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Abstract
Brain-computer interface (BCI) system based on motor imagery (MI) usually adopts multichannel Electroencephalograph

(EEG) signal recording method. However, EEG signals recorded in multi-channel mode usually contain many redundant

and artifact information. Therefore, selecting a few effective channels from whole channels may be a means to improve the

performance of MI-based BCI systems. We proposed a channel evaluation parameter called position priori weight-

permutation entropy (PPWPE), which include amplitude information and position information of a channel. According to

the order of PPWPE values, we initially selected half of the channels with large PPWPE value from all sampling electrode

channels. Then, the binary gravitational search algorithm (BGSA) was used in searching a channel combination that will be

used in determining an optimal channel combination. The features were extracted by common spatial pattern (CSP) method

from the final selected channels, and the classifier was trained by support vector machine. The PPWPE ? BGSA ? CSP

channel selection method is validated on two data sets. Results showed that the PPWPE ? BGSA ? CSP method obtained

better mean classification accuracy (88.0% vs. 57.5% for Data set 1 and 91.1% vs. 79.4% for Data set 2) than All-C ? CSP

method. The PPWPE ? BGSA ? CSP method can achieve higher classification in fewer channels selected. This method

has great potential to improve the performance of MI-based BCI systems.

Keywords Channel selection � Motor imagery � PPWPE � BGSA

Introduction

Brain-computer interface is an auxiliary technology that

directly provides external technical operations by inter-

preting brain information (Alcaide-Aguirre and Huggins

2014). It allows the brain to communicate directly with

external devices, providing patients with neurologically

impaired diseases a new means of communicating with the

outside world (Jin et al. 2011; McFarland and Wolpaw

2011). When the brain is carrying out different mental

tasks (Gaume et al. 2019; Zeng et al. 2018), its potential

activity presents a large amount of distinguished informa-

tion (Raghu et al. 2017), which can be used as features in

EEG-based BCI systems.

Complete BCIs have the following functions: signal

acquisition, preprocessing, feature extraction, classifica-

tion, and controlling application (Ghaemi et al. 2017). Non-

invasive electroencephalogram (EEG) is currently a widely

used in recording brain activity due to its convenience

(Ang et al. 2011; Kevric and Subasi 2017). In the prepro-

cessing step, filtering, dimensionality reduction techniques

and blind source separation techniques are widely used in

removing artifacts, such as Electromyography (EMG) and

Electrooculography (EOG). With regard to feature extrac-

tion, the common spatial pattern (CSP) method has a good

performance on motor imagery (MI) task (Dong et al.

2017; Kumar and Sharma 2018; Miao et al. 2017; Zhang

et al. 2017). Support vector machine (SVM) plays an

important role in classification algorithms (Feng et al.
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2018; Kumar et al. 2017; Selim et al. 2018). The control-

ling applications can be a wheel chair (Puanhvuan et al.

2017), robot, speller, or robotic arm (Dokare and Kant

2014).

The performance of the BCI system can be improved by

the following aspects: improving the preprocessing algo-

rithm, extracting subject-special feature, and determining

the appropriate algorithm for classification.

Multichannel EEG recording can record EEG activity

comprehensively, but some channels contain noise and

reductant information. The proper selection of channels

containing useful information is critical to improving the

performance of MI BCI systems (Qiu et al. 2016). Many

techniques have been used in channel selection, such as,

filtering technique, wrapper technique, embedded tech-

nique, hybrid technique, and human-based technique

(Alotaiby et al. 2015). Yang et al. applied genetic algo-

rithms to channel selection and achieved relatively signif-

icant performance improvements (Yang et al. 2012).

Various improved versions of genetic algorithms such as

RC-GA (He et al. 2013), NSGA-II (Kee et al. 2015), etc.

have also been applied to eliminate redundant channels.

Qiu et al. (2016) proposed an improved sequential floating

forward selection (ISFFS) algorithm that can select the

useful channels and greatly save search time. Miao et al.

proposed a correlation-based channel selection (CCS)

method that reduces the reductant channels (Jin et al.

2019). Deep belief networks(DBN) was also used to find

the optimal channel combination to simplify the BCI sys-

tem (Jing-Ru et al. 2019).

To shorten the time of channel selection, and increase

the effectiveness of the channel selection, a new evaluation

parameter for the channels, called the position priori

weight permutation entropy (PPWPE) was proposed by this

paper. The PPWPE is based on the weight permutation

entropy in the information theory and contains amplitude

and position information. Useful channels containing large

amounts of amplitude information are selected through the

quantification of information contained in the channels.

The influence of artifacts on useful EEG signals is pre-

vented by considering electrode position information a

priori position correction information. The binary gravita-

tional search algorithm (BGSA) has the better performance

on binary search problem. Ghaemi et al. (2017) used an

improved version of BGSA for channel selection. Using

the BGSA method for a wide range of channels requires

many iterations and a large amount of memory. To find

good channel combinations in few iterations, a novel

channel selection method combining PPWPE and BGSA

was proposed.

The paper is organized as follows: In Sect. 2, we

describe the permutation entropy (PE) and weight permu-

tation. Moreover, we proposed priori position permutation

entropy and described other methods we used. Section 3

shows the data sets. Results are discussed in Sect. 4, and

conclusion is described in Sect. 5.

Methods

Permutation entropy

EEG signals are a series of complex nonlinear time series.

Permutation entropy (PE) is an effective method for mea-

suring the complexity of the time series and compares

neighboring values of each point and maps them to ordinal

patterns (Bandt and Pompe 2002). The PE method can

identify the non-linear patterns in the signals (Nicolaou and

Georgiou 2012), reduce a problem space to a limited set of

discrete symbols, and increase the robustness to noise. The

basic principle of the method consists of transforming the

signal into a finite kind of discrete symbol sequence and

quantizing the entropy of the signal according to the

probability density of these symbols (Acharya et al. 2015).

