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Abstract

Cardiovascular disease (CVD) is the leading cause of death worldwide, causing over 17 million deaths per year, which
outpaces global cancer mortality rates. Despite these sobering statistics, most bioinformatics and computational biology
research and funding to date has been concentrated predominantly on cancer research, with a relatively modest footprint in
CVD. In this paper, we review the existing literary landscape and critically assess the unmet need to further develop an
emerging field at the multidisciplinary interface of bioinformatics and precision cardiovascular medicine, which we refer to
as ‘cardioinformatics’.
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Introduction
According to the World Health Organization, ischemic heart
disease and stroke have remained the top two global killers
in the past 15 years. The Global Burden of Diseases, Injuries,
and Risk Factors Study shows that heart disease is still the
dominant cause of death globally for both genders [1], with a
projection that by 2030, almost half of the adult population will
have a CVD diagnosis [2, 3]. In the United States, cardiovascular

diseases (CVDs) have been the leading cause of death by non-
communicable diseases, consistently surpassing cancer for the
past many decades (Figure 1A). However, federal National Insti-
tutes of Health (NIH) funding on CVD research has consistently
been less than that on cancer research, at least half a billion
dollars annually since 2008 (Figure 1B). Meanwhile, there has
been a 12.5% increase in the global number of deaths from CVD
in the past decade [4].

https://academic.oup.com/
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Research in CVD has steadily increased since the year 2000,
as measured by the body of publications indexed in PubMed
over this time (Figure 1C). In 2017 alone, there were more than
40 000 primary research (non-review) articles classified with
the subject heading ‘cardiovascular disease’, defined according
to the Medical Subject Heading (MeSH) terms (Figure 1C). How-
ever, the share of bioinformatics research has remained modest
among these CVD outputs at least relative to comparable work
done in cancer biology (Figure 1D). For example, multi-omics
data integration reveals novel disease pathways and therapeu-
tic targets, but its implementation in CVD research areas like
cardiovascular (CV) calcification is failing to keep pace with
other research fields, such as oncology [5]. While bioinformatics
is at the center of precision medicine [6] and CV research is
involved in several existing precision medicine initiatives [7, 8],
the field of cardioinformatics is still in its early days with ample
opportunities to benefit from cutting-edge data science tech-
niques and machine learning (ML) methodologies, as has been
the case in precision oncology. Even now, the application of ML is
already being recognized as an indispensable component of the
practice of cardiology in the future [9, 10] and, therefore, given
the availability of increasingly performant ML implementations
[11], cardioinformatics is better positioned to tackle domain-
specific research questions by developing clinical applications
to enhance compute-intensive tasks such as those found in
medical imaging, CVD risk prediction modeling, among other
active research areas. For instance, current methods for CV
calcification imaging are mostly limited to advanced calcifica-
tion and miss clinically relevant early microcalcifications, cre-
ating an unmet need for implementation of advanced imaging
tools and artificial intelligence to improve diagnostics and risk
assessment [5].

In general, efficient implementations of advanced compu-
tational algorithms that optimize for time, cost and accuracy
measures across broad domains of biological data science, such
as single-cell sequencing [12] (e.g. to investigate cellular het-
erogeneity in transcription [13]) or long-read mapping [14] (e.g.
to reconstruct full-length isoform transcripts in high resolu-
tion [13]), will find increasingly more adoption in CVD research
throughout the next few years as journals begin gearing up
for the release of special issues dedicated exclusively to per-
formance benchmarking of new and existing software tools. In
addition, the availability of open-access benchmarking data and
guidelines to evaluate ML methods across a broad range of appli-
cation areas including biomedical studies, signal processing and
image classification will catalyze the precipitation of the most
appropriate bioinformatics software tools for any given research
task [15, 16]. Taken together, programmatic need for bioinfor-
matics benchmarking and awareness of state-of-the-art tools
for performing CVD research will bridge across multiple areas
of expertise (e.g. single-cell sequencing technologies, long-read
mapping, 3D genome visualization, etc.), making cardioinfor-
matics research a truly multidisciplinary initiative for dissecting
the molecular mechanisms behind complex CVD traits.

The American Heart Association (AHA) Institute for Precision
Cardiovascular Medicine recently partnered with Amazon Web
Services to provide a variety of grant funding opportunities for
testing and refining artificial intelligence (AI) and ML algorithms
using healthcare system data and multiple longitudinal data
sources to fund research that improves our understanding
of all CVD data related to precision medicine. Therefore,
we expect that grant funding initiatives such as these will
gradually begin narrowing the gap between cardioinformatics
and cancer research in terms of the availability of improved

computational tools, infrastructure and analysis resources.
Some recent positive trends in this direction include large-
scale infrastructure and knowledge portal development [17–20]
for working with CVD data, as well as population-wide multi-
omics initiatives such as the NHLBI Trans-Omics for Precision
Medicine (TOPMed) Consortium [21] for integrating whole-
genome sequencing (WGS) and other -omics data (e.g. metabolic
profiles, protein and RNA expression patterns) with molecular,
behavioral, imaging, environmental and clinical data. In this
review, we highlight these contemporary opportunities and
perspectives for CVD genomic and precision medicine research,
introduce the bountiful resources available and propose
ways to advance this field further by promoting a culture
steeped in computation vis-à-vis modern bioinformatics and
computational biology methodologies.

The review is structured as follows: an overview of the cur-
rent informatics landscape is provided in The democratization
of data and the rise of knowledge bases. To explore what has
been learned about CVDs, we reviewed an extensive body of
CVD research, pivoting around genetics. Emerging from this
survey is a central theme of the diseases’ enormous complexity,
which is elaborated in the section called Complexity of CVDs.
Despite decades of applying and extending statistical methods
to study CVD, our knowledge of the diseases barely extends
beyond genetic associations into causal, mechanistic insights.
Given the exciting expansion of biological datasets, the advances
of knowledge bases and the current status of CVD research,
we then propose three areas where bioinformaticians and CVD
researchers may want to prioritize in pushing this field forward,
in The challenges of cardioinformatics.

The democratization of data and the rise of
knowledge bases
The past few years have seen a substantial rise in the availabil-
ity of computational resources and infrastructure that provide
access to aggregate genetic data and genomic summary results
to facilitate rapid and open sharing of individual level data and
summary statistics pertinent to various biological diseases and
data types. One of the early pioneers of web-based knowledge
portals has been a Memorial Sloan Kettering Cancer Center
resource called cBioPortal [22, 23], which provides intuitive visu-
alization and analysis of large-scale cancer genomics datasets
from large consortium efforts such as TCGA [24] and TARGET
[25] as well as publications from individual labs. Other major
players in the cancer knowledge base arena include the National
Cancer Institute’s Genomic Data Commons (GDC) Portal [26, 27],
which provides full download and access to all raw data (e.g.
mRNA expression files, full segmented copy number variant
[CNV] files, etc.) generated by TCGA and TARGET. In addition,
resources such as the Broad Institute’s Single Cell Portal [28]
provide an unprecedented view into the biology of different
diseases, including cancers like glioblastoma, at the single-cell
sequencing level.

More recently, the Knowledge Portal Framework, an infras-
tructure sponsored by the Accelerating Medicines Partnership
and developed at the Broad Institute, has empowered a variety
of disease-focused portals, including those for type II diabetes
[29], amyotrophic lateral sclerosis [30], sleep disorders [31], CV
[32] and cerebrovascular diseases [33]. The purpose of these
resources is to aggregate and store statistical data for hundreds
of millions of genetic variants and organize them to be rapidly
queried and visualized by biologists, statistical geneticists,
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Figure 1. The status of CVD research. (A) Number of deaths by non-communicable diseases in the United States and (B) funding by the NIH for research on cancer and

CVDs. (C) PubMed queries reveal a large body of CVD research, out of which only a small percentage involve bioinformatics. (D) Relative to the total pool of bioinformatics

papers (in any field), there are far more cancer papers that utilize bioinformatics methods than CVD papers that utilize such methods. ∗Since all the queries are based

on the manual MeSH catalog, more recent tallies will lag behind the true volume of publication.

pharmaceutical researchers and clinicians. Other such knowl-
edge bases focused on exploring large-scale genetic association
data in the context of, for instance, drug/treatment targets
include the OpenTargets initiative [25], which is a public–
private venture that generates evidence on the validity of
therapeutic targets based on genome-scale experiments and
analysis. Another public–private partnership—the Accelerating
Medicines Partnership-Alzheimer’s Disease (AMP-AD) Target
Discovery and Preclinical Validation Project—has developed an
AMP-AD Knowledge Portal to help researchers identify potential
drug targets to accelerate pre-competitive Alzheimer’s disease
treatment and prevention [34]. Interactive, web-based tools such
as the Agora platform [35] bring together both AMP-AD analyses
and OpenTargets knowledge under one umbrella to help explore
and ultimately assist the validation of early AD candidate drug
targets.

