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Abstract
Spontaneous brain activities consume most of the brain’s energy. So if we want to understand how the brain operates, we

must take into account these spontaneous activities. Up and down transitions of membrane potentials are considered to be

one of significant spontaneous activities. This kind of oscillation always shows bistable and bimodal distribution of

membrane potentials. Our previous theoretical studies on up and down oscillations mainly looked at the ion channel

dynamics. In this paper, we focus on energy feature of spontaneous up and down transitions based on a network model and

its simulation. The simulated results indicate that the energy is a robust index and distinguishable of excitatory and

inhibitory neurons. Meanwhile, one the whole, energy consumption of neurons shows bistable feature and bimodal

distribution as well as the membrane potential, which turns out that the indicator of energy consumption encodes up and

down states in this spontaneous activity. In detail, energy consumption mainly occurs during up states temporally, and

mostly concentrates inside neurons rather than synapses spatially. The stimulation related energy is small, indicating that

energy consumption is not driven by external stimulus, but internal spontaneous activity. This point of view is also

consistent with brain imaging results. Through the observation and analysis of the findings, we prove the validity of the

model again, and we can further explore the energy mechanism of more spontaneous activities.
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Introduction

Brain imaging shows that spontaneous brain activities

consume most of the brain’s energy at rest (Raichle and

Mintun 2006; Fox and Raichle 2007; Buzsaki and Draguhn

2004; Laufs et al. 2003). But most studies on brain always

focus on its response to tasks or stimulus. So if we want to

understand how the brain works, we must take into account

these spontaneous activities, which consume most energy.

The periodic up and down transitions of membrane

potentials is considered to be one kind of significant

spontaneous activities, which have been found in many

vivo and vitro neural electrophysiology experiments (Parga

and Abbott 2007; Petersen et al. 2003; Lampl et al. 1999;

Steriade et al. 1993). This kind of subthreshold sponta-

neous oscillation always shows bistable and bimodal dis-

tribution of membrane potentials (Parga and Abbott 2007;

Petersen et al. 2003; Anderson et al. 2000; Compte et al.

2003).

Our previous theoretical studies on up and down oscil-

lations mainly looked at the ion channel dynamics. We

introduced and demonstrated three significant characteris-

tics—bistability, directivity and spontaneity—of mem-

brane potential up and down transition at the single neuron

and network level (Xu and Wang 2014, 2013). Further, we

put forward a neural network model of spontaneous up and

down transitions conforming to the physiological mecha-

nism better, and explored the factors that influence spon-

taneous transitions, synchronous transitions and

suprathreshold spontaneous firing of up and down activities

(Xu et al. 2016, 2017; Wang et al. 2018c). Now, in this

paper, we focus on the energy feature of up and down

activities, and hope to add the literature studying sponta-

neous neural activities’ energy.
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Some ideas have been put forward in studies of brain

energy (Zhu et al. 2018; Wang and Rubin 2014; Wang

et al. 2018a; Khajehpour et al. 2019; Déli et al. 2017; Xu

et al. 2019; Daneshi et al. 2020; Balasubramani and

Chakravarthy 2020) and state transition (Mora-Sánchez

et al. 2019; Schöller et al. 2018; Sen et al. 2020). In pre-

vious studies, some researchers proposed the theory of

energy coding and revealed mechanisms of brain infor-

mation processing in biological neural networks (Wang

et al. 2008, 2015). When studying the formation of long-

term memory, we also developed methods to measure the

changes in energy input and energy consumption of the

memory system (Wang et al. 2018b, 2019; Zheng et al.

2014; Zheng et al. 2016).

In this paper, we focus on energy feature of spontaneous

up and down transitions based on a network model and its

simulation. The simulated results indicate that the energy is

a robust index and distinguishable of excitatory and inhi-

bitory neurons. Meanwhile, one the whole, energy con-

sumption of neurons shows bistable feature and bimodal

distribution as well as the membrane potential, which turns

out that the indicator of energy consumption encodes up

and down states in this spontaneous activity. In detail,

energy consumption mainly occurs during up states tem-

porally, and mostly concentrates inside neurons rather than

synapses spatially. The stimulation related energy is small,

indicating that energy consumption is not driven by

external stimulus, but internal spontaneous activity. This

point of view is also consistent with brain imaging results.