Given a time series xtf gTt¼1, definite its time-delay

embedding representation as follow:

Xn;s
i ¼ xi; xiþs; . . .; xiþ n�1ð Þs

� �
ð1Þ

For i ¼ 1; 2; . . .; iþ n� 1ð Þs; the parameter s determi-

nes time delay, n determines the sub-vectors’ dimension.

Depending on the sort order of every sub-vectors’ ampli-

tudes, each sub-vector is then assigned a unique symbol.

For a given sub-vector dimension n there are n! possible
orderings. Thus n! symbols are utilized. For the time series

xtf gTt¼1 there are N ¼ T � n� 1ð Þs sub-vectors are used.

These sub-vectors can be represented by n! distinct sym-

bols hn;sk

� �n!
k¼1

. PE is then defined as the Shannon entropy

as follows:

H n; sð Þ ¼ �
X

i:hn;s
k
2P

p hn;sk

� �
ln p hn;sk

� �
ð2Þ

p hn;sið Þ is defined as

p hn;sk

� �
¼

i : i�N; trans Xn;s
ið Þ ¼ hn;sk

� ��� ��

N
ð3Þ

where trans(�) denotes the map from sub-vector space to

symbol space. �k k denotes the cardinality of a set. An

alternative way of writing p hn;sk

� �
is

p hn;sk

� �
¼
P

i�N 1a:trans að Þ¼hk Xn;s
ið Þ

P
i�N 1a:trans að Þ¼P Xn;s

ið Þ ð4Þ

where the function 1A að Þ defined as 1A að Þ ¼ 1 if a 2 A,

and 1A að Þ ¼ 0 if a 62 A. PE values range 0; ln n!½ �. To some

extent, a PE value represents how much information a
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channel contains. The complexity of a signal time series

and the information it contains increases with PE. How-

ever, PE only can retain the order structure information,

and the same order structure may be may be caused by

different amplitude differences. In an EEG series, espe-

cially the EEG series in an MI task, amplitude information

is important.

Weighted permutation entropy

To highlight the amplitude information in the EEG series,

Fadlallah et al. (2013) proposed a weight-permutation

entropy (WPE). The basic principle of the method is

transferring the amplitude information to weight informa-

tion and combining it with the classical PE values. Sub-

vectors with large amplitude changes greatly contribute to

the PE value, and the small amplitude changes (possibly

due to noise) have small contributions to the PE value

(Deng et al. 2017). A WPE value can preserve the useful

amplitude information in the EEG series.

The WPE calculation steps are as follows:

px hn;sk

� �
¼
P

i�N 1a:trans að Þ¼hk Xn;s
ið ÞxiP

i�N 1a:trans að Þ¼P Xn;s
ið Þxi

ð5Þ

Hx n; sð Þ ¼ �
X

i:hn;s
k
2P

px hn;sk

� �
ln px hn;sk

� �
ð6Þ

when Eqs. (5) and (6) were compared with Eqs. (2) and

(4), WPE was the same as PE at a constant weight.

Equations 2 and 6 retained the form of Shannon entropy,

and WPE was an extension of PE. The weight calculated

from the magnitude can also be seen as selecting a feature

for each sub-vector. The weight value xi for the MI EEG

signal can be calculated through several methods. The

present study uses the variance or energy of each neigh-

bors’ sub-vector (Fadlallah et al. 2013). The weight value

can be calculated as follows:

xi ¼
1

n

Xn

l¼1

xiþ l�1ð Þs � �Xn;s
i

� �2 ð7Þ

�Xn;s
i can be calculated as follows:

�Xn;s
i ¼ 1

n

Xn

l¼1

xiþ lþ1ð Þs ð8Þ

The weight-permutation entropy consider the amplitude

information, but the effects of artifacts generated by non-

target brain activity will be magnified.

Position priori weight-permutation entropy

The influence of artifacts generated by nontarget brain

regions on the activity of target brain regions was

prevented by considering the active position of an MI. We

selected the position of the C3 and C4 channel as the center

position and compute the relative distance of the channel to

the two center position. The relative distance of the channel

was transferred to the priori position information of chan-

nel and add to the WPE to constitute the position prior

weight permutation entropy (PPWPE). The mth channel

priori position information PP mð Þ can be calculated as

follows:

RDm
C3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Channelmx pos � C3x pos


 �2
þ Channelmy pos � C3y pos


 �2
r

ð9Þ

RDm
C4 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Channelmx pos � C4x pos


 �2
þ Channelmy pos � C4y pos


 �2
r

ð10Þ

where the RDi
C3 is the relative distance between the mth

channel and C3 channel; the RDm
C4 is the relative distance

between the mth channel and C4 channel. Channelmx pos is

the mth channel’s coordinate in the x direction,

Channelmy pos is the mth channel’s coordinate in the y

direction. In this paper, the two-dimensional coordinate

system for the representation of the electrode position was

utilized. The origin coordinate is the position of Fz elec-

trode (for 59 channels in Data set 1) or position of Fpz (for

118 channels in Data set 2).

PP mð Þ ¼
C3x pos

� �2þ C3y pos

� �2h i
þ C4x pos

� �2þ C4y pos

� �2h i

RDm
C3 þ RDm

C4

� �

ð11Þ

As seen from the priori position information PP mð Þ, if
the mth channel is close to the C3 or C4 channel, the

PP mð Þ will be large. If the mth channel is far from the

channel C3 and C4 channel, the PP mð Þ will be small. The

PP(C3) and PP(C4) were set to 1 under initial conditions.

The range of the PP(m) values was adjusted according to

the range of values of the coordinates.