In addition to these various portals anchored on the results
of population genetic association studies, CVD knowledge bases
such as HeartBioPortal [17] have begun organizing and integrat-
ing the large volume of publicly available gene expression data
with genetic association content, motivated by the stimulus that
transcriptomic data provide powerful insights into the effects
of genetic variation on gene expression and alternative splic-
ing in both health and disease. Other knowledge portals such
as COPaKB [36] and large-scale initiatives such as HeartBD2K
[37] have taken a parallel focus on CVD proteomics datasets
[38]. Such integrative multilevel efforts to dissect the molecular

mechanisms behind complex disease traits now also extend
beyond academia into biotech startup companies, non-profits
and other initiatives such as SVAI, Quiltomics, Omicsoft, Sage
Bionetworks, Omics Data Automation, Occamzrazor, NextBio,
BenevolentAI, Insitro, Researchably and others—several of which
have recently been effectively integrated into the workflow of
larger biotech companies such as Illumina and Qiagen. Parallel
to these academic and industry initiatives, several government-
led genomic sequencing programs to collect a nation’s data
have appeared over the years, setting the stage for centralized
databases serving disease prevention, health management and
discovery. Among those programs are the recently completed
100K Genomes Project in the UK [39], the ongoing 100K Wellness
Pioneer Project in China [40], NIH’s All of Us Research Program [41]
and the Department of Veterans Affairs Million Veteran Program
[42] in the United States, many of which contain vast quantities
of population-wide race/ethnic group-specific CVD data. Most
recently, the All of Us program released a public data commons
browser [43] to explore the prevalence of specific conditions,
drug exposures and other clinically relevant factors on a demo-
graphically diverse cohort of participants, including populations
historically underrepresented in biomedical research. The data
in the All of Us Data browser include many CVD phenotypes and
come from participant electronic health records (EHRs) and from
survey responses (e.g. on basic demographics, overall health and
lifestyle) as well as physical measurements (e.g. blood pressure,
heart rate, height, weight, waist circumference and hip circum-
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ference) taken at the time the participants enroll in the All of Us
program.

Complexity of CVDs
The number of genetic actors

There is a certain genetic component in all major categories of
heart disease (Figure 2). The increase in genome-wide associa-
tion studies (GWASs) has led to the associations of more and
more genetic variants to human traits and diseases [44], fueling
the identification of hundreds of novel drug targets and the
development of polygenic risk scores that may help improve
the ability to predict a person’s pre-disposition to various CV
ailments [45–49] and facilitate early and preventative care [50].
Although CVD is significantly broad and encompasses diseases
related to blood vessels, the myocardium, heart valves, the con-
duction system and developmental abnormalities, there are only
a few CV disorders that can be attributed to a single pathogenic
gene (as covered in detail within a recent review [2]). Although
GWAS is, by definition, designed to implicate a single pathogenic
gene, or a limited number of pathogenic genes, Leopold and
Loscalzo [2] present a cogent argument against the theory of
a single causal pathogenic gene/gene product as a mediator of
CVD phenotypes, even in cases of certain classic Mendelian dis-
orders. Nevertheless, discovering new rare and common variants
that may control individual drug responses in different race/eth-
nic populations may elucidate not only disease mechanisms but
also improve clinical trial design whereby drug candidates can be
tested in more targeted subpopulations, in which drug efficacy
is not masked by the inclusion of predicted nonresponders [51].
To this end, enriching clinical trial selection and enrollment is
one of the target outcomes of precision medicine [2]. This is
motivated by, for example, case studies of CV pathologies that
are prominently characterized by biomarkers that do not reveal
the underlying complexity of the disease or its etiology. For
instance, although atherosclerosis is strongly clinically associ-
ated with elevated low-density lipoprotein levels, the underlying
biology is more complex, as suggested by the clinical failure of
evacetrapib despite significant effects on low-density lipopro-
tein [52]. Likewise, since clinical trials tend to focus on the mean
response to an intervention instead of examining variability in
response, current therapies for clinical indications like essential
hypertension are still unsatisfactory because most clinical trials
generally examine outcome effects as the sample mean blood
pressure is decreased, not personalized differential treatment
approaches tailored to patients’ individual hypertension profiles
[52]. As a result, it is estimated that 44% of patients with essential
hypertension were unable to achieve blood pressure control
despite pharmacological therapy [52, 53].

Predictably, over time the number of variants found associ-
ated with (any given) disease has increased and, in most cases,
gone beyond a few implicated genes that could be described in
a single-page table or diagram. Dilated cardiomyopathy (DCM), a
common cause of heart transplantation [54], is a vivid example
of how causal variants and their corresponding genes were dis-
covered over the years. In a recent review [54], 16 disease-causing
genes were compiled, along with an additional 41 putative genes.
Meanwhile, the NHGRI-EBI GWAS Catalog [55] and annotations
on Human Phenotype Ontology [56] suggest a larger number of
genes associated with this condition, 69 genes and 115 genes,
respectively. Clinical application has been keeping up, with a
typical commercial gene panel for DCM genetic testing covering
50 genes on average, and 111 in total [57]. Although these genes

were discovered via different approaches, the catalog of DCM-
associated loci kept expanding. Similarly for coronary artery
disease (CAD), additional loci have been associated with the
disease almost every year since 2007, bringing the total number
of loci associated with CAD to over 150 [58]. Since it is reason-
ably expected that when more genes are involved in a disease,
the individual effect exerted by each gene will be small; these
constantly expanding gene panels suggest that the common
mutations in a single gene are not likely to capture substantial
disease risk for most cases that are polygenic. From a research
perspective, these findings imply that the quest of pinpoint-
ing causal variants is getting progressively more challenging,
because testing the variant–phenotype association on small-
effect variations requires a much larger number of samples for
sufficient power [44], or critically different methods of statisti-
cal testing and inference. Using atherosclerosis as an example,
Cranley and MacRae [59] argue that the slow progress on disease
mechanisms comes not from incomplete genotyping to identify
associated variants, but rather from the inability to draw causal
relationships between identified variants (e.g. 9p21) and disease
pathways [51]. Specifically, although SNPs in this region were
identified by several independent GWAS, and each risk allele was
associated with a 29% increased risk of CVD, these SNPs are in
noncoding regions where the nearest genes (CDKN2B, CDKN2A)
are >100 Kb away, and the causality between these genes and
susceptibility to atherosclerosis has not yet been ascertained
[60–62]. In general, many genomic variants implicated in GWAS
occur in intervening regions with no immediate connections to
known coding genes or biochemical pathways and, therefore,
studies using ATAC-seq and other NGS techniques (e.g. RNA-
seq, Hi-C, etc.) are linking loci identified by GWAS to epigenetic
changes such as enhancer–promoter interactions [51]. In addi-
tion, large numbers of GWAS variants are now known to function
as expression quantitative trait loci (eQTL), meaning that they
regulate the expression level of transcripts (as measured, e.g.
by RNA-seq), whereas splice quantitative trait loci regulate the
splice ratio of transcript isoforms [51], highlighting how the tran-
scriptome can offer a dynamic view of the functions of genetic
variants in response to various acute and cumulative expo-
sures including genetic, metabolic and environmental media-
tors. Finally, as large-scale data become more readily available
for population-level estimation of many genetic variants with
low allele frequencies, the high penetrance of many previously
labeled ‘pathogenic’ rare variants (minor allele frequency < 0.1%)
has been questioned [63]. In other words, genomic sequencing
data from large population-level cohorts is uncovering many of
the same variants previously annotated as pathogenic muta-
tions [63, 64], prompting the need for variant reclassification
and the conclusion that some genes reported to cause inher-
ited heart disease are likely spurious [65]. Alternatively, it can
also happen that ostensibly causal genetic variants found in
family studies have no related phenotype in the population-
level setting [66], highlighting some of the general challenges
in attributing causality and understanding disease mechanism
at the level of the individual patient [65]. In general, although
GWAS studies have been successful in identifying genetic vari-
ation implicated in CVDs, they provide little or no molecular
evidence of gene causality [67]. These observations open up a
small window into the complicated and dynamic landscape of
human disease genetics.