Through the observation and analysis of the findings, we

prove the validity of the model again, and we can further

explore the energy mechanism of more spontaneous

activities.

Methods

Model and parameters

Both excitatory and inhibitory neurons were took into

consideration in this paper. Main dynamical equations for

excitatory and inhibitory neurons are described as follows,

respectively.

C
dVi

dt
¼ Istim � INaFðViÞ � INaPðViÞ � IhðVi; hiÞ � IKðVi; biÞ � IlðViÞ

� IAMPAðVi; sAMPAiÞ � INMDAðVi; sNMDAiÞ
� IGABAA

ðVi; sGABAA iÞ:

ð1Þ

C
dVi

dt
¼ �INaFðViÞ � INaPðViÞ � IhðVi; hiÞ � IKðVi; biÞ � IlðViÞ

� IAMPAðVi; sAMPAiÞ � INMDAðVi; sNMDAiÞ:
ð2Þ

Here, intrinsic currents, a fast sodium current (INaF), a

persistent sodium current (INaP), a slow h-like current (Ih), a

slow potassium current (IK), a leak current (Il), and

synaptic currents, IAMPA, INMDA, IGABAA
, are integrated

together, which described in detail later. The membrane

capacitance C ¼ 1 lF=cm
2
. The external stimulation cur-

rent, Istim, is a pulse current adding to excitatory neurons.

Roughly speaking, the fast sodium current is also known

as transient sodium current, and the persistent one is also

called as slow sodium current. The fast sodium current has

a rapid activation variable and an inactivation one. While

the persistent sodium current activates instantaneously and

it does not inactivate. The word slow in its name refers to

inactivation. These two kinds of sodium currents are given

by Golomb and Amitai (1997) and Loewenstein et al.

(2005)

INaF ¼ gNaFm
3
F1hF V � VNað Þ;

mF1 ¼ 1 þ exp
�V�TFm

rFm

� ��1

;

dhF

dt
¼ hF1 � hF

sFh
;

hF1 ¼ 1 þ exp
�V�TFh

rFh

� ��1

;

sFh ¼ 0:37 þ 2:78 1 þ exp
�V�TFh2

rFh2

� ��1

;

ð3Þ

and

INaP ¼ gNaPmP1ðV � VNaÞ;

mP1 ¼ 1 þ exp
�V�TPm

rPm

� ��1

:
ð4Þ

The slow h-like current is an inward voltage-gated current,

involving sodium and potassium ions. So the reversal

potential lies between that of sodium and that of potassium.

This kind of current requires hyperpolarization to become

active, and then it repolarizes the membrane potential. The

activation curve decreases monotonically, so it’s also

called sag current (Ermentrout and Terman 2010). It can be

described by (Loewenstein et al. 2005)
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Ih ¼ ghhðV � VhÞ;
dh

dt
¼ h1 � h

sh
;

h1 ¼ 1 þ exp
V�Th
rh

� ��1

;

sh ¼
1

aþ b
;

a ¼ ðaaV þ baÞ= 1 � exp�Vþba=aa
ka

� �
;

b ¼ ðabV þ bbÞ= 1 � exp
�

Vþbb=ab
kb

� �
:

ð5Þ

The potassium current is a slow outward current given by

(Loewenstein et al. 2005)

IK ¼ gKbðV � VKÞ;
db

dt
¼ b1 � b

sb
;

b1 ¼ 1 þ exp
�V�Tb

rb

� ��1

;

sb ¼ s0
b � sech ðV � Tb

4rb
Þ:

ð6Þ

The leak current is described by

Il ¼ glðV � VlÞ: ð7Þ

Here, we considered three types of synaptic currents,

including two excitatory currents and one inhibitory one.