The PP mð Þ is the priori position information for one

channel. Thus, the PPWPE should be calculated for every

channel. The EEG signal series (Ntr � Nch � S,

Ntr = number of trails, Nch = number of channels, and

S = number of samples), only include two kinds of ima-

gery task (Ntr

2
trails for class 1, Ntr

2
trails for class 2). The

PPWPE for all channels can be calculated as follows:

PPWPE allð Þ ¼ PP allð Þ � WPE class1ð Þ �WPE class2ð Þ½ �
ð12Þ

where PP allð Þ is the all channels’ priori position

information.
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WPE class1ð Þ ¼
X

Ntr
2

WPE Að Þ �WPE Rð Þ½ � ð13Þ

WPE Að Þ was calculated from the 0.5–2.5 s data after the

start of MI in each trail. WPE Rð Þ was calculated from the

200 samples data before the cue showing. Figure 1

describes the process of calculating WPE from one trail,

and Fig. 2 describes the process of calculating PPWPE

from two class of trail data. The channels were sorted

based on the PPWPE value obtained for each channel. The

channels, which have high PPWPE value, are important

and have more amplitude information than those with low

PPWPE value. These channels are close to the motor area

in brain. Based on the sorted results obtained, half of the

effective channels were filtered out.

Binary gravitational search algorithm

Although half of the effective channels were filtered by the

sorting result of PPWPE, the binary gravitational search

algorithm (BGSA) was used in the selection of effective

channels. This algorithm is an extension of the GSA

algorithm, and was first proposed by Rashedi et al. (2010).

It is a population optimization algorithm based on the law

of universal gravitation and Newton’s second law. The

algorithm and its improved version have been successfully

applied in feature selection and channel selection. The

GBSA algorithm is specifically designed for solving binary

problems.

Given a system with P agents, the spatial information of

the ith agent can be expressed as follows:

Xi ¼ x1i ; x
2
i ; . . .; x

r
i ; . . .; x

d
i ;

� �
for i ¼ 1; 2; . . .;P ð14Þ

The parameter d represents the dimension of the space

in the present study, Xi expressed the combination of the

channels, d is the size of channels, xri indicates the rth

channel, xri can only be 0 or 1. At a time ‘‘t’’, the force in

rth dimension space between ith agent and jth agent can be

calculated as follows:

Fr
ij tð Þ ¼ G tð ÞMi tð Þ �Mj tð Þ

Rij þW
xrj tð Þ � xri tð Þ

 �

ð15Þ

where Mi tð Þ and Mj tð Þ are the masses of the two agents at

Rest state 0.5s Ac�vite state

Cue

200 samples data 200 samples data

For every trail in class 1 
(all channels)

Calculate the WPE(R) Calculate the WPE(A)

Calculate one trail (all 
channels) WPE(1)

Sum WPE(1) from all the trails in 
the class 1 to get WPE(class1)

Train data

Class1 data Class2 data

Compute all channels 
WPE(class1)

Compute all channels 
WPE(class2)

WPE(diff)=|WPE(class1)-WPE(class2)|

PPWPE=PP(all)*WPE(diff)

Sort all channels based on PPWPE 

(a) (b)

Fig. 1 PPWPE calculation process. The figure a is the process of calculating WPE for class 1, the figure b is the calculation process of PPWPE

for all channels

2 3 4 5 6 7 810

Blank screen Fixa�on cross
Motor imagery

t/s

Cue: L/R/F

0 3.5 5.25 5.75

motor imagery relax
t/s

(a)

(b)

Fig. 2 Experiment procedure. The figure a is the timing of single trail

of Data set 1. The figure b is the timing of single trail of Data set 2
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the time ‘‘t’’. The jth agent is the one that apply gravity, the

ith agent is the one that accept gravity. The mass of ith

agent can be updated as follows:

Mi tð Þ ¼
mi tð ÞPP
j¼1 mj tð Þ

; mi tð Þ ¼
fiti tð Þ � worst tð Þ
best tð Þ � worst tð Þ ð16Þ

best tð Þ ¼ max
j2 1;...;Pf g

fitj tð Þ; worst tð Þ ¼ min
j2 1;...;Pf g

fitj tð Þ ð17Þ

where fit is the optimization objective function and is

called fitness function. It determines the mass of the agent.

Over time, agents are expected to be attracted by the

heaviest agent, and it represent the optimum solution in the

search space. Meanwhile, G tð Þ is a constant that depends

on time t and initial value, and W is a small constant, and

Rij tð Þ is the Hamming distance between ith agent and jth

agent, can be calculated as follows:

Rij tð Þ ¼
Xd

r¼1

xrj tð Þ � xri tð Þ
���

��� ð18Þ

The total force of the ith agent in the rth dimension can

be expressed as follows:

Fr
i tð Þ ¼

X

j2Kbest;j 6¼i

randjF
r
ij tð Þ ð19Þ

where randj is a random value between 0 and 1. Kbest is a

function that gradually decreases linearly with time. This

response ensures that all agents apply force at the begin-

ning and only one last agent applies force at the end apply

force.

The acceleration of the ith agent in the rth dimension

due to the total force can be calculated as follows:

ari tð Þ ¼ Fr
i tð Þ

Mi tð Þ

¼
X

j2Kbest;j 6¼i

randjG tð Þ Mi tð Þ
Rij þW

xrj tð Þ � xri tð Þ

 � ð20Þ

The next velocity can be updated as follows:

vri t þ 1ð Þ ¼ randi � vri tð Þ þ ari tð Þ ð21Þ

where randi is a random values between 0 and 1 and

provides a randomized characteristic to the search. In the

process of solving binary problem, each dimension of the

search space only take the value 0 or 1. Then, the position

of the agent in the each dimension are changed as a

probability according to Eq. (22). The Tf ðÞ is a function to

transfer the vri tð Þ to a probability.

Tf vri tð Þ
� �

¼ tanh vri tð Þ
� ��� �� ð22Þ

The position of the agent can be updated as follows:

if randðÞ\Tf vri t þ 1ð Þ
� �

;

then xri t þ 1ð Þ ¼ complementxri tð Þ
else xri t þ 1ð Þ ¼ xri tð Þ

ð23Þ

Feature extraction

In the BCI applications, the feature extraction also plays an

important role in maximizing the performance of the sys-

tem. In this paper, the common spatial patterns (CSP) to

extract the features (Ramoser et al. 2000). The CSP algo-

rithm is widely used in the EEG signals processing in the

MI-based BCI systems (Cheng et al. 2017; Zhao et al.

