading control at 
1:20,000 in 5% skim milk (Santa Cruz, Texas, USA). Densitometry was performed on images of the blots using 
ImageJ software (NIH, Bethesda, MD, USA).

Statistical analysis.  All in vitro experiments were performed with technical triplicates and repeated with 
n ≥ 3 different patient samples. Data were tested for normal distribution and statistically tested as appropriate. 
Either an unpaired t-test (parametric) or Mann–Whitney test (non-parametric) was used. The area under the 
receiver operating curve (AUC) was calculated to determine the sensitivity/specificity performance for DAAM2. 
All data are expressed as mean ± SEM. P-values < 0.05 were considered significant. Statistical analysis was per-
formed using GraphPad Prism 8 software (GraphPad Software, Inc.; San Diego, CA, USA).
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Data availability
The datasets generated during and analysed during the current study are available from the corresponding author 
on reasonable request.

Received: 19 October 2020; Accepted: 16 February 2021

References
	 1.	 Sharma, D., Shastri, S. & Sharma, P. Intrauterine growth restriction: Antenatal and postnatal aspects. Clin. Med. Insights Pediatr. 

10, 67–83. https​://doi.org/10.4137/CMPed​.S4007​0 (2016).
	 2.	 Damsky, C. H. & Fisher, S. J. Trophoblast pseudo-vasculogenesis: Faking it with endothelial adhesion receptors. Curr. Opin. Cell 

Biol. 10, 660–666 (1998).
	 3.	 Hannan, N. J., Jones, R. L., White, C. A. & Salamonsen, L. A. The chemokines, CX3CL1, CCL14, and CCL4, promote human 

trophoblast migration at the feto-maternal interface. Biol. Reprod. 74, 896–904 (2006).
	 4.	 Huppertz, B., Gauster, M., Orendi, K., Konig, J. & Moser, G. Oxygen as modulator of trophoblast invasion. J. Anat. 14 (2009).
	 5.	 Burton, G. J. & Jauniaux, E. Pathophysiology of placental-derived fetal growth restriction. Am. J. Obstet. Gynecol. 218, S745–S761. 

https​://doi.org/10.1016/j.ajog.2017.11.577 (2018).
	 6.	 Kingdom, J. C. & Kaufmann, P. Oxygen and placental villous development: Origins of fetal hypoxia. Placenta 18, 613–621 (1997).
	 7.	 Hutter, D., Kingdom, J. & Jaeggi, E. Causes and mechanisms of intrauterine hypoxia and its impact on the fetal cardiovascular 

system: A review. Int. J. Pediatr. 2010, 401323. https​://doi.org/10.1155/2010/40132​3 (2010).
	 8.	 Malhotra, A. et al. Neonatal morbidities of fetal growth restriction: Pathophysiology and impact. Front. Endocrinol. (Lausanne) 

10, 55. https​://doi.org/10.3389/fendo​.2019.00055​ (2019).
	 9.	 Caradeux, J., Martinez-Portilla, R. J., Basuki, T. R., Kiserud, T. & Figueras, F. Risk of fetal death in growth-restricted fetuses with 

umbilical and/or ductus venosus absent or reversed end-diastolic velocities before 34 weeks of gestation: A systematic review and 
meta-analysis. Am. J. Obstet. Gynecol. 218, S774–S782. https​://doi.org/10.1016/j.ajog.2017.11.566 (2018).

	10.	 Malhotra, A. et al. Neonatal morbidities of fetal growth restriction: Pathophysiology and impact. Front. Endocrinol. https​://doi.
org/10.3389/fendo​.2019.00055​ (2019).

	11.	 McCowan, L. M., Figueras, F. & Anderson, N. H. Evidence-based national guidelines for the management of suspected fetal 
growth restriction: Comparison, consensus, and controversy. Am. J. Obstet. Gynecol. 218, S855–S868. https​://doi.org/10.1016/j.
ajog.2017.12.004 (2018).

	12.	 Hannan, N. J. et al. Circulating mRNAs are differentially expressed in pregnancies with severe placental insufficiency and at high 
risk of stillbirth. BMC Med. 18, 145. https​://doi.org/10.1186/s1291​6-020-01605​-x (2020).

	13.	 Lee, H. K. et al. Daam2-PIP5K is a regulatory pathway for Wnt signaling and therapeutic target for remyelination in the CNS. 
Neuron 85, 1227–1243. https​://doi.org/10.1016/j.neuro​n.2015.02.024 (2015).

