Skip to main content
. 2021 Feb;10(2):1186–1199. doi: 10.21037/tlcr-20-708

Table 2. Review of lung nodule candidate detection algorithms.

Year Authors Method Accuracy False positive rate
2008 Ozekes et al. (29) 3D template matching 90.00% 13.38
2009 Ye et al. (26) Filtering-based 90.20% 8.2
2011 Pu et al. (23) Shape-based 70.00% N/A
2011 Kubota et al. (25) Convexity model and morphological approach 69.00% N/A
2012 Cascio et al. (30) Stable 3-D mass spring models 97.00% 6.1
2012 Soltaninejad et al. (31) Active contour and k-nearest neighbors algorithm 90.00% 5.63
2013 Choi et al. (32) Entropy analysis 99.00% 2.27
2014 Jo et al. (24) Template matching 91.00% N/A
2016 Akram et al. (22) Multiple grey-level thresholding 97.52% N/A
2016 Gonçalves et al. (33) Hessian matrix–based method N/A N/A
2018 Naqi et al. (27) Polygonal approximation 97.70% N/A
2019 Huidrom et al. (28) Neuro-evolutionary scheme 93.20% N/A