2010). The basic principle of the CSP algorithm is to use

the diagonalization of the matrix to find a set of optimal

spatial filters for projection (Zuo et al. 2019). Thus, the

variance of the difference between the two types of signals

is maximized, and the feature vector with higher discrim-

ination is obtained.

For the calculation, the single trail EEG signal can be

represented as an Nch � S matric E, where the Nch is the

number of the channels, and S is the number of the sample

points of every channel. The spatial covariance of the E can

be calculated as follows:

C ¼ EET

trace EETð Þ ð24Þ

where the ET is the transpose operator on E, and trace() is

the calculation of the trace of the matrix. Two kinds of

signal distributions, left MI and right MI, can be obtained.

The spatial covariance �Ch, h 2 l; r½ � is calculated by aver-

aging all trails of each kind of EEG signal. The composite

spatial covariance of the two kinds of signal can be cal-

culated as follows:

Cc ¼ �Cl þ �Cr ð25Þ

The composite spatial covariance Cc can be expressed as

follows:

Cc ¼ UckcU
T
c ð26Þ

where kc is the eigenvalue matrix of the composite spatial

covariance Cc, and Uc is the eigenvectors matrix of the Cc.

In this process, the eigenvalues are arranged in order from

largest to smallest.

The whitening matrix can be calculated as follows:

P ¼
ffiffiffiffiffiffiffi
k�1
c

q
UT

c ð27Þ

After the transformation of the composite space

covariance matrix with the whitening matrix, the eigen-

values of the new matrix are equal to 1. The �Cl and the �Cr

can be transformed as follows:
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Sl ¼ P �ClP
T ; Sr ¼ P �CrP

T ð28Þ

Formally, if they contain the common eigenvectors, Sl
can be expressed as follows:

Sl ¼ BklB
T ð29Þ

Then, Sr can be expressed as follows:

Sr ¼ BkrB
T ð30Þ

and

kl þ kr ¼ I ð31Þ

where I is the identity matrix. Given that the eigenvalues of

the two kinds of EEG signals are always equal to 1, the

eigenvectors with smallest eigenvalue of Sl has the largest

eigenvalue of Sr. According to this characteristic, a pro-

jection matrix can be calculated as follows:

Fs ¼ BTP
� �T ð32Þ

The one trail EEG signal E can be decomposition with

the projection matrix as follows:

Z ¼ FsE ð33Þ

The features, which can be used for training classifier,

are calculated by transforming the EEG according to (33).

The feature fp can be chosen from the Zp (p ¼ 1. . .2m) as

follows:

fp ¼ log
var Zp
� �

P2m
i var Zið Þ

 !

ð34Þ

Support vector machine

SVM is a widely used machine learning method, the pre-

sent form of SVM was created by Vapnik (Vapnik and

Vapnik 1998). SVM has good performance on two classi-

fication problems, and some good results show that the

SVM has outstanding performance in BCI systems. The

basic principle of SVM is to create a hyperplane between

the two types of data and maximize the classification

interval. If there is a data set A 2 Rd, the aim is to find a

weight vector W 2 Rd and produce a hyperplane with a

threshold b.

H : A7!sign WTAþ b
� �

ð35Þ

The solution of this problem is

minU W ; nð Þ ¼ 1

2
kWk2 þ C

Xn

i¼1

ni

s:t:yi WTA ið Þ þ b

 �

� 1� ni; ni � 0; i ¼ 1; . . .; nð Þ

ð36Þ

In this paper, the LIBSVM was selected to train the

classifier (Chang and Lin 2011), and the Radial Basis

Function was selected as the kernel function.

Experiment and results

Data descriptions

Data set 1 The first data set comes from the BCI com-

petition IV and provided by the Berlin BCI group (Blan-

kertz et al. 2007). All data were recorded from seven

healthy subjects. However, the data of subjects ‘c’, ‘d’, ‘e’

were artificially generated, which was not used in the

study. Experimental paradigm was the standard MI para-

digm without feedback. The signal was recorded by the Ag/

AgCl electrode cap with 59 channels. For every subject, the

signal was selected from two kinds of MI task processing.

In each run, a fixation cross displayed first at the center of

the computer screen for 2 s. Then the fixation cross became

the cue (the fixation with arrow) and displayed for 4 s,

during which the subject performed a specific MI task.

Finally, a blank screen lasting 2 s was shown to let subject

rest. Two runs of the experiment were performed. Each run

contains 100 trials. Figure 2 shows the timing diagram of

the one trail. The data, which was down sampled to

100 Hz, was selected. The data set can be download from

the website: http://www.bbci.de/competition/iv/.

Data set 2 The second data set comes from the BCI

Competition III, which was recorded from the 5 healthy

subject with 118 channels (Dornhege et al. 2004). The

visual cue displayed in the screen center for 3.5 s, during

which each subject performed an MI task according to the

cue. Then the subjects had 1.75–2.25 s to have a rest. Three

kinds of cues (left hand, right hand, foot) were provided for

the subjects. In total, 280 trails MI task were provided to

each subject, and all EEG data was down-sampled to

100 Hz. The data set can be download from the website:

http://www.bbci.de/competition/iii/.

Channel selection based on PPWPE

PPWPE 1 CSP

As an evaluation indicator, the PPWPE mentioned above

contains amplitude changes and electrode position infor-

mation. The train data was used in the computation of the

PPWPE of each channel, and all the channels were sorted

according to the PPWPE values (details are in the methods

section). The resulting channel order was seen as a search

order, and the channels were added one by one. In fact, to

calculate PPWPE, we first calculated the weight-
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permutation entropy of each electrode in the resting and

active states during the MI tasks and then calculated the

increase in WPE value from the resting state to the active

state. Afterward, we calculated the difference in WPE

value increase between two kinds of motor imagery and the

difference in entropy increase between two kinds of MI.