	14.	 Lee, H. K. & Deneen, B. Daam2 is required for dorsal patterning via modulation of canonical Wnt signaling in the developing 
spinal cord. Dev. Cell 22, 183–196. https​://doi.org/10.1016/j.devce​l.2011.10.025 (2012).

	15.	 Nakaya, M. A. et al. Placental defects lead to embryonic lethality in mice lacking the Formin and PCP proteins Daam1 and Daam2. 
PLoS ONE 15, e0232025. https​://doi.org/10.1371/journ​al.pone.02320​25 (2020).

	16.	 Pritchard, N. L. et al. Identification of the optimal growth charts for use in a preterm population: An Australian state-wide retro-
spective cohort study. PLoS Med. 16, e1002923. https​://doi.org/10.1371/journ​al.pmed.10029​23 (2019).

	17.	 Baschat, A. A. et al. Predictors of neonatal outcome in early-onset placental dysfunction. Obstet. Gynecol. 109, 253–261. https​://
doi.org/10.1097/01.Aog.00002​53215​.79121​.75 (2007).

	18.	 Georgiades, P., Ferguson-Smith, A. C. & Burton, G. J. Comparative developmental anatomy of the murine and human definitive 
placentae. Placenta 23, 3–19. https​://doi.org/10.1053/plac.2001.0738 (2002).

	19.	 Constância, M. et al. Placental-specific IGF-II is a major modulator of placental and fetal growth. Nature 417, 945–948. https​://
doi.org/10.1038/natur​e0081​9 (2002).

	20.	 Fondacci, C. et al. Alterations of human placental epidermal growth factor receptor in intrauterine growth retardation. J. Clin. 
Investig. 93, 1149–1155. https​://doi.org/10.1172/JCI11​7067 (1994).

	21.	 Sibilia, M. & Wagner, E. F. Strain-dependent epithelial defects in mice lacking the EGF receptor. Science 269, 234–238 (1995).
	22.	 Brady, H. J. M. & Gil-Gómez, G. Molecules in focus Bax. The pro-apoptotic Bcl-2 family member, Bax. Int. J. Biochem. Cell Biol. 

30, 647–650. https​://doi.org/10.1016/S1357​-2725(98)00006​-5 (1998).
	23.	 Chong, S. J. F. et al. Noncanonical cell fate regulation by Bcl-2 proteins. Trends Cell Biol. https​://doi.org/10.1016/j.tcb.2020.03.004.
	24.	 Czabotar, P. E., Lessene, G., Strasser, A. & Adams, J. M. Control of apoptosis by the BCL-2 protein family: Implications for physiol-

ogy and therapy. Nat. Rev. Mol. Cell Biol. 15, 49–63. https​://doi.org/10.1038/nrm37​22 (2014).
	25.	 Bedard, K. & Krause, K.-H. The NOX family of ROS-generating NADPH oxidases: Physiology and pathophysiology. Physiol. Rev. 

87, 245–313. https​://doi.org/10.1152/physr​ev.00044​.2005 (2007).
	26.	 Morse, D. & Choi, A. M. Heme oxygenase-1: The “emerging molecule” has arrived. Am. J. Respir. Cell Mol. Biol. 27, 8–16 (2002).
	27.	 Onda, K. et al. Proton pump inhibitors decrease soluble fms-like tyrosine kinase-1 and soluble endoglin secretion, decrease 

hypertension, and rescue endothelial dysfunction. Hypertension 69, 457–468. https​://doi.org/10.1161/HYPER​TENSI​ONAHA​
.116.08408​ (2017).

	28.	 Onda, K. et al. Sofalcone upregulates the nuclear factor (erythroid-derived 2)-like 2/heme oxygenase-1 pathway, reduces soluble 
fms-like tyrosine kinase-1, and quenches endothelial dysfunction: Potential therapeutic for preeclampsia. Hypertension 65, 855–862 
(2015).

	29.	 Dobbins, T. A., Sullivan, E. A., Roberts, C. L. & Simpson, J. M. Australian national birthweight percentiles by sex and gestational 
age, 1998–2007. Med. J. Aust. 197, 291–294. https​://doi.org/10.5694/mja11​.11331​ (2012).

	30.	 Kaitu’u-Lino, T. U. J. et al. Original Article: Characterization of protocols for primary trophoblast purification, optimized for 
functional investigation of sFlt-1 and soluble endoglin. Pregnancy Hypertens. Int. J. Women’s Cardiovasc. Health 4, 287–295. https​
://doi.org/10.1016/j.pregh​y.2014.09.003 (2014).