Besides the increasing difficulty of discovering these varia-
tions, modeling their effects poses another set of challenges.
With a potential interaction between every pair of genomic
features, be they genes or regulatory sequences, the number
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Figure 2. The number of genes associated with CVD. CVD is defined to include all phenotypes under the term ‘Abnormality of the cardiovascular system’ (HP:0001626) in

the Human Phenotype Ontology [248]. Annotations of each phenotype was pooled from OMIM [249], Orphanet [250] and DECIPHER [251].

of such interactions increases quadratically with the number
of actors, leading to the combinatorial explosion of states
that a biological system can assume (theoretical calculation:
n elements leads to n(n − 1)/2, i.e. O(n2) interactions). The
plethora of variants associated with a disease or risk of disease
do not promise a quick understanding of pathobiological
mechanisms, as the functional consequences of a majority of
these variants remain unknown. Among the most understood
are PCSK9 [68], ANGPTL4 [69, 70] and APOC3 [71] on which
association tests and sequencing have been combined to
ascertain the linkage to CAD risk, translating to potential
vascular protective drugs. The methodology of these studies
are still under the influence of mainstream CVD research,
i.e. revolving around genotype–phenotype association testing.
This top-down approach, i.e. phenotype to gene to variant, has
certain limits in its power, requiring more and more samples
for less frequent and less penetrant alleles while leaving gaps
in mechanistic understanding. Bottom-up approaches in which
variations are systematically introduced into a DNA sequence
(and their functional consequences are characterized in vitro)
will complement the current understanding of these diseases.
As exemplified in the novel assays enabled by state-of-the-
art experimental techniques and computational processing,
this approach has demonstrated utility in cancer variant
classification [72], foreshadowing similar progress in CVD
research.

In addition to the loci that have been directly associated
with CVD, a large number of genes or regulatory elements may
contribute significantly to CVD risks in an indirect manner,
due to highly interconnected biological pathways. For instance,
independent research in aging has unraveled the intertwined
relationship between heart disease and longevity pathways [73].
With age being the most important factor in conferring CVD risk
[74], it is likely that these longevity genes will be involved in
future analyses of CVD genetics. The genetic scope of CVD may
be enlarged even further to include most of the genome, under
the recently proposed omnigenic model for complex traits, in
which most heritability is explained by peripheral genes outside
of the core pathways [75]. Such expansion calls for a paradigm

shift from additive effects of multiple genes to the interactions
between them, from the physical genes to the ‘eigen-genes’ that
represent biologically functional modules [76].

Such a paradigm shift is, in fact, only part of the potential
answer to the long-standing puzzle of missing heritability in
CVD as well as other complex diseases [77]. Heritability H2, in
the ‘broad sense’, is the proportion of phenotypic variance that
can be explained by genetic factors, while the ‘narrow sense’
heritability h2 is the proportion attributable to ‘additive’ genetic
factors [77]. If all the heritability has been accounted for, the
squared correlation between the observed and the predicted
phenotype should be equal to H2 (or h2). The increasing num-
ber of loci associated with complex traits still leave a large
gap between predicted and observed phenotypes, prompting
different strategies to account for the missing heritability. One
of the more obvious causes of missing heritability relates to
the limited ascertainment of the total pool of rare variants in
humans. Even among rare causal variants identified to date,
associations with disease has likely been under-appreciated due
to insufficient study power to detect modest effects on risk.
One addresses this issue by collecting more samples among
diverse study populations [44, 63] and improving statistical tests
[78, 79]. Even so, conventional models of phenotype prediction
have relied almost exclusively on the additive effects of genetic
factors, hence can only explain narrow-sense heritability h2 at
best. In addition, alterations outside of DNA sequences have
been found to be heritable, suggesting another part of the puzzle
relies on epigenetics. Thus, to advance our understanding of
complex diseases such as CVD requires moving beyond the
exome and genome, as discussed in the next section.

The diversity of actors

From SNPs to structural variations

Genome-wide association studies have been predominantly
conducted on single-nucleotide polymorphisms (SNPs) thanks
to the availability of easy-to-produce SNP microarrays. Such
technologies have clearly enriched our knowledge base of the
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effect of single nucleotide variants, while leaving the effect of
structural variations (SV) poorly understood. There are now 660
million SNPs documented in the dbSNP database [80], compared
to 4.6 million SVs in the DGVa (Database of Genomic Variants
archive [81], which also includes studies annotated by the
NCBI-hosted database of structural variants, dbVar [82]). SV
databases such as dbVar and DGVa are in fact storing each
study–publication individually instead of cataloging SVs into
data entries. Although the current knowledge base of SVs is
not sufficient to create reference entries of SV, the map of SV
from 1000 Genomes Project [83] has enabled further studies
of the role of SV in cardiac diseases, suggesting the potential
impact of SV on the transcriptional regulation of cardiac genes
expressed in the heart [84]. As envisioned, SVs might be one
of the promising areas to look for the missing heritability in
CVD [85]. In fact, the relative lack of SV investigation in CVD
has been recognized as one of the key issues that confound
the attribution of causality in linking genetic variants to CVD
phenotypes [65]. To this end, ongoing projects like TOPMed
contain a Structural Variant Working Group to call CNVs within
TOPMed, and they have begun incorporating large-scale multi-
ancestry studies spanning diverse types of sequencing data
from both European and non-European race/ethnic groups. Most
recently, the gnomAD browser [63] added 500 000 structural
variants from 15 000 genomes, with full VCF and BED files
available for download [86].

From coding to noncoding regions

As array-based genotyping was gradually replaced by next-
generation sequencing, the cost of sequencing an exome, i.e.
the protein-coding part of a genome, became much more
affordable and enabled the collection of more than 60 000
exomes [63]. Using this dataset, Walsh and colleagues [64] found
that many ‘pathogenic’ genetic variants associated with various
cardiomyopathies are equally common in clinical cases as in the
control population. Genes that were consistently included on
genetic testing panels for DCM such as MYBPC3, MYH6, SCN5A,
etc. turned out to be less penetrant than previously thought,
in consideration of their frequency in the control population.
The rationale for prioritizing the sequencing of exome over that
of the entire genome, besides the lower cost, was a regularly
cited statement that the exome harbors 85% of disease-causing
variants [87] which turned out to be an outdated estimate
from 1995. In our own survey of the NHGRI-EBI GWAS Catalog
[55], a large fraction of variants tend to occur in non-protein
coding regions such as intronic, intergenic and splice junctions
(Figure 3). The distribution of CVD-associated variants is similar
to that of variants associated with all traits. Previous studies also
asserted the prevalence of regulatory regions among variants
associated with cardiometabolic risk [88], as well as many other
complex traits [89]. As an unprecedented amount of WGS data
become available from large-scale genomic projects such as
The 1000 Genomes Project [90], UK10K [91], The 100,000 Genomes
Project [39], The 100K Wellness Pioneer Project in China [40], All of Us
Research Program [41], TOPMed [21] and CCDG [92], we are poised
to learn more about this ‘dark matter’ in the human genome
and how it works in complex diseases.