Finally, sort all channels based on the size of the difference

obtained.

The channels with the higher ranking result were con-

sidered rich in amplitude change information and position

information, which are needed by the channels. To finalize

the number of channels and ensure the simplicity of the

algorithm, a sequential addition strategy was adopted. The

time complexity of the algorithm was reduced by consid-

ering the results searched in half of the channels valid, that

is, the number of channels was controlled within half of the

total number of channels. The rationality of this setup will

be elaborated in the section of discussion. Figure 3 depicts

the channel selection processing using PPWPE ? CSP for

Data Set 1. In the PPWPE ? CSP channel selection algo-

rithm, channels were added in order obtained, until the

whole channels filtered were added. Finally, the channel

number and channel combination were determined

according to the classifier performance obtained.

PPWPE 1 BGSA 1 CSP

In this method, based on the sort result obtained by cal-

culating PPWPE, the channels in the second half were

deleted. The number of channels was reduced, and redun-

dant information was removed by using the BGSA for

secondary channel selection. The Fig. 4 depicts

PPWPE ? BGSA ? CSP algorithm in Data set 2. In this

study, 10 agents and 50 iterations were used in searching

the best selection. The dimension of every agent were 30 in

Data set 1 and 59 in Data set 2.

Whole data processing

In this work, in the calculation of PPWPE in the rest state,

a signal with a data length of 200 samples (before the cue

appears) was used. To ensure uniform data length, we used

200 samples length data in the calculation of the active

PPWPE (after the cue appears). However, in the CSP

extraction feature phase, different time windows were used

(0.5–4.5 s for Data set 1, 0.5–3.5 s for Data set 2). The

EEG signal from every trail was filtered between 8 and

30 Hz by a fifth-order butterworth filter.

Experimental results

Performance evaluation on PPWPE 1 BGSA 1 CSP

To verify the validity of the proposed channel selection

algorithms, we performed experiments on the two data sets

mentioned above. PPWPE ? BGSA ? CSP was com-

pared with several other channel selection strategies. A few

notes were made:

(1) All-C ? CSP: CSP was used in the extraction of

features from all the channels.

(2) PPWPE ? CSP: According to the calculated

PPWPE, all the channels were sorted, and the larger

half of the lead of the PPWPE were selected. The

selected channels were added one by one to form

channel combinations. The features were extracted

from these combinations by CSP.

(3) All-C ? BGSA ? CSP: the optimal combination in

the whole channel range was searched using the

BGSA, and features were extracted with CSP

algorithm.

(4) PPWPE ? BGSA ? CSP: All channels were sorted

based on the PPWPE obtained, and the channels in

the second half were cut. In the remaining channels,

the BGSA algorithm was used to search the optimal

channel combination, and the feature extraction was

performed by CSP.

In this study, we first tested the effects of PPWPE and

BGSA methods independently, and then tested the pro-

posed combination of the two. All experimental results

were obtained after ten-fold cross validation. We only

chose two pairs features extracted by CSP for classifica-

tion. The experimental results of the above four methods

on two data sets are shown in detail in Table 1. Table 1

Sort order based on the PPWPE
Channel1, channel2, channel3,

channel 59

Channel 1
Channel 2

Channel 1
Channel2
Channel 3

Channel 1

Channel 29

Channel 1

Channel 30

CSP
Feature 

extra�on

CSP
Feature 

extra�on

CSP
Feature 

extra�on

CSP
Feature 

extra�on

CSP
Feature 

extra�on

SVM classifier
(score1)

SVM classifier
(score2)

SVM classifier
(score )

SVM classifier
(score28)

SVM classifier
(score29)

Find the max performance

Channel 1,Channel 2, Channel m

Fig. 3 PPWPE ? CSP channel selection algorithm. All channels

were sorted by PPWPE value, selected half of channels with larger

PPWPE value. According to the order of the sorting results, the

channels were added one by one until all the selected channels were

added. Feature were extracted by CSP algorithm, and fed into SVM

classifier. Determine the final channel combination based on the

classification accuracy obtained
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shows that the proposed PPWPE ? BGSA ? CSP method

had the highest classification performance on all subjects in

the two data sets. When All-C ? CSP was used as the

reference baseline, the other three methods improved in

terms of mean accuracy. In Data set 1, the mean accuracies

improved by 20.25% (with PPWPE ? CSP), 26.63% (with

All-C ? BGSA ? CSP), and 30.50% (with PPWPE ?

BGSA ? CSP) relative to the mean accuracy of the All-

C ? CSP method. In Data set 2, which had five subjects,

the mean classification accuracy improved by 7.73% (with

PPWPE ? CSP), 12.18% (with All-C ? BGSA ? CSP)

and 14.75% (with PPWPE ? BGSA ? CSP).

The PPWPE ? BGSA ? CSP method showed the best

performance when applied to the subjects individually. The

results obtained from the data set verification showed that

the PPWPE ? BGSA ? CSP method proposed in this

paper is effective, and the combined method is better than

PPWPE or BGSA alone.

The number of channels selected in the four kinds of

channel selection methods were recorded. The histogram of

Fig. 5 shows the number of channels ultimately selected

for Data set 1 and Data set 2 under the four channel

selection methods. In the Data set 1 (Fig. 5 left side), the

least channels were selected by PPWPE ? CSP method for

subject ‘‘b’’, the least channels were selected by All-

C ? BGSA ? CSP method for subject ‘‘f’’, and the

PPWPE ? BGSA ? CSP method had the best perfor-

mance for subject ‘‘a’’ and ‘‘g’’. In the Data set 2 (Fig. 5

right side), the PPWPE ? BGSA ? CSP method showed

the best results in all subjects. In term of mean number of

channels selected, the least channels were selected by

PPWPE ? BGSA ? CSP algorithm in both Data sets.

Effect of feature number

The number of features extracted by CSP method is a key

factor for the performance of classifier trained by SVM.