The excitatory currents are mediated by excitatory neuro-

transmitter—Glutamate. The receptors called AMPA are

responsible for most of the fast excitatory synaptic trans-

mission, and those called NMDA are responsible for the

slow process. So there is a slow component of the NMDA

synaptic receptor fNMDAðVÞ (Destexhe et al. 1994) in the

following equations. Here, [T] is the transmitter concen-

tration (Koch and Segev 1998). On the other hand, inhi-

bitory neurotransmitter GABA mediates the GABAA

receptors which mainly acts on excitatory neurons gener-

ously. Equations for the above three synaptic currents are

given by

IAMPAi ¼ gAMPAðVi � VAMPAÞ
X
j

wðj; iÞsAMPAj;

dsAMPAj

dt
¼ aAMPA T½ �ðVjÞð1 � sAMPAjÞ � bAMPAsAMPAj;

T½ �ðVÞ ¼ Tmax= 1 þ exp
�V�Vp

Kp

� �
:

ð8Þ

INMDAi ¼ gNMDAfNMDAðViÞ½T �ðVjÞðVi � VNMDAÞ
X
j

wðj; iÞsNMDAj;

dsNMDAj

dt
¼ aNMDA T½ �ðVjÞð1 � sNMDAjÞ � bNMDAsNMDAj;

fNMDAðVÞ ¼ 1= 1 þ exp
�V�Tf

rf

� �
;

T½ �ðVÞ ¼ Tmax= 1 þ exp
�V�Vp

Kp

� �
:

ð9Þ

IGABAA i ¼ gGABAA
ðVi � VGABAA

Þ
X
j

wðj; iÞsGABAA j;

dsGABAA j

dt
¼ aGABAA

T½ �ðVjÞð1 � sGABAA jÞ � bGABAA
sGABAA j;

T½ �ðVÞ ¼ Tmax= 1 þ exp
�V�Vp

Kp

� �
:

ð10Þ

In these equations, the variables sAMPA, sNMDA and sGABAA

are defined as the degree of opening of the protein chan-

nels, with a and b representing the forward and backward

constants, respectively.

Value of the above parameters for intrinsic currents used

in this paper is given in Table 1, and that for synaptic

currents is displayed in Table 2 (Destexhe et al. 1994;

Koch and Segev 1998; Golomb and Amitai 1997;

Loewenstein et al. 2005).

The synaptic weight from the model neuron i to j is

defined as w(i, j), the value of which depends on the net-

work topology that one excitatory neuron is excited by

other four connected excitatory neurons and inhibited by

one connected inhibitory neuron, while one inhibitory

neuron is only excited by four excitatory neurons but

without inhibition from other inhibitory ones. We built a

network model that 80% neurons in the network are exci-

tatory ones and the rest are inhibitory ones, which also

employed in our previous study (Xu et al. 2016, 2017;

Wang et al. 2018c). Network size we adopt in this paper

depends on the simulation tests, but most of them are more

than 500, making the synaptic weight a sparse asymmetric

matrix.

Analyses of simulated results

In the next section, we consider three indicators, the mean

firing rate, mean synchronous rate and mean energy con-

sumption, to characterize the up and down activities of the

network, which we introduce as follows.

First, mean firing rate of the network is an indicator to

measure the degree of spontaneous firing activity in the up

and down network. Let riðtÞ be the spiking sequence of a

model neuron i at time t, when it fires, the value is 1,

otherwise assigns 0. Then, the firing rate of the model

neuron i is defined by the total counts of spikes per second.
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Mean firing rate of the network is characterized by the

average value of firing rate of all the neurons in the

network.

On the other hand, we use mean synchronization rate to

characterize the degree of synchronous activity of the

network. Let ViðtÞ, VjðtÞ be membrane potential sequences

of two model neurons i and j at time t. Here, we adopt

Pearson correlation coefficient of these two sequences to

depict synchronization between two neurons. According to

this definition, it is obvious that the correlation coefficient

matrix is a symmetric matrix with all elements between

- 1 and 1. Then, mean synchronization rate of the network

is given by the average value of all the correlation coeffi-

cients of every two neurons in the network. Specific cal-

culation formulas for these two indicators were given in

our former work (Wang et al. 2018c).

Here, we also take into consideration the types of

excitatory and inhibitory neurons, respectively. Therefore,

we average firing rates and synchronization rates according

to the neuron types for further analysis.