Acknowledgements
The authors acknowledge clinical research midwives Gabrielle Pell, Rachel Murdoch, Genevieve Christophers, 
Eleanor Johnson, the obstetric clinical and midwifery staff and patients at the Mercy Hospital for Women (Hei-
delberg), Northern Hospital (Epping) and Broadmeadows Health Service for provision of placental tissue.

Author contributions
N.D.A.—Data generation, literature search, data analysis, interpretation, writing. S.B., N.K.B.—Assistance with 
data collection. N.P.—Characterisation of clinical cohorts. T.J.K.L.—Intellectual input and interpretation. O.S., 

https://doi.org/10.4137/CMPed.S40070
https://doi.org/10.1016/j.ajog.2017.11.577
https://doi.org/10.1155/2010/401323
https://doi.org/10.3389/fendo.2019.00055
https://doi.org/10.1016/j.ajog.2017.11.566
https://doi.org/10.3389/fendo.2019.00055
https://doi.org/10.3389/fendo.2019.00055
https://doi.org/10.1016/j.ajog.2017.12.004
https://doi.org/10.1016/j.ajog.2017.12.004
https://doi.org/10.1186/s12916-020-01605-x
https://doi.org/10.1016/j.neuron.2015.02.024
https://doi.org/10.1016/j.devcel.2011.10.025
https://doi.org/10.1371/journal.pone.0232025
https://doi.org/10.1371/journal.pmed.1002923
https://doi.org/10.1097/01.Aog.0000253215.79121.75
https://doi.org/10.1097/01.Aog.0000253215.79121.75
https://doi.org/10.1053/plac.2001.0738
https://doi.org/10.1038/nature00819
https://doi.org/10.1038/nature00819
https://doi.org/10.1172/JCI117067
https://doi.org/10.1016/S1357-2725(98)00006-5
https://doi.org/10.1016/j.tcb.2020.03.004
https://doi.org/10.1038/nrm3722
https://doi.org/10.1152/physrev.00044.2005
https://doi.org/10.1161/HYPERTENSIONAHA.116.08408
https://doi.org/10.1161/HYPERTENSIONAHA.116.08408
https://doi.org/10.5694/mja11.11331
https://doi.org/10.1016/j.preghy.2014.09.003
https://doi.org/10.1016/j.preghy.2014.09.003


12

Vol:.(1234567890)

Scientific Reports |         (2021) 11:5540  | https://doi.org/10.1038/s41598-021-84785-7

www.nature.com/scientificreports/

K.G., S.P., A.H., J.M.S., S.S., S.C.K., S.P.W.—Sample collection and characterisation of clinical cohorts. L.H.—
Intellectual input, sample collection and interpretation. S.T.—Intellectual input, sample collection and charac-
terisation of clinical cohorts. N.J.H.—Study design, data analysis and interpretation, intellectual input, writing, 
attained funding support. N.D.A wrote the main manuscript text with assistance from N.J.H. All authors reviewed 
the manuscript.

Funding
The NHMRC provided salary support (#1146128 to NJH, #1159261 to TJKL, and #1136418 to ST). The funders 
had no role in study design, data collection, analysis, decision to publish or the preparation of the manuscript.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https​://doi.
org/10.1038/s4159​8-021-84785​-7.

Correspondence and requests for materials should be addressed to N.J.H.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://creat​iveco​mmons​.org/licen​ses/by/4.0/.

© The Author(s) 2021

https://doi.org/10.1038/s41598-021-84785-7
https://doi.org/10.1038/s41598-021-84785-7
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	DAAM2 is elevated in the circulation and placenta in pregnancies complicated by fetal growth restriction and is regulated by hypoxia
	Results
	DAAM2 is increased in the circulation of pregnancies complicated by fetal growth restriction. 
	DAAM2 is expressed in human placenta and increases with advancing gestation. 
	DAAM2 protein is increased in placental tissue from pregnancies affected by fetal growth restriction. 
	DAAM2 expression is increased under hypoxia in term placental tissue and isolated cytotrophoblasts. 
	Knockdown of DAAM2 in primary cytotrophoblasts. 
	Silencing DAAM2 alters expression of apoptosis and oxidative stress markers under hypoxia. 

	Discussion
	Methods
	Fetal OXygenation (FOX) Study. 
	Placental tissue collection. 
	Placental explant isolation and culture. 
	Primary cytotrophoblast isolation and culture. 
	Silencing genes in primary cytotrophoblasts. 
	MTS cell viability assay. 
	Quantitative real time polymerase chain reaction (qPCR). 
	Western blot analysis. 
	Statistical analysis. 

	References
	Acknowledgements