Channel 1
Channel 2

Channel 59

PPWPE
Sort 

Channel 60
Channel 61

Channel 118

BGSA 
AGENT 1

Channel combina�on 1

AGENT 2

Channel combina�on 2

AGENT 10

Channel combina�on 10

AGENT 9

Channel combina�on 9

Feature 
extra�on

Feature 
extra�on

Feature 
extra�on

Feature 
extra�on

CSP SVM
Train 

classifier

Train 
classifier

Train 
classifier

Train 
classifier

Whether 
complete all 

iterations

N

Y

Output

EEG signal

Fig. 4 PPWPE ? BGSA ? CSP channel selection algorithm. First,

based on the calculated PPWPE value of each channel, half of the

channels with larger PPWPE value are selected. Then, used the

remaining channels as search space and performed iterative search

using BGSA algorithm. Determined the final channel selection

scheme based on the obtained classification accuracy

Table 1 Classification

performance in Data set 1 and

Data set 2

Methods All-C ? CSP PPWPE ? CSP All-C ? BGSA ? CSP PPWPE ? BGSA ? CSP

Subject Acc (%) Acc (%) Acc (%) Acc (%)

a 49.50 78.00 88.50 91.00

b 47.00 62.50 68.50 73.50

f 43.00 78.00 85.50 92.50

g 90.50 92.50 94.50 95.00

Mean ± SD 57.50 ± 22.16 77.75 ± 12.25 84.13 ± 11.15 88.00 – 9.81

aa 80.00 82.36 82.86 85.71

al 97.86 98.57 98.93 99.29

av 49.29 59.29 76.07 82.86

aw 83.21 91.07 92.14 94.29

ay 86.43 89.29 92.86 93.57

Mean ± SD 79.36 ± 18.11 84.12 ± 15.03 88.57 ± 9.05 91.14 – 6.71

p value – 0.023 0.013 0.010

Except for the last row of data, the maximum value of each row of data is bold
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The effect of increasing the number of features extracted

by the CSP method under the conditions of All-C ? CSP

and the channel selected by PPWPE ? CSP in the Data set

2 were analyzed. In the CSP algorithm, the number of

features was at most equal to the number of channels.

Given that the number of channels selected in the

PPWPE ? CSP algorithm is different (detail of number of

channels selected by PPWPE ? CSP method can be seen

from Fig. 5), the maximum number of features differ from

subject to subject. Figure 6 shows that, as the number of

features increases, the classification accuracy of the clas-

sifier decreases in the form of fluctuations, except in sub-

ject ‘av’. For the subject ‘av’, when the number of features

is less than 10, the trend of accuracy increased. When the

number of features is greater than 10, the accuracy seemed

to decline. Overall, the accuracy of the classifier after

channel selection by PPWPE ? CSP method was always

higher than that of the classifier trained under the whole

channel condition. This result indicates that PPWPE has

certain robustness to the selection of feature numbers.

To better illustrate the generalization performance of the

proposed method, we have added a set of experiments with

full features, that is, the number of channels was equal to the

number of the features extracted by CSP. Under the full

features condition, the highest accuracy achieved under

several methods is recorded in Table 2. In the Half (PPWPE)

method, a half channel was selected after sorting according

to the PPWPE value. Under the all features condition, for all

subjects from both Data sets, the method PPWPE ?

BGSA ? CSP still had the best performance in terms of

mean accuracy in all the subjects from both data sets.

By comparing the classification accuracy obtained under

the All-C ? CSP and Half(PPWPE) ? CSP methods, half

of the channels selected from all the channels based on

PPWPE values significantly improved classification accu-

racy, and the PPWPE standard was effective. By

comparing the last column of accuracy in Tables 1 and 2,

subjects ‘a’ and ‘ay’ can achieve higher accuracy under all-

feature conditions. This observation showed that different

subjects had different level of sensitivity to the selection of

the number of features. However, overall, under the new

channel selection method proposed, selecting two pairs of

features was reasonable.

Comparison of channel selection

Classification accuracy using PPWPE ? BGSA ? CSP

method was compared with classification accuracies cal-

culated with other algorithms during channel selection.

The 3C ? CSP method just selected three channels (C3,

C4 and Cz) from all the channels, which is based on the

physiological position of the motor cortex. This method

selects the least number of channels among other methods

and has relatively little memory usage and computation

time in implementation.

The CSP-rank method (Tam et al. 2011) first sorts the

absolute values of the filter coefficients in each filter, then

sequentially obtains the electrodes with the second largest

coefficient from the two spatial filters. However, the cal-

culation time of the CSP-rank method is relatively long.

The RSS-SFSM (Aydemir and Ergun 2019) method was

inspired by sequential forward feature selection method, it

uses iterative and traversal methods to search, and its search

speed is faster. In this paper, features were extracted by CSP.

Table 3 shows the classification accuracy obtained in

Data set 2 through different methods. In terms of accuracy,

whether for each subject or on average, the highest accu-

racy was obtained by PPWPE ? BGSA ? CSP method.

The number of channels selected was within accept-

able limits. In summary, the channel selection algorithm

proposed in this paper is superior to the other three

methods.

Fig. 5 Number of selected

channels in Data set 1 and Data

set 2. Mean (1) and Mean (2)

represent the average number of

selected channels in Data set 1

and Data set 2
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Discussion

Rationality of filtering half of channels based
PPWPE

In our experiment, all channels were sorted according to

the PPWPE value. On the basis of the sorted results, half of

the channels were filtered out. To explain the rationality of

adopting this method, the influence of the number of

channels on the average classification accuracy was tested

by adding all the channels one by one to the sorting result.