The third one, mean energy consumption, is a new

indicator we introduce here, which is mainly discussed and

analysed in this paper. Let EiðtÞ be the energy consumption

of a model neuron i at time t, which is given by a

dynamical equation as follows.

dEi

dt
¼ IstimVi � INaFðViÞðVi � VNaÞ � INaPðViÞðVi � VNaÞ

� IhðVi; hiÞðVi � VhÞ � IKðVi; biÞðVi � VKÞ � IlðVi � VlÞ
� IAMPAðVi; sAMPAiÞðVi � VAMPAÞ
� INMDAðVi; sNMDAiÞðVi � VNMDAÞ
� IGABAA

ðVi; sGABAA iÞðVi � VGABAA
Þ:

ð11Þ
dEi

dt
,Pi: ð12Þ

The energy discussed in this manuscript is based on the

following two hypotheses, which supported by our

Table 1 Parameters for intrinsic currents

Current Parameter Value

INaF gNaF 12 ms/cm2

VNa 55 mV

TFm - 30 mV

rFm 9.5 mV

TFh - 53 mV

rFh - 7 mV

TFh2 - 40.5 mV

rFh2 - 6 mV

INaP gNaP 0.06 ms/cm2

VNa 55 mV

TPm - 53.8 mV

rPm 3 mV

Ih gh 0.2 ms/cm2

Vh - 30 mV

Th - 76.4 mV

rh 20 mV

aa - 2.89/(mV s)

ba - 445/s

ka 24.02 mV

ab 27.1/(mV s)

bb - 1024/s

kb - 17.4 mV

IK gK 0.165 ms/cm2

VK - 85 mV

Tb - 54 mV

rb 5 mV

s0
b

3000 ms

Il gl 0.1 ms/cm2

Vl - 70 mV

Table 2 Parameters for synaptic currents

Current Parameter Value

IAMPA gAMPA 0.9 ms/cm2

VAMPA 0 mV

aAMPA 1

bAMPA 0.2

Tmax 1

Vp 5 mV

Kp 2 mV

INMDA gNMDA 0.9 ms/cm2

VNMDA 0 mV

aNMDA 0.072

bNMDA 0.0067

Tf - 25 mV

rf 12.5 mV

Tmax 1

Vp 5 mV

Kp 2 mV

IGABAA
gGABAA 1 ms/cm2

VGABAA
- 80 mV

aGABAA
5

bGABAA
0.18

Tmax 1

Vp 5 mV

Kp 2 mV
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previous study on neural energy supply-consumption

properties on the Hodgkin–Huxley model (Wang et al.

2017). First, we regard metabolic energy as the net meta-

bolic energy which is the difference between metabolic

energy supply and consumption, and the sum effect is

energy supply for model neurons and network. Second, we

hypothesize net metabolic energy supply is equal to the

energy consumption of model neurons and network, means,

power of currents.

And we define energy gradient as power. So we consider

both energy curve and power curve to characterize the

energy consumption of one neuron. Similar to another two

indicators, we define mean energy consumption of the

network by calculating the average value.

All the following analyses and results were done with

custom scripts written in MATLAB.

Results

The energy index is robust and distinguishable
of excitatory and inhibitory neurons

In this section, we considered all three indicators men-

tioned above, mean firing rate, mean synchronous rate and

mean energy consumption, to characterize the up and down

activities of the network.

As network size increasing, these three indicators

illustrated different changing trends as shown in Fig. 1.

Compared with mean synchronous rate (subplot Fig. 1a),

or mean firing rate (subplot Fig. 1b), mean energy con-

sumption (subplot Fig. 1d, the green dotted line) was more

robust to network size, also with good distinction between

excitatory and inhibitory neurons (subplot Fig. 1c, red solid

line for excitatory neurons, blue dash line for inhibitory
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Fig. 1 The network size-dependent change of three indicators.

a Mean synchronization rate for excitatory and inhibitory neurons.

b Mean firing rate for excitatory and inhibitory neurons. c Mean

energy consumption for excitatory and inhibitory neurons. d Mean

energy consumption for all neurons (the green dotted line) in the

network. (Color figure online)
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ones), P value 0.01 (marked by **) for most data, which

the other two indicators were fail to differentiate them.

It is fair to say that the energy consumption is a better

indicator with two advantages to characterize the network

activities. So we would like to discuss the energy feature of

up and down activities in the following sections.

Energy gradient shows bimodal distribution
similar to membrane potential distribution

In this section, we mainly concerned about the overall

distribution characteristics of energy consumption.