Beyond genetics: epigenetics and gene–environment interplay

CV risks can be conferred through heritable changes in gene
expression without alterations in the underlying DNA sequence.
These epigenetic processes traditionally involve DNA methy-
lation, a wide range of histone modifications including acety-

lation, methylation, phosphorylation, ubiquitylation, sumoyla-
tion and biotinylation, and are now encompassing a loosely-
defined group of processes mediated by long noncoding RNAs
(lncRNAs) and microRNAs (miRNAs). Dysregulation in epigenetic
processes has been associated with the pathogenesis of can-
cer and many other diseases. To date, epigenetic mechanisms
have been demonstrated to be involved in a variety of CVDs
and conditions [93–97]. For instance, early differential epige-
nomic analysis, albeit on a limited number of samples, estab-
lished differentiating features in DNA methylation and histone
H3 methylation between control and failing hearts [98]. Like-
wise, abnormal expression and activity of histone deacetylases
(HDACs) have been linked to cardiac defects, heart disease and
cardiac development [99–102]. For example, HDAC9 is highly
expressed in cardiac muscle, and one of the targets of HDAC9
is the transcription factor MEF2, which has been implicated
in cardiac hypertrophy [103]. Following these early findings,
epigenome-wide association studies have proposed a number
of DNA methylation sites associated with blood lipid [104], body
mass index [105, 106], heart failure [107] and heart attack history
[108]. In addition, alterations in chromatin structure have been
shown to induce heart failure [109].

As more lncRNAs were discovered and characterized, the
prevalence of these molecules in CV biology also emerged. At
least 22 lncRNAs were reportedly dysregulated in CVDs including
CAD, myocardial infarction, cardiac hypertrophy and atheroscle-
rosis, affecting a wide range of molecular, cellular and physio-
logical processes [110, 111]. Due to low relative abundance levels
and highly tissue-specific expression patterns, lncRNAs remain
challenging to study. Some of the functions of lncRNA that
have been recognized include imprinting, scaffolding, enhancer
activity and molecular sponges. These actions mark the pres-
ence of lncRNAs in many CV processes such as cardiac differ-
entiation, macrophage activation and sarcomere development
[112]. With 107 039 lncRNAs detected in the human genome so
far (reported by LNCipedia [113], as of November 2018), more
lncRNAs are likely to be implicated in CV biology in the future,
hence promising potential therapeutic targets. In this regard,
there is increasing evidence that circulating miRNAs can serve
as potential prognostic and diagnostic biomarkers for the pre-
vention and treatment of CVDs [114], since they are critical
regulators of CV function and play important roles in almost
all aspects of CV biology [115–118] (for historical perspective,
Azuaje and colleagues [119] reviewed some of the first CVD
biomarkers discovered through integrative omics approaches).
For example, miRNAs associated with the diagnosis and prog-
nosis of heart failure, acute myocardial infarction, pulmonary
hypertension and arrhythmia are reviewed by Zhou and col-
leagues [114]. Nevertheless, challenges remain: for example, for
a miRNA to be considered a potential therapeutic target or
diagnostic marker of CVD, it should be predominantly expressed
in cardiac tissue and/or be essential for heart development,
function or repair of heart-specific damage (e.g. miR-1, miR133a,
miR-208a/b and miR-499) [120, 121], while also normalizing for
the fact that miRNA expression levels are often affected by non-
cardiac conditions (e.g. cancer, infection, drug use, etc.) and other
co-morbidities. However, given the utility of miRNAs in both
animal models and human clinic trials for cancer treatment
[122–125], miRNA-based therapeutics for the treatment of CVD
remain a promising area of research.

As epigenetic processes include various molecular and
cellular events, the experimental assays for mapping of the
epigenome are accordingly diverse. DNA methylation profiling
can be done with methylation-sensitive restriction enzymes,
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Figure 3. Distribution of SNPs that have been associated with a phenotypic trait. The associations are downloaded from NHGRI-EBI GWAS Catalog in which only those

with P-value <10−5 were retained.

bisulfite sequencing or immunoprecipitation with antibodies
against methylated-cytosine [126]. Histone modifications can
be profiled by immunoprecipitation with antibodies specific to
the modified histone of interest, essentially requiring a ChIP
experiment for each of the histone modifications one wants
to interrogate [127]. Meanwhile, the noncoding RNA transcripts
can be profiled with variations of RNA-seq experiments that
are optimized for the target fraction of RNA. Such diversity
entails significant difficulty in comprehensive profiling of the
epigenome in a single experimental assay, stressing the need for
re-collection and re-analysis of dispersed datasets for a more
complete multi-omics picture. As epigenetic alterations have
been found to be responsive to environmental cues throughout
life, the epigenome lays an important bridge between the
genetic makeup of an organism and its phenotype by helping
to explain the gene–environment interplay. For example,
environmental factors have been known for decades to play
critical roles in conferring CV risk. Framingham-based risk
scores [128], which include variables that can be intervened
upon by lifestyle habits (smoking, blood cholesterol, blood
pressure, diabetes), have guided clinical practices [129] and
shown to perform well in predicting CV risk in many populations
[130, 131]. The importance of a healthy lifestyle (absence of
obesity, no current tobacco use, a healthy diet, regular physical
activity) cannot be understated for CVD risk reduction, and
it has been shown to serve as an environmental resilience
factor and modify genetic risk of CVD [2]. In fact, over the
past 50 years, historical progress towards the eradication of
CVD has been achieved primarily through the adoption of
lifestyle modifications, including dietary, tobacco and exercise
interventions [2], including changes to public health policy (e.g.
secondhand smoke legislation) and other health measures. In a
recent study of 55 685 people stratified according to a polygenic
risk score, it was found that individuals with a high genetic risk
of CAD had a 46% reduction in the relative risk of coronary events
if they had a healthy lifestyle, compared to individuals who
did not [132]. However, the relative performance of phenotype-
based risk scores and the genotype-based counterpart is highly
variable depending on specific populations and practices in

designing score components. There exist lines of evidence
favoring both phenotypic variables [133] and genotypic ones
in predicting disease risk [131, 134–136]. Clearly, there remains a
gap in understanding gene–environment interaction that can
now be studied at the molecular level, thanks to advances
in experimental techniques to measure the exposome, i.e. all
environmental factors/exposures throughout life that influence
disease, including an individual’s diet, pollutants and infections
[137]. With recent development of wearable devices to collect
real-time data in a non-intrusive manner, it is now possible to
monitor the exposome for its dynamic compositions of chemical
compounds and micro-organisms [138, 139] as well as monitor
early identifiers of CVD progression [140, 141] and disease
diagnosis [142]. In general, the emergence of mobile health
devices and sensors is now ushering in a new era of streaming
data collection relevant to CVD metrics at the individual-based
level, e.g. an individual’s blood pressure, heart rhythm, oxygen
saturation, brain waves, air quality, radiation, among others
[143]. Such devices will enable the collection of longitudinal per-
sonal omics profiles across different demographics, ultimately
not only helping to detect health–disease transitions based
on molecular and physiological metrics but also measuring
interactions of environment and health outcomes that inform
individualized health data [143]. Being among complex traits
that are heavily influenced by environmental factors, CVD
research is especially well positioned to benefit from these
advances. For instance, Cranley and MacRae mention in a
recent review [59] how studying the nutritional exposome
(e.g. quantified images, purchase data, modern supply chain
tracking of food) is likely to identify new triggers of coronary
heart disease (CHD) and other disorders across populations.
One interesting population–scale application we envision is
monitoring the nutritional exposome (e.g. with respect to
the temporal trajectory of atherosclerosis) through social
media timeline photos (e.g. many Facebook/Instagram users
consistently post food photos of their meals over a timespan of
several years), which could potentially be tagged via AI/ML image
classification algorithms that ultimately track dietary or lifestyle
habits in a long-term longitudinal fashion. Therefore, one area
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of potentially transformational investigative impact could be
the integration of social media activity with data streaming
from wearable devices as a way to monitor the exposome.
Clearly, such large-scale initiatives directly benefit from public–
private partnerships between academia and industry, as has
been the case for OpenTargets [25], which unites the academic
efforts of EMBL-EBI and the Wellcome Sanger Institute with
the commercial efforts of Sanofi, GlaxoSmithKline, Takeda
and other biopharmaceutical companies. Likewise, the One
Brave Idea initiative [144] has brought together the AHA, Verily,
Astrazeneca and Quest Diagnostics to collectively work towards
detecting the earliest stages of CHD, how it develops and how it
can be stopped from leading to heart attacks and strokes. The
objective of One Brave Idea centers on measuring biology early
enough to define health and its maintenance rather than just
disease and to do so longitudinally in a way that enables passive
capture of disease trajectories [59].