Figure 7 shows the average accuracy of all subjects in the

two data sets under different channel numbers. In Data set

1 (left side of Fig. 7), the highest classification accuracy

was obtained before the number of channels increased to

Fig. 6 Accuracy with respect to different number of features for 5 subjects from Data set 2

Table 2 Performance under all features condition

Methods All-C ? CSP Half (PPWPE) ? CSP PPWPE ? CSP All-C ? BGSA ? CSP PPWPE ? BGSA ? CSP

Subject Nsc Acc (%) Nsc Acc (%) Nsc Acc (%) Nsc Acc (%) Nsc Acc (%)

a 59 53.50 30 74.00 9 81.00 16 90.50 13 93.50

b 59 48.00 30 52.00 4 59.50 28 52.00 11 69.50

f 59 51.50 30 55.00 8 76.50 17 86.50 12 87.00

g 59 72.50 30 82.00 25 87.50 27 90.50 14 93.00

Average 59 56.38 30 65.75 11.5 76.13 22 79.88 12.5 85.75

aa 118 63.57 59 71.79 11 76.07 44 81.97 31 85.00

al 118 86.79 59 94.64 50 96.07 45 98.93 30 98.57

av 118 51.79 59 56.43 49 63.57 54 73.93 21 77.50

aw 118 66.43 59 80.71 29 87.14 44 93.93 21 93.93

ay 118 66.79 59 77.86 13 86.79 40 90.71 20 94.64

Average 118 67.07 59 76.29 30.4 81.93 45.4 87.86 24.6 89.93

p-value 9.4846e-04 4.9761e-05 2.3211e-04 1.586e-05

For data whose column label is Acc, bold the maximum Acc of each row, and for data whose column label is Nsc bold the minimum Nsc of each

row
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half the total number of the channels. However, when the

number of channels exceeded half the total number of the

channels, classification accuracy started to decline. In Data

set 2 (right side of Fig. 7), the highest classification accu-

racy was also obtained before the number of channels

increased to half the total number of channels. When the

number of channels exceeded half the total number of

channels, the average classification accuracy stopped

increasing.

Therefore, half of the channels screened according to the

PPWPE value contained most of the useful information for

classifying MI activities. The information contained in the

reserved half of the channel is relatively important, which

shows the rationality of the method.

Channels selected distribution

The channels selected by the PPWPE ? BGSA ? CSP

method from two data sets were recorded. The channel

distribution of two subjects from each Data set was

selected and plotted in Fig. 8.

Figure 8 shows that most of the selected channels were

distributed in the vicinity of the motor cortex. Individual

differences are the important features of the EEG signal.

Thus, a large difference in the location distribution of the

selected channels was observed among the subjects.

However, the distribution of the selected channels still met

the theoretical basis of cognitive neuroscience. Although

some channels that were far from the motor cortex were

also selected, the amplitude of the artifacts in some areas

was extremely large to be avoided, and the subjects

required multiple brain areas to work together during the

MI tasks.

Features distribution

To illustrate the effectiveness of the proposed method, we

drew the feature extracted by PPWPE ? BGSA ? CSP

from Data set 1 (subject ‘‘a’’ and ‘‘f’’) and Data set 2

(subject ‘‘av’’ and ‘‘aw’’) and compared them with the

features extracted by the All-C ? CSP method. It can be

seen from Fig. 9 shows that the distinguishability of

Table 3 Accuracy comparison

of different methods applied on

Data set 2

Methods 3C ? CSP CSP-rank RSS-SFSM ? CSP PPWPE ? BGSA ? CSP

Subject Nsc Acc (%) Nsc Acc (%) Nsc Acc (%) Nsc Acc (%)

aa 3 56.53 46 81.43 14 77.14 31 85.71

al 3 85.36 57 98.57 11 92.14 32 99.29

av 3 54.64 30 54.29 9 75.36 26 82.86

aw 3 81.07 32 90.00 14 89.64 25 94.29

ay 3 88.93 55 94.30 12 92.14 25 93.57

Average 3 73.31 44 83.72 12 85.28 27.8 91.14

For data whose column label is Acc, bold the maximum Acc of each row, and for data whose column label

is Nsc bold the minimum Nsc of the last row

Fig. 7 The mean classification accuracy of the two data sets varies

with the number of channels. All channels were sorted by PPWPE

value, according to the sorting result, increased the channel one by

one
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Fig. 8 Distribution of channels selected using

PPWPE ? BGSA ? CSP
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features extracted using the PPWPE ? BGSA ? CSP

method was more obvious than that extracted by the All-

C ? CSP method. This finding showed that the proposed

method can render the obtained features separable and

thereby increases classification accuracy.

Advantage of PPWPE

In this study, the PPWPE values of all the channels were

calculated. PPWPE value was used as a new performance

indicator for measuring channels. It contains the amplitude

and position information of the channels. The amplitude

variation of the channel increased with the PPWPE value,

and the distance to the motor cortex decreased.

According to the sorting result of the PPWPE value, half

of the channels were eliminated. Thus, the search space of

the BGSA decreased. Figure 10 shows the mean accuracy

of agents when BGSA was used under the all-channel

condition and half-channel (selected by PPWPE value)

condition. Figure 10 shows that the mean accuracy

obtained through the PPWPE ? BGSA method was higher

than mean accuracy obtained through the All-C ? BGSA

method after a few iterations. In addition, under the all

channels condition, the BGSA algorithm quickly finds the

local optimum value. Moreover, finding a new solution was

difficult when the number of iterations was increasing.

However, under the half-channel (selected by the PPWPE

value) condition, the agents gradually found good solu-

tions, and the mean accuracy was always higher than that

under all-channel condition. This outcome fully demon-

strated that using the PPWPE value in channel evaluation is

reasonable.

Comparison of existing method with our method

To further evaluate the performance of the algorithm pro-

posed in this study, we compared the existing channel

selection algorithm with the algorithm proposed in this

paper. The results are shown in Tables 4 (dataset 1) and 5

(dataset 2).

For dataset 1, in terms of classification accuracy, the

average classification accuracy obtained by our method is

higher than that of the DBN, ISFFS, CCS-RCSP, GSFS

method. Although the results in Table 4 show that the

GSFS algorithm can obtain a smaller number of channels,

the classification accuracy of the GSFS method is lower.

