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Abstract
Feed efficiency (FE) is an economically important trait in pig production. Gut microbiota plays an important role in energy 
harvest, nutrient metabolism, and fermentation of dietary indigestible components. Whether and which gut microbes 
affect FE in pigs are largely unknown. Here, a total of 208 healthy Duroc pigs were used as experimental materials. Feces 
and serum samples were collected at the age of 140 d. We first performed 16S rRNA gene and metagenomic sequencing 
analysis to investigate the relationship between the gut microbiome and porcine residual feed intake (RFI). 16S rRNA gene 
sequencing analysis detected 21 operational taxonomic units showing the tendency to correlation with the RFI (P < 0.01). 
Metagenomic sequencing further identified that the members of Clostridiales, e.g., Ruminococcus flavefaoiens, Lachnospiraceae 
bacterium 28-4, and Lachnospiraceae phytofermentans, were enriched in pigs with low RFI (high-FE), while 11 bacterial species 
including 5 Prevotella spp., especially, the Prevotella copri, had higher abundance in pigs with high RFI. Functional capacity 
analysis suggested that the gut microbiome of low RFI pigs had a high abundance of the pathways related to amino acid 
metabolism and biosynthesis, but a low abundance of the pathways associated with monosaccharide metabolism and 
lipopolysaccharide biosynthesis. Serum metabolome and fecal short-chain fatty acids were determined by UPLC-QTOF/MS 
and gas chromatography, respectively. Propionic acid in feces and the serum metabolites related to amino acid metabolism 
were negatively correlated with the RFI. The results from this study may provide potential gut microbial biomarkers that 
could be used for improving FE in pig production industry.
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Introduction
Feed accounts for most costs of the pig industry (Jing et  al., 
2015). Therefore, improving feed efficiency (FE) will increase 
the economic benefits of the pig industry. FE can generally be 
expressed as residual feed intake (RFI) or feed conversion rate 
(FCR). RFI is also named net FE which is defined as the feed 

intake adjusted for the requirements of maintenance and body 
weight gain (DiGiacomo et  al., 2018). Therefore, the pigs with 
lower RFI will have higher FE.

 A  variety of factors including genetics, diets, host health, 
and gut microbiota can affect FE. Ding et al. (2018) identified 2 
quantitative trait loci on SSC1 and SSC7 that affect RFI and FCR. 
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Gondret et  al. (2017) showed that genes enriched in immune 
response, oxidative stress response, and protein metabolism 
were the main biological markers to distinguish high- and 
low-FE. The disease has also shown an adverse impact on 
reducing pig growth speed, which results in decreasing FE 
(Straw et al., 1990).

Gut microbiota can ferment and digest dietary polysaccharides 
and other substances (Zhang et al., 2018), promote nutrient 
absorption and energy acquisition (Hooper et  al., 2002), and 
regulate physiological processes such as adaptive and innate 
immunity (Willing and Van Kessel, 2010). Some studies have 
revealed possible links between gut microbiota and FE in pigs. 
McCormack et al. (2019) indicated that gut microbiota might not 
be a dominant factor impacting the FE. Yang et al. (2017) found 
that 2 enterotype-like groups dominated by Treponema and 
Prevotella, respectively, had a significant association with FE. Tan 
et al. (2017)identified that the species Prevotella sp. CAG:604 had 
a higher abundance in the gut microbiome of pigs with low-FE, 
while pyruvate-related metabolic pathways were enriched in the 
gut microbiome of pigs with high-FE. Quan et al. (2019) showed that 
pigs with high FE had higher abundances of operational taxonomic 
units (OTUs) belonging to Lachnospiraceae and Prevotellaceae that 
had a strong ability to degrade dietary fiber, polysaccharide, and 
protein. However, these studies only focused on the association 
between the composition of gut microbiota and FE. In recent 
years, the relationship between the metabolites of gut microbiota 
and host phenotype has attracted comprehensive interest (Salek 
et al., 2007; Gong et al., 2020). The metabolites produced by the 
host or gut microbiota may be an effective means to regulate the 
phenotype (Clemmons et al., 2017; Wang and Kadarmideen, 2020).

In this study, we first used 16S rRNA gene and metagenomic 
sequencing methods to investigate the association of bacterial 
composition and functional capacity of the gut microbiome with 
porcine FE (RFI). Then, serum metabolome and fecal short-chain 
fatty acids (SCFAs) were determined to evaluate the correlation 
between RFI, fecal SCFAs, and serum metabolome. By combining 
these datasets, we investigate the possible mechanism of gut 
microbiota affecting pig FE.

Materials and Methods
All animal procedures involved in the experiment were conducted 
following the guidelines for the care and use of experimental 
animals established by the Ministry of Agriculture and Rural 

Affairs of China. This project was also approved by the Animal 
Care and Use Committee of Jiangxi Agricultural University.

Animal management

A total of 208 Duroc pigs from a commercial pig farm were used 
as experimental materials, including 70 gilts and 138 boars. 
All experimental pigs were weaned at 28 d of age and raised 
under similar management and feeding manner. When the body 
weight of piglets achieved 30 kg, the pigs were transferred to the 
fattening house. In the fattening stage, the same commercial 
formula feed was provided to all experimental pigs. The feed 
was mainly composed of corn, soybean meal, soybean oil, 
lysine, and calcium hydrogen phosphate. It contained about 
15% crude protein, 1.5% crude fat, 5% crude fiber, 6% crude ash, 
0.8% lysine, 0.9% calcium, 0.5% phosphorus, and 0.3% salt. Feed 
and water were available ad libitum. Osborne automatic feeders 
(Osborne Industries) were used to record feeding behaviors of 
pigs, including daily feed intake, daily body weight gain, and 
daily eating visiting times during the period from 30 to 100 kg 
(age about 90 to 170 d) in the fattening house. B-ultrasonoscope 
was used to measure the porcine backfat thickness. Those pigs 
treated with antibiotics a month before collecting fecal samples 
were removed from this study.