The challenges of cardioinformatics
Research in CVD faces unique challenges due to many pecu-
liarities of these diseases. One such idiosyncrasy is time-scale,
e.g. atherosclerotic plaques and other CV risk factors build up
over an extended period of time (often many decades), which
puts CV phenotypes on a complex and continuous spectrum of
transition from health to disease, from disease onset to pro-
gression. In contrast to diseases like cancer, which are char-
acterized by rapid progression often with a clearly delineated
before and after-disease state (e.g. stark mutational profile dif-
ferences due to somatic hypermutation), CV pathologies such
as CAD develop over an extended period of decades, beginning
with atherosclerosis and manifesting variably along a spectrum
from asymptomatic to stable ischemic heart disease, acute coro-
nary syndrome and sudden cardiac death [52]. In general, the
transition from one CVD (e.g. hypertension) to another (e.g.
atherosclerosis), which may gradually morph into another CVD
(e.g. CAD), which may or may not ultimately lead to a clin-
ical episode like myocardial infarction or stroke, all over the
time-scale of several (or more) decades poses its own set of
unique informatics challenges. Monitoring the complex disease
etiology of such a temporal progression influenced by a com-
bination of genetics (omics profiles), environment (socioeco-
nomics—e.g. zip code can often be as or more important than
genetic code at predicting CVD risk [145, 146]) and lifestyle
[smoking, diet (e.g. lipids, alcohol), etc.] is a very computation-
ally challenging task and calls for new innovative data inte-
gration approaches for risk stratification and surveillance at
both individual and population levels across different race/eth-
nic groups. To complicate matters further, CV pathologies fre-
quently present as co-morbid or multi-morbid with other dis-
ease phenotypes such as diabetes, cancer, obesity and metabolic
syndrome and rheumatologic disease [52]. Innovative systems
biology/medicine approaches to increase the understanding of
the multifactorial, complex underpinnings of CVD promise to
enhance CVD risk assessment and pave the way to tailored
therapies [147]. One active area of research to address these
issues involves deeper phenotyping to enable better clinical
phenomapping—the stratification of different CVDs into etiolog-
ically distinct subtypes, such that it becomes possible to define
disease throughout its temporal trajectory, thereby allowing the
measurement of fundamental underlying traits such as subclin-
ical vascular abnormalities before they evolve into the classical
syndrome (i.e. the full-blown clinical indication/manifestation
of disease) [59]. In general, parsing phenotypes in this way

allows for a finer, more granular approach to CVD management
and prevention that can facilitate precision subtyping of pre-
symptomatic and at-risk individuals from symptomatic ones
in order to stratify patients for optimized care delivery [52].
Other challenges of cardioinformatics, particularly at the level of
tailoring individualized CVD treatments and predicting patient
outcomes, are highlighted in some recent reviews [148–152].

As illustrated in the previous section, the complexity of
CVDs calls for pushing research beyond traditional boundaries.
Such expansion implies the inclusion of various data modalities
described above, such as genome sequences, DNA-methylation
profiles, RNA expression profiles, protein expression profiles,
metabolic profiles, etc. (Figure 5) within computational analysis
workflows. For instance, the presence of even a single metabolite
circulating in the blood can strongly predict myocardial
infarction risk on top of clinical models [153]. Leon-Mimila and
colleagues discuss in a recent review [67] the unmet need for
more metabolomics and metagenomics approaches to identify
biomarkers with potential clinical applicability in CVD studies.
For instance, some bacterial species are associated with risk
of CAD and plasma metabolites, e.g. the bacteria Veillonella
is associated with chronic heart failure and is also inversely
correlated with known CV protective metabolites such as
niacin, cinnamic acid and orotic acid [154]. Such correlation
between changes in metabolites and gut microbiome associated
with chronic heart failure may also potentially be observed
in other CVD phenotypes in the future, inviting exploration
of new research avenues in this currently underexplored
area. In general, circulating small molecules comprise not
only endogenous species encoded by the genome but also
various xenobiotics from the ‘envirome’, including ingested
nutrients, pollutants and other particulate matter such as
volatile organic compounds, heavy metals and air pollutants [51,
155, 156]. This complexity extends further to proteomics, where
mass spectrometry methods have identified post-translational
modifications such as citrullination and S-nitrosylation as direct
modulators of CV biology [157], highlighting the direct role
of organic chemistry [158] in conferring CVD risk. In general,
these data modalities often represent different classes of
biological molecules as well as their interactions (Figure 5A).
Computational workflows relevant to CV medicine have been
proposed [159], clearly illustrating how CVD research can benefit
from existing computing resources, from cloud-computing
infrastructures to analytic methods for metadata, search and
indexing. Likewise, modular data science architectures for
supporting CV investigations have been illustrated [17, 160]. Due
to the sheer amount of data obtained from CVD research, ranging
from medical records to medical images and high-throughput
omics profiles, challenges related to data management and anal-
ysis that are generic to many fields become even more pressing
for cardioinformatics. While benefiting from two decades of
research in bioinformatics, there remain significant challenges
that can be addressed to accelerate CVD research. From our
own perspective, we suggest three particularly pertinent areas
to prioritize cardioinformatics research: data sharing/security,
multi-omics analysis and augmented intelligence.

To share or not to share

Data sharing is believed to help scientific advances, thus bene-
fiting everyone [161]. The sharing of personal health and medical
data, however, comes with the risk of compromising a person’s
privacy and subjecting them to discrimination [161–163]. The
current data governance practices employ several administra-
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tive measures in the hope of minimizing the risk of expos-
ing the data to adversity, or bad intentions. Taking the pro-
cess of dbGaP data requests as an example: to access 658 305
records of genotype–phenotype data (Table 1) potentially rele-
vant to future biomedical studies, a researcher first needs to
browse these datasets, determine whether each dataset is con-
sented for its purpose, obtain IRB approval if necessary, then
file a request, prepare the facility, implement the security mea-
sures and transfer the data upon approval. Although the data
users are advised, for example, to ‘avoid placing data on mobile
devices’ and ‘destroy [the data] if they are no longer used or
needed’, the only guarantee to such compliance is the vigilant
mindset of every researcher involved in the data behind the
project(s). In addition, different datasets are associated with dif-
ferent types of consents, dictating what purposes are permitted
(e.g. general research, disease-specific research or biomedical
research). Therefore, data users are responsible for obtaining the
IRB approval compatible with these consents. These regulatory
requirements have heightened the barrier to data access without
robust mechanisms to enforce data protection nor to revoke the
access when necessary. To add to these challenges, before filing
a request, one needs to dive into the metadata of individual
studies and decide which datasets are useful for the target
research. Important information about a dataset such as the
list of phenotypic variables are often vastly different from study
to study and cannot be filtered against. In addition to those
parameters of a study design, researchers need to be aware of
the various types of consent forms applied to different datasets,
many times within a single study. This procedure to obtain
data access is currently applied for all controlled-access data in
dbGaP, adding a significant administrative burden to biomedical
researchers.

As a pioneering effort towards more accessible biomedical
data, the AHA’s Precision Medicine Platform [18] has greatly
simplified this process by streamlining the search, request and
transfer of data. Datasets deposited on this platform were har-
monized such that users can query for data across multiple
studies by some common parameters, selectively request access
to the relevant data and perform analyses on the cloud-based
workspace. The platform has lifted significant burden off of data
users by having them file one request for multiple datasets, and
the data owners, being aware and responsible for complying with
the consents on their data, will decide whether access can be
granted or not. The cloud-based workspace also allows data to
be transferred and analyzed in a controlled environment that
can be ensured to comply with regulatory standards. The risk of
intellectual property being compromised remains, for the data,
once transferred, cannot be withdrawn nor prevented from being
copied. As recognized by the authors, the platform is ‘only as
good as the researchers make it’ [18]. More secure modes of
data sharing have been explored, forming a spectrum of varying
balance between analytic power and data protection. ViPAR [164]
supports on-memory analysis of pooled data that is transferred
to a central system, avoiding the permanent storage of sensitive
data outside of the original sites. In all of the platforms above, a
strong system for registering users as well as applying sanction
measures are critical to enforce data usage agreements and deter
malicious intent. Nevertheless, there still remains significant
risk associated with data transfer and data protection at the user
end. A couple of solutions have been proposed to further reduce
the risks and responsibilities associated with direct access to
sensitive data. For example, PRINCESS [165] is designed to per-
form statistical tests within an enclave hosted on a trusted
server, in a stream of small data segments (8000 SNPs at a time).