This shows that the GSFS method may have lost some

important electrodes.

For dataset 2, we compared our method(PPWPE ?

BGSA) with RC-GA, NSGA-II, ISFFS, CCS-RCSP. It can

be seen that the channels selected by PPWPE ? BGSA

method offer a higher classification accuracy for most

Fig. 9 Comparison of feature distribution (Data set 1, subject ‘a’ and

‘f’; Data set 2, subject ‘av’ and ‘aw’). Two subplots in the column

show the results of each subject with different methods (All-

C ? CSP, PPWPE ? BGSA ? CSP). The horizontal and vertical

axes represent two features extracted in each trail. The feature

distribution with PPWPE ? BGSA ? CSP become more

discriminative
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subjects (except ‘ay’) as shown in Table 5. The number of

channels selected by our method is more than that obtained

by NSGA-II, but the classification accuracy obtained by

our method is much higher.

By combining Tables 4 and 5, it can be concluded that

our method can effectively select a small number of

channels containing important information while ensuring

a high classification accuracy.

Generalizability of the proposed algorithm

We also used wavelet transform (WT) (Hazarika 2019) as a

feature extraction method to test the performance of the

Fig. 10 Average accuracy for ten agents in every iteration for all subjects from two data sets

Table 4 Comparison of classification accuracy between existing method and our method (dataset 1)

Methods ISFFS (Qiu et al. 2016) GSFS (Radman et al. 2019) CCS ? RCSP (Jin et al.

2019)

DBN (Jing-Ru et al. 2019) Our method

Subject Nsc Acc (%) Nsc Acc (%) Nsc Acc (%) Nsc Acc (%) Nsc Acc (%)

a 6 69.00 6 75.00 46 85.50 16 72.50 8 91.00

b 15 63.00 13 72.00 30 67.00 16 85.00 16 73.50

f 8 65.00 15 78.00 10 79.50 16 87.50 17 92.50

g 22 72.00 12 83.00 3 94.50 16 97.50 14 95.00

Average 12.75 67.25 11.5 77.00 22.5 81.6 16 85.625 13.8 88.00

For data whose column label is Acc, bold the maximum Acc of each row, and for data whose column label is Nsc bold the minimum Nsc of the

last row
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proposed algorithm, and the results are presented in

Table 6. Considering that the number of features equal to

the number of channels when using wavelet transform to

extract features, the results of CSP feature extraction pre-

sented in Table 6 also use full features. Compared with the

full-channel (All-C) condition, using the channel selection

method(PPWPE ? BGSA) proposed in this paper can

improve the classification accuracy and effectively reduce

redundant channels under both wavelet transform (WT)

and CSP feature extraction. Note that since the parameters

of wavelet transform are not specifically optimized for this

data set, the obtained accuracy may not be high. It suggests

that combining the proposed method with different feature

extraction methods can still effectively reduce redundant

channels and improve classification accuracy.

Future work

In this study, a novel channel selection algorithm called

PPWPE ? BGSA ? CSP was proposed. In the calculation

of the PPWPE value, the amplitude and position informa-

tion of the channel were considered and combined. Basing

on the PPWPE value obtained, we selected half of the

useful channels. Using the BGSA for secondary searches in

these channels improved channel combinations. In this

study, we did not focus on the information contained in the

frequency bands of EEG signals. Given that frequency

bands often contain important information, we will con-

sider frequency band information in our future work.

Conclusion

A channel selection algorithm based on PPWPE for MI-

based BCI was proposed. The PPWPE is a novel perfor-

mance indicator for channel measurement. It combines

amplitude information and position prior information and

selects half of the more important channels according to

PPWPE. The BGSA can find the good channel combina-

tion from channels selected by PPWPE. High classification

accuracy can be obtained by using the SVM method to

classify features extracted by CSP from selected channels.

The experimental results showed that the PPWPE algo-

rithm can initially select half of the channels reasonably,

and the BGSA search algorithm can further select the

channel combination. In short, the proposed method has

potential in improving the performance of MI-based BCIs.
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Table 5 Comparison of classification accuracy between existing method and our method (dataset 2)

Methods RC-GA (He et al. 2013) NSGA-II (Kee et al. 2015) ISFFS (Qiu et al. 2016) CCS-RCSP (Jin et al. 2019) Our method

Subject Nsc Acc (%) Nsc Acc (%) Nsc Acc (%) Nsc Acc (%) Nsc Acc (%)

aa 39 86.40 30 74.44 27 76.40 42 82.50 31 85.71

al 18 98.50 13 98.47 47 94.30 33 96.80 32 99.29

av 46 75.10 19.1 70.78 18 65.00 52 71.10 26 82.86

aw 26 93.90 6 90.52 27 89.50 14 92.90 25 94.29

ay 16 87.10 4.3 83.44 35 91.40 67 93.90 25 93.57

Average 29 88.20 14.5 83.53 30.8 83.30 42 87.40 27.8 91.14

For data whose column label is Acc, bold the maximum Acc of each row, and for data whose column label is Nsc bold the minimum Nsc of the

last row

Table 6 Performance of method

proposed with different feature

extraction

Method All-C ? WT PPWPE ? BGSA ? WT All-C ? CSP PPWPE ? BGSA ? CSP

Subject Nsc Acc (%) Nsc Acc (%) Nsc Acc (%) Nsc Acc (%)

aa 118 58.93 26 64.64 118 63.57 31 85.00

al 118 62.50 25 83.57 118 86.79 30 98.57

av 118 52.86 26 65.36 118 51.79 21 77.50

aw 118 62.50 31 71.07 118 66.43 21 93.93

ay 118 78.31 26 87.50 118 66.79 20 94.64

Average 118 63.00 26.8 74.43 118 67.07 24.6 89.93

For data whose column label is Acc, bold the maximum Acc of each row, and for data whose column label

is Nsc bold the minimum Nsc of the last row
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