In the case of spontaneous activity, the energy con-

sumption of neurons showed bistable feature and bimodal

distribution as well as the membrane potential. In Fig. 2a,

b, we gave spontaneous membrane potential activity and

power consumption of an example neuron #1, respectively.

They both exhibited two preferred states, the so-called up

and down states, and also had high relevance between each

other.

Other neurons in the network showed the same results.

The correlation coefficients of all the neurons in the net-

work was very close to 1, which were quantitatively

depicted in subplot Fig. 2d. Therefore, as it turned out, the

indicator of energy consumption encoded up and down

states in this spontaneous activity.

In subplot Fig. 2c, we gave the energy consumption of

the example neuron #1 versus time curve. Comparing

subfigures Fig. 2a, c, it was obvious that the slope of

energy consumption of up states was larger than that of

down states, indicating that energy consumption was

mainly took place during up states.

In Fig. 3, we also considered the circumstance of exis-

tence of external stimulus. We found from Figs. 2 and 3

that power and membrane potential was always stable in

two states and both showed bimodal distribution, whenever

in spontaneous activities or during continuous external

stimulus. In subplots Fig. 3a, c, it showed membrane

potential and power distribution of one neuron, while those

of all neurons in the network were displayed in subplots

Fig. 3b, d. Here, we added 2 s impulse current from 10 to

12 s. After that, membrane potential was deprived of

spiking activity so that it kept for a longer period in down

state. And then it returned to spontaneous bistable activity

again. The spike raster plots of all the neurons in the net-

work, which exhibited in Fig. 4 also indicated the same

results.

Network membrane potential activity indicated by spike

raster in Fig. 4a demonstrated low spiking rate (about
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Fig. 2 Energy gradient of one single neuron shows up and down

oscillations similar to membrane potential oscillations. a Membrane

potential of neuron#1. b Power consumption of neuron#1. c Energy

consumption of neuron#1. d Correlation between membrane potential

and power consumption of neurons in the network
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0.2–0.3 Hz) and low spiking synchronicity in spontaneous

oscillations. Obviously, during 2 s external stimulus, the

spiking rate increased, especially for excitatory neurons as

was shown in Fig. 4b. And spiking of all the neurons was

inhibited lasting almost 2 s after that, which resulted in

synchronous firing immediately after that inhibition.

Afterwards, it came back to spontaneous activity again.

Energy consumption features of spontaneous
up and down activities

First, we analyzed temporal difference in energy con-

sumption. In Fig. 5, we gave four subfigures demonstrating

membrane potential versus energy consumption planes of a

single neuron and network, respectively.

In subfigure Fig. 5c, we gave membrane potential versus

energy consumption plane of a single neuron with two

rectangle boxes referring to down states and up states,
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Fig. 3 Power and membrane potential are always stable at two states

and both show bimodal distribution, whenever in spontaneous

activities or during continuous external stimulus (10–12 s). a Mem-

brane potential distribution of one neuron in the network. b Membrane

potential distribution of all the neurons in the network. c Power

distribution of one neuron in the network. d Power distribution of all

the neurons in the network
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Fig. 4 Spike raster plots of

neurons in the network. a In the

case of spontaneous oscillations.

b In the case of 2 s external

stimulus from 10–12 s
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respectively. It indicated that the increase of the energy

consumption mainly occurred during up states, as indicated

by the red arrow. While energy consumption during down

states and even spikes was very low compared with those

during up states, which was in accordance with the result of

Fig. 2c.

The relationship between mean membrane potential and

mean energy consumption of network also showed the

same feature that most of the energy consumption took

place during up states as illustrated in subfigure Fig. 5d. In

subfigure Fig. 5a, b, we found the higher energy con-

sumption rate assembled in up states, and there existed a

positive correlation between energy consumption rate and

membrane potential in up states.