Table 1. The subject count aggregated from studies deposited in
dbGaP, consented for General Research Use (GRU)

CVD All

16s rRNA (NGS) 0 92
CNV Genotypes 0 48 972
Chromatin (NGS) 0 139
Genomic Sequence Amplicon (NGS) 0 8
Methylation (CpG) 0 657
Methylome sequencing 0 152
QTL Results 0 281
RNA Seq (NGS) 333 1498
SNP Genotypes (Array) 6658 113 597
SNP Genotypes (NGS) 4277 11 786
SNP Genotypes (PCR) 0 10
SNP Genotypes (imputed) 0 29 693
SNP/CNV Genotypes (NGS) 0 936
SNP/CNV Genotypes (imputed) 0 9291
SNV (.MAF) 0 2
SNV Aggregate (.MAF) 0 570
Targeted Genome (NGS) 0 9918
Whole Exome (NGS) 5518 12 771
Whole Genome (NGS) 0 1245
mRNA Expression (Array) 0 798
miRNA (NGS) 0 228
Total subject count in data consented for GRU 16 786 242 644
All consent groups 584 884 Unknown

NGS: Next-generation sequencing, MAF: Minor Allele Frequency, QTL: Quantita-
tive Trait Loci, SNV: Single-nucleotide variant

On the other end of the spectrum, DataSHIELD [166, 167] and
COINSTAC [168] aim to allow data to be analyzed without moving
out of the owners’ facility. Current implementations have shown
that a variety of analytic tasks such as summary statistics, his-
tograms, generalized linear models (DataSHIELD) and gradient
descent (COINSTAC) can be performed in a distributed manner
to achieve equally accurate results compared to the physically
pooled counterpart and, more importantly, without disclosure of
sensitive or personally identifiable information. The increasing
prevalence of cloud computing platforms in scientific research
[169] implies that forward-looking solutions should be able to
work on these cloud environments.

Besides controlled-access data, a large amount of publicly
available human data such as RNA-seq, ChIP-seq, Hi-C, etc.
results are freely accessible with no restriction. Without genomic
sequences, genotype or phenotype data, the processed output of
these assays are deemed anonymous and void of sensitive infor-
mation. However, recent studies have shown that information
leakage is still possible, subjecting individuals to linking attacks
that may reveal their identity [170, 171]. With millions of human
genomes and thousands of other omics profiles on the not-
so-distant horizon, a large fraction of which comes from CVD
research programs (Figure 5), it is critical that cardioinformatics
researchers pioneer the applications of these security measures,
to ensure scientific advances do not compromise human rights
to privacy and non-discrimination.

Multi-omics data ocean

The explosion of biological data is manifested in the growth
of databases, consortium efforts, repositories, as well as the
amount of raw and summary-level data hosted in these
warehouses. High-throughput technologies are now available
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Figure 4. Molecular assays on GEO. (A) The cumulative number of molecular assays (i.e. unique combinations of biosample, study and platform) deposited in GEO by

CV research. (B) Breakdown of high-throughput sequencing assays by the type of study. Expression profiling by high-throughput sequencing, i.e. mRNA-seq assays,

are often coupled with another profiling technique, for example, to provide functional read-out of transcription factor binding profiled by ChIP-seq. Note that to avoid

excessive over-counting of irrelevant samples such as those from plants or unrelated model organisms, we only counted samples deposited with a PubMed ID pointing

to a CV study. Surveys were done on the GEOmetadb database [176] updated on 17 November 2018.

for characterizing and quantifying all major classes of biological
molecules including DNA, RNA and protein (Figure 5A), leading
to the creation of centralized repositories such as the Gene
Expression Omnibus (GEO) [172] for gene expression data, dbGaP
[173] for genotypes and phenotypes, ProteomeXchange [174,
175] for proteomics, MetabolomeXchange for metabolomics,
among others. GEO, one of the most popular repositories
for functional genomics data, has accumulated more than
100 000 datasets [176]. Among these, CVD publications have
contributed more than 2000 microarray-based experiments,
and about 900 high-throughput sequencing experiments for
various purposes (Figure 4). The amount of data potentially
reusable for CVD research may be even larger, when taking
into account studies that did not focus on CVD but generated
a decent number of assays on relevant biospecimens (e.g.
heart, blood or blood vessels) such as ENCODE [177] and the
Roadmap Epigenomics initiatives [178]. Likewise in dbGaP,
where human genotype–phenotype data are deposited, CVD-
related research has contributed data on 658 305 subjects,
only 16 786 (2.9%) of whom had consented for the data to
be employed for general research, leaving a large amount of
data locked in field-specific or disease-specific studies (Table 1)
(see Supplementary Data for a comprehensive list of CVD
studies deposited in dbGaP). An extensive compilation of human
genotype–phenotype databases is given in a recent review
[179]. In addition to the central repositories for established
and popular experimental methods, smaller databases with
narrower focus are also budding. For instance, chromatin
structure data from 3C, 4C, 5C and Hi-C experiments have
been collected in dedicated databases such as 3CDB [180]
and 4DGenome [181]. Also, noncoding RNAs are being added
into databases such as lncRNAdb [182], NONCODE [183] and
LNCipedia [113].

Such abundance and diversity of data promises valuable
insights once the data are aggregated across studies within a
given omics domain (e.g. RNA-seq), or across multiple omics

domains (e.g. RNA-seq, ChIP-seq, ATAC-seq, etc.). Efforts to
aggregate genomic data (both individual and summary-level
statistics) have resulted in valuable collections such as The
Cancer Genome Atlas [24] for genomics and functional genomics
data in cancer, or ExAC and gnomAD for exome and genome
sequencing data [63]. For instance, aggregated exomes/genomes
such as ExAC/gnomAD have been a valuable resource for
estimating the allele frequencies of the general population
as well as within various race/ethnic groups. Although the
need for data integration has been identified within the field
of CVD research, resulting in some CVD-focused databases
dating back to 2015 (Table 2), many of these resources are either
discontinued, not well maintained or remain in a primitive
stage where database queries are delivered in plain texts
and hyperlinks that require substantial efforts to synthesize
new integrative insights. With the upcoming wave of trans-
omics data spanning diverse populations and sequencing
types (Figure 5B), data harmonization will become a more
pressing problem. Generic solutions have started to be proposed,
e.g. Biochat for GEO metadata [184] or OmicsDI for diverse
datasets spanning genomics, transcriptomics, proteomics and
metabolomics [185], and are promising for facilitating data
integration in specialty fields like CVD.

While the issues above are generic for all types of research
aiming to reuse public data, we believe CVD research bene-
fits even more by expanding beyond traditional methods. Most
use of high-throughput data in CVD research has been largely
limited to the very first layer of omics data (Figure 5A), i.e.
genome/exome. Whole-exome and whole-genome sequencing
data have been slowly incorporated into conventional GWAS,
bringing more ascertainment to earlier findings [68–71]. When
deeper phenotype data such as blood lipid tests and diagnosis
(ICD) codes became available, phenome-wide association studies
emerged [186], triggering a new line of biomedical research that
coupled EHRs with omics data, enabling powerful analyses, as
discussed by [187, 188] and exemplified by [189, 190].
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Table 2. List of available resources for cardioinformatics research

Type Name URL Ref

Knowledge portal Cardiovascular Disease Knowledge Portal http://www.broadcvdi.org/ [10]
Knowledge portal Cerebrovascular Disease Knowledge Portal http://www.cerebrovascularportal.org/ [2]
Knowledge portal HeartBioPortal https://heartbioportal.com/ [5]
Analytics platform AHA Precision Medicine Platform https://precision.heart.org/ [4]
Analytics platform DataSTAGE https://datastage.io/ In planning
Database HGDB (Heart Gene Database) http://www.hgdb.ir/ [7]
Database In-Cardiome (Integrated Cardiome Database) http://www.tri-incardiome.org/ [9]
Database Cardio/Vascular Disease Database http://www.padb.org/cvd/ [3]
Database CardioGenBase Discontinued [11]
Review paper Cloud computing for genomic data analysis and collaboration [6]
Review paper Human genotype–phenotype databases: aims, challenges and opportunities [1]
Review paper Methods of integrating data to uncover genotype–phenotype interactions [8]

Resource types are categorized as follows: Database: integrated datasets, harmonized and built into a single, searchable database. Query results are usually presented
as table of text and hyperlinks. Knowledge portal: integrated datasets, harmonized and built into a single, searchable database. Query results are usually visualized with
charts tailored for the biological data and insights. Analytics platform: computing system, usually comes with access to diverse datasets, allowing users to perform
various analyses on the hosted data.

Besides existing data, new recent research programs have
started to put more focus on high-throughput assays that result
in a comprehensive cross-section of biological molecules (DNA,
RNA and protein) and their interactions. For instance, the Multi-
Ethnic Study of Atherosclerosis (MESA) medical research study
[191] within TOPMed includes WGS, RNA-seq, metabolomics,
proteomics and methylomics data across a variety of multi-
ethnic communities (white, Hispanic, African-American and
Asian). Specifically, MESA investigates the characteristics of
subclinical CVD (disease detected non-invasively before it
has produced clinical signs and symptoms) and the risk
factors that predict progression to clinically overt CVD or
progression of the subclinical disease. Some traditional CVD
risk factors include hyperlipidemia, hypertension, diabetes
mellitus, metabolic syndrome and chronic kidney disease [2].
Likewise, TOPMed is generating a second modest size multi-omic
resource involving RNA-seq, metabolomics and methylomics
in a subset of participants of the Women’s Health Initiative
(WHI) study [192] who have undergone WGS already. Figure 5
highlights the large datasets that are (or will be) available
for CV research. It is clear that assays for DNA sequences,
including WGS and whole-exome sequencing, are still dominant
among these studies. However, a modest number of multi-
omics experiments are planned to be assayed for transcriptome,
methylome and metabolome, as in the MESA and WHI studies.
The availability of these datasets, especially at the individual-
level, is critical to correlate the variations across multiple omics
and bridge the gap from genotype to phenotype. In general, the
analysis of these trans-omics datasets is a fascinating problem—
although the computational approaches envisioned from the
early days of gene expression profiling, i.e. differential gene
expression analysis, co-expression analysis and gene clustering
with subsequent identification of enriched biological pathways
[193] can still bring fruitful analysis [194], cardioinformatics
is clearly steering towards the integration of multiple omics
layers (Figure 5). Although the potential of data integration
had been recognized as early as a decade ago [195], leading
to the development of many data integration strategies [196]
such as gene expression and summary-level associations of
SNPs and phenotypes from GWAS studies, only recently have
these successful data integration strategies begun to emerge
in CVD research [197]. Such approaches, usually referred to as
transcriptome-wide association studies, are now adopted more

widely [198]. In contrast to the relatively recent surge of interest
in data integration methodologies, systems biology approaches
in CVD have existed since at least the mid-2000s [199–201] and
continue to pose challenging questions and present interesting
results. For instance, modern systems-level approaches that
leverage network analysis methods suggest that covariation
between molecules (modeled as the reorganization of network
nodes and edges) can be more instructive than the differential
expression of individual markers, e.g. for conceptualizing
molecular changes that occur in the emergence of high glucose
levels in the prediabetic state [51, 202]. Since diabetes is a major
risk factor for atherosclerosis, re-casting such physiological
phenomena in a new light as tipping points and bifurcations
of a network with multiple alternative stable states addresses a
blind spot of the disease-oriented paradigm of clinical research
and practice, which by definition precludes detailed knowledge
about early presentations in subclinical populations [51]. One
well-known success story of early detection of a subclinical
prediabetic state was the result of a longitudinal multi-
omics study that monitored the transcriptome, proteome and
metabolome of a single individual over 14 months, ultimately
helping the individual avoid the clinical indication (diabetes)
by early adjustment in diet [203]. Other successful examples of
multi-omics studies conducted on longitudinal personal omics
profiles in single individuals to provide constant monitoring
and preventative intervention include the MyConnectome study
[204], P100 Wellness study [205] and the Personalized Nutrition
study [206], which were covered in a recent editorial [51] in the
context of CVD-related traits such as blood pressure, QT interval,
postprandial glycemic response, etc. In general, computationally
integrating diverse stores of data such as physiological and
environmental information with other omics layers such as
genomes, metabolomes and microbiomes can help identify
subclinical imbalances or elevated disease risk in otherwise
healthy individuals [51], heralding in an era of preventative
healthcare/medicine. Historically, although the first draft of the
human genome project had brought a lot of hope and excitement
about potential advancements in the diagnosis and treatment
of cardiac diseases—such as the ability to identify disease genes
within the associated loci, to improve risk estimation based
on more precise genotypes, or to personalize the prediction of
drug effects on a patient [207]—it seems that a collection of
the first population-scale ‘drafts’ of the whole ‘multi-ome’ will
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ultimately be required for gaining a deeper understanding of the
phenotypic manifestations of CVD across different race/ethnic
groups. A recent cardiac hypertrophy study in mice [208]
highlighted the utility of conducting multi-omics investigations
for discovering additional disease gene candidates not apparent
from studying each omics data type separately in the context
of CVD pathogenesis. In humans, large-scale studies such as
the MyHeartCounts study [140] and a global physical activity
study of nearly 800 000 individuals across 111 countries [209]
demonstrated the feasibility of consenting and engaging large
populations using smartphone technology, suggesting the
potential to create a similar population-wide intercontinental
network for multi-omics participation in the near future. For
a recent comprehensive review detailing the success stories of
multi-omics studies in CVD, see Leon-Mimila et al. [67]. All in
all, the ability to combine data from every omics layer depicted
in Figure 5, either at the summary level or the individual level,
opens up ample opportunities for cardioinformatics to expand
and augment the understanding of CVD etiology.

Augmented intelligence to advance cardiology

As alluded to in the Introduction, AI and ML will play an increas-
ingly important role in cardioinformatics research. Recent trends
in this direction include studies for cardiac arrhythmia detection
[210, 211], heart failure prediction and classification [141, 212,
213], CV risk stratification [214], individualized treatment effect
estimates from clinical trial data [215], among various other
active CVD-related research areas [206, 216–218] that utilize ML
techniques ranging from deep learning [210, 213, 219–224], class
imbalance learning [225, 226], active learning [227], probabilistic
graphical models [228, 229] and other areas. An emerging area
of AI/ML applications ripe for early adoption is the field of
augmented and virtual reality (AR/VR), specifically its applica-
tions to cardiology. For instance, surgeons at Children’s Mercy
Kansas City, a hospital in Missouri, have been exploring the
use of augmented reality to view CT scans of patients’ hearts
before an operation to understand patient-specific blood vessel
anatomy in different chambers of the heart (e.g. right atrium or
left ventricle), ultimately facilitating a safer, more informed sur-
gical intervention/procedure [230]. Other emerging applications
of AR/VR in CV medicine include advances for education, pre-
procedural planning, intraprocedural visualization and patient
rehabilitation [231].