All these results suggested that, in spontaneous up and

down oscillations, much energy was utilized to maintain

the membrane potential stable at these up states, rather than

to induce some occasional action potentials. This point of

view was consistent with brain imaging results (Raichle

and Mintun 2006; Fox and Raichle 2007) that task-related

increases in neuronal metabolism are usually small when

compared with resting energy consumption.
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membrane potential versus

mean energy consumption plane

of the network

0 10 20 30 40 50
test times

2

2.5

3

3.5

4

%

resting
task-related

Ratio of synaptic to total energy consumptionA C

0 2 10 1 0
t/(s)

0

10

20

E
ne

rg
y/

(
J)

Energy consumption

Ein
Etotal

0 5 10 1

5 2

5 20

t/(s)

0

2

4

6

%

Ratio of synaptic to total energyB

Fig. 6 Intrinsic and synaptic

energy consumption of a single

neuron and network. a Intrinsic

and total energy consumption of

one neuron in the network.

b Ratio of synaptic to total

energy consumption of one
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Then, we considered the spatial difference in energy

consumption. In Fig. 6, we showed the intrinsic and

synaptic energy consumption of one neuron and network.

We could find directly from Fig. 6a that internal and

total energy consumption of one single neuron was very

close to each other, while the synaptic one, the difference

between these two curves, was quite small. So in Fig. 6b,

we calculated the ratio of synaptic to total energy con-

sumption, and the percentage was around 2–3%, with or

without external stimulus. Here, we also added 2 s con-

tinuous stimulations from 10 to 12 s as mentioned before.

Cases of all the neurons were also examined, and the

results were demonstrated in Fig. 6c. The average ratio of

synaptic to total energy consumption of all the neurons

during spontaneous period (marked by blue circles) and

stimulus period (marked by red squares) were both near

about 3% and no significant difference between them.

The results indicated that internal energy consumption

accounted for a much more significant share in total con-

sumption than synaptic one, and stimulus had little influ-

ence in it.

So we further studied the role of stimulus in energy

consumption, and the results were shown in Fig. 7. We

computed average energy consumption of all the neurons

both in spontaneous period and in the stimulation period,

marked by green squares and orange triangles, respec-

tively, for one test. In Fig. 7a, we gave the results for 50

tests, and it displayed similar energy consumption without

significant difference.

Meanwhile, we calculated the increase rate of energy

consumption after stimulation. It turned out that the energy

consumption increase rates in stimulation period were

usually less than 5% when compared with this large

spontaneous energy consumption, as demonstrated in

Fig. 7b. This point of view was also consistent with brain

imaging results (Raichle and Mintun 2006; Fox and

Raichle 2007) again.

In summary, we observed energy consumption features

of spontaneous up and down activities in this sec-

tion. Temporally, energy consumption mainly occurred

during up states, and mostly concentrated in neurons rather

than synapses, spatially. Comparing to spontaneous resting

energy consumption, the stimulation related energy was

small, indicating that energy consumption was not driven

by external stimulus, but internal spontaneous activity.

Therefore, if we would like to understand the brain, we

must consider this spontaneous activity that consumes most

of energy.

Conclusion

In this paper, we mainly discussed about the energy fea-

tures of spontaneous up and down neural activities based

on a network model and its simulation. First, we considered

three indicators—the mean firing rate, mean synchronous

rate and mean energy consumption—to characterize the up

and down activities of the network, and found that com-

pared to another two indicators, the energy index was

robust and distinguishable of excitatory and inhibitory

neurons. So it could be a better indicator and should

deserve more attention when studying neural activities.

Then, we focused on the whole energy consumption

distribution and the components playing the leading roles.

Overall, energy gradient of neurons showed bistable fea-

ture and bimodal distribution as well as the membrane

potential, which indicating that the energy consumption

index also encoded up and down states in this spontaneous

activity as the membrane potential did.
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Further more, we studied the components playing the

leading roles in detail. It turned out that, temporally, energy

consumption mainly occurred during up states, and spa-

tially, it mostly accumulated inside neurons rather than

synapses between neurons. Comparing the energy con-

sumption before stimulation with that during stimulation,

we found that the stimulation related energy was small,

indicating that energy consumption was not driven by

external stimulus, but internal spontaneous activity. This

point of view was in line with brain imaging results

(Raichle and Mintun 2006; Fox and Raichle 2007) that

task-related increases in neuronal metabolism are usually

small when compared with resting energy consumption.

Therefore, we proved the validity of our model again in

this paper, and through the observation and analysis of the

findings, we believe that these results shed light on the

energy feature of spontaneous up and down activities,

which also laid the foundation for further exploration on

the energy mechanism of more spontaneous activities.
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