Nevertheless, in an era of big data analytics to improve CV
care [232] and an accelerated adoption of ML methodologies to
facilitate these objectives, the role of human experts may turn
out to be even more indispensable. Among tasks that still require
considerable human judgment include understanding and pro-
cessing of free text data as well as recognizing visual patterns,
especially corner/edge cases (e.g. in CVD medical imaging [233,
234]) that may be missed by algorithms trained on conventional
datasets. As with other areas, CV research requires expert-level
domain knowledge to make the best use of ML applications,
for instance in properly labeling CVD data or harmonizing it
across epidemiological cohorts. Without a doubt, domain exper-
tise in cardiology is by no means a tractable problem at scale,
exemplified by the insurmountable pile of CV publications accu-
mulating over the years (Figure 1C) and the intrinsic difficulty
in keeping up with this momentum. With active research in
text-mining and natural language processing (NLP), the goal is
to liberate human researchers from the time-consuming tasks
associated with reading new CVD literature and making sense

of free texts in metadata and publications at scale, including
tables, figures and charts. Recently, a novel text-mining NLP-
based approach was used to analyze over 1 million literature
abstracts to uncover novel extracellular matrix functions, path-
ways and molecular relationships implicated across six CVDs
[235]. Since different subdomains in biomedical literature vary
along many linguistic dimensions, making text-mining systems
that perform well on one subdomain is not guaranteed to per-
form well on another [184, 236, 237]; we believe that development
of cardioNLP algorithms and dedicated large-scale comprehen-
sively labeled CVD training datasets will be essential for progress
in tasks such as harmonized patient-data meta analyses in CV
precision medicine. To this end, we envision a framework like
the Kipoi model zoo for genomics [238] but with a focus on CVD
knowledge (both text and data) that can be used to train ML
models in cardioinformatics research.

Recognition of visual patterns, on the other hand, remains a
powerful human faculty that needs to be fully exploited rather
than entirely replaced with automation. With the rise of various
visualization techniques across diverse biological data types
[239, 240], it will be an exciting challenge for cardioinformatics
researchers to leverage them for an integrative representation
of heterogeneous data layers towards extracting deeper CVD
insights. In addition, the visualization of many experimental
assays and biological processes remains a significant challenge,
e.g. visualizing alternative splicing events [241, 242], fast imple-
mentations for biological heatmaps [243] or interactive matrices
for chromatin conformation data from Hi-C experiments [244,
245]. Moving into the clinical setting, gearing up towards large-
scale precision medicine will entail the requirement of providing
more comprehensive and integrated data, in a more compre-
hensible manner to assist clinicians. To this end, visualization
technology and software design will be critical in improving
CVD biomedical software, e.g. for designing robust clinical deci-
sion support systems or validating prediction models for critical
care outcomes. For instance, by integrating multiple measures
of clinical trajectories together with NLP of clinical free text
notes from EHR data, more accurate prediction of critical care
outcomes were observed among patients in intensive care units
across three major hospital systems [246]. Such studies suggest
that automated algorithms, particularly those using unstruc-
tured data from notes and other sources, can augment clinical
research and quality improvement initiatives.

Closing remarks
As we further our quest to understand the genetics and molecu-
lar biology of heart disease, many complex clinical CVD indica-
tions and pathophenotypes have become too nuanced for tradi-
tional computational approaches. Reflecting on the current body
of knowledge, we recognize that many aspects of this complex-
ity can be addressed with more (and improved) computational
methods, as has been the case for bioinformatics tools and
their impact on cancer genomics research. But bioinformatics
techniques for conducting CVD studies will require progressively
more sophisticated strategies for identifying and monitoring ele-
vated disease risk and intermediary molecular endophenotypes
(including CVD-related risk factors and quantitative traits) as
CVD poses an unprecedented and unique set of computational
challenges with respect to clinical phenomapping and the large-
scale integration of multiple diverse sources of population-level
biomedical data for understanding the progression of a sub-
clinical imbalance into the clinical manifestation of the disease
itself. In this review, we discussed some of the important works
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Figure 5. Multi-omics data. (A) The multiple layers of omics data that are now accessible to researchers. Genome/exome, transcriptome, proteome, metabolome, as well

as the microbiome and chemical compounds in the exposome can be profiled by assays on a single class of molecules (DNA, RNA, proteins or small molecules), while

the other layers depend on the ability to capture DNA–protein or RNA–protein interactions. The phenome is less well defined as phenotypic measures vary greatly from

physical measurements to laboratory tests, from descriptive to quantitative traits. Sources of comprehensive phenotypic data comparable to the other omics can be

obtained, for example, from EHRs. Beyond the genome, omics datasets become highly complicated, due to the variation across tissues and cell types. (B) Large omics

datasets that are (or will be) available for CVD research. For each dataset, the number of samples being assayed across multiple omics are indicated on the right. This

number is often smaller than the total number of samples/participants in a given project, because not every sample is run on multiple assays. Sources are provided in

Supplementary Data.
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evolving at the multidisciplinary interface of bioinformatics and
cardiology and advocate for shining a brighter spotlight on car-
dioinformatics as an emerging field, in its own right. We suggest
some future insights based on our understanding of historical
perspectives and ongoing work in current CVD research and wel-
come feedback and ideas from the broader scientific community.

Methods
PubMed queries

Queries are all based on MeSH terms. For reproducibility pur-
poses, the exact queries for each category in Figure 1 are listed
below:

1. Cardiovascular disease: ”cardiovascular diseases”[MeSH

Terms]

2. Cancer: (*cancer[MeSH Terms])

3. Bioinformatics: bioinformatics[MeSH Terms] OR

genomics[MeSH Terms]

4. Cardioinformatics: (bioinformatics[MeSH Terms] OR

genomics[MeSH Terms]) AND (”cardiovascular

diseases”[MeSH Terms])

5. Cancer informatics: (bioinformatics[MeSH Terms] OR

genomics[MeSH Terms]) AND (*cancer[MeSH Terms])

All queries were appended with a filtering term to reduce the
count of non-primary research items. The filtering term is

AND (hasabstract[text] AND English[lang]))) NOT ((‘auto-
biography’[Publication Type] OR ‘biography’[Publication Type]
OR ‘corrected and republished article’[Publication Type] OR
‘duplicate publication’[Publication Type] OR ‘electronic sup-
plementary materials’[Publication Type] OR ‘interactive tuto-
rial’[Publication Type] OR ‘interview’[Publication Type] OR
‘lectures’[Publication Type] OR ‘legal cases’[Publication Type]
OR ‘legislation’[Publication Type] OR ‘meta analysis’[Publication
Type] OR ‘news’[Publication Type] OR ‘newspaper article’
[Publication Type] OR ‘patient education handout’[Publication
Type] OR ‘published erratum’[Publication Type] OR ‘retracted
publication’[Publication Type] OR ‘retraction of publication’
[Publication Type] OR ‘review’[Publication Type] OR ‘scientific
integrity review’[Publication Type] OR ‘support of research’
[Publication Type] OR ‘video audio media’[Publication Type] OR
‘webcasts’[Publication Type])).

The MeSH Database entry for ‘cardiovascular disease’
includes many types of CV abnormalities that may occur in
organs outside the immediate circulatory system.

Research funding statistics

Data on research funding were provided by the NIH, via the
NIH Research Portfolio Online Reporting Tool [247], as a table of
awards for each fiscal year and research category. Categoriza-
tion was done by NIH starting in 2008, through the Research,
Condition, and Disease Categorization system. To calculate the
research funding for cancer and CVDs, we retrieved tables of
awards for all related categories, removed duplicate entries and
summed up all the amounts of awards greater than $100.

For ‘Cancer’ funding, relevant categories are Brain Cancer,
Breast Cancer, Cancer, Cancer Genomics, Cervical Cancer, Colo-Rectal
Cancer, HPV and/or Cervical Cancer Vaccines, Liver Cancer, Lung
Cancer, Lymphoma, Neuroblastoma, Ovarian Cancer, Pancreatic Cancer,
Pediatric Cancer, Prostate Cancer, Uterine Cancer, Vaginal Cancer.

For ‘Cardiovascular disease’ funding, relevant categories are
Aging, Cardiovascular, Cerebrovascular, Congenital Heart Disease,

Heart Disease, Heart Disease - Coronary Heart Disease, Hypertension,
Pediatric Cardiomyopathy, Stroke.

Reproducibility

All data and source code powering the data-driven visualizations
and quantitative analyses presented in this review are provided
at http://doi.org/10.5281/zenodo.2622064
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