Phenotype measurement

The following model was used to calculate the RFI of the 
experimental pigs: DFI = α+ β1MBW+ β2ADG+ e, where DFI 
refers to average daily feed intake, α is intercept, MBW represents 
metabolic body weight, ADG is average daily gain, β 1 and β 2 
indicate the corresponding effects estimated for MBW and ADG, 
e represents the uncontrolled error. For calculating the MBW, 
we used the formula: MBW = (w1

1.75 −w0
1.75)/1.75 ∗ (w1 −w0), 

where w0 is the body weight at the start of measurement and 
w1 represented the body weight at the end of the measurement 
(Haer et al., 1993). The RFI values obtained from the age of day 
100 to day 160 (intermediate stage of phenotypic measurement) 
were used for the following analysis.

Sample collecting, amplicon sequencing of 16S rRNA 
gene, and data processing

Fecal samples were collected on March 20 and April 20 of 2017, 
respectively. At the age of about 140 d, fecal samples were 
collected from the anus of healthy experimental pigs at 9 to 
11 a.m. after feeding. One gram of feces was put into a 1.5-mL 
Eppendorf tube, quickly dipped in liquid nitrogen, and stored 
at –80  °C until use. Fecal DNA was extracted using QIAamp 
Fast DNA Stool Mini Kit (Qiagen, Germany) according to the 
manufacturer’s instructions (McOrist et  al., 2002). The quality 
and quantity of DNA samples were checked using 0.8% agar gel 
electrophoresis and a Nanodrop-1000 (ThermoFisher). The DNA 
samples were then diluted at the proportion of 1:10, and 1 μL 
of the diluted DNA sample was used for PCR amplification. We 
used conservative primers 338F (5′-ACTCCTACGGGAGGCAGCA) 
and 806R (5′-GGACTACHVGGGTWTCTAAT) to amplify the V3–V4 
hypervariable region of the 16S rRNA gene. PCR products were 
purified and used to construct libraries for sequencing on a 
MiSeq platform (Illumina). The primer and barcode sequences 
were removed from raw data using Trimmomatic (V.0.39; Bolger 
et al., 2014). FLASH (v.1.2.11) was used to merge paired-end clean 
sequence reads into tags (Magoč and Salzberg, 2011). Chimeric 
reads were removed using USEARCH (v.7.0.1090) (Edgar, 2010). 
To avoid the effect of sequencing depth on the microbial 
composition, sequence data were rarefied to 16,000 tags per 
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sample. VSEARCH software (v.2.8.1) was used to cluster tags 
into OTUs based on 97% sequence identity (Rognes et al., 2016). 
Taxonomic assignments for the 16S rRNA gene sequences were 
performed using the RDP classifier program (v2.2; Wang et al., 
2007). Alpha-diversity was calculated using MOTHUR (v1.31.2; 
Venkataraman et  al., 2015). The corr.test in the R package 
(Version 4.0.0) was used to calculate the Spearman correlation 
between the α-diversity of gut microbiota and the RFI (Revelle, 
2019). The 16S rRNA gene sequencing data were submitted to 
the China National GeneBank database (CNGBdb) with the 
accession number of CNP0000828.

Bacterial co-abundance groups (CAGs)

A total of 745 OTUs, all of which had an average of relative 
abundance greater than 1  ×10–4 and were presented in at 
least 20% of individuals were used for constructing CAGs. The 
correlations among OTUs were calculated by the SparCC method 
(Friedman and Alm, 2012). The correlation values were converted 
to the correlation distance matrix. The hclust function (ward. D2 
algorithm) in R package was used to cluster the matrix into 8 
CAGs (Murtagh and Legendre, 2014). These CAGs were further 
determined by permutational multivariate analysis of variance 
(PerMANOVA) with 999 permutations (P  <  0.05; Zhang et  al., 
2016). We used Cytoscape (version 3.7.1) to visualize the network 
of OTUs under the weight value >0.5 (Shannon et al., 2003). The 
average abundance of all OTUs in each CAG was treated as the 
abundance of that CAG. Then, we computed the correlation 
between CAGs and the RFI values using the corr.test function in 
the R package (Fang et al., 2019).

The association between RFI and OTUs by a 
2-part model

A 2-part model was applied to test the association between 
OTUs and the RFI (Fu et al., 2015). The advantage of this model 
is that it takes into account both binary and quantitative 
features of gut microbes and overcomes the problem of the 
non-normal distribution of microbial abundances. The binary 
analysis was to test for the effect of the presence/absence of 
a microbe on the RFI with the model y = β1 + b, where y is 
the RFI value of the tested samples after adjusting for sex, β 1 
represents the estimated binary effect of a microbe, b refers to 
a binary feature, and e is the residual. The quantitative analysis 
was used to test the association between the abundance of 
the detected microbes and the RFI using the model y = β2 + q, 
where y refers to the RFI value per sample after adjusting for 
sex, β 2 represents the estimated effect of microbial abundance, 
q is the relative abundance of each OTU, and e is the residual. 
An unweighted Z-score method was used to obtain a meta 
P-value by combining the effect of both binary and quantitative 
analyses. The final P-value was derived from the minimum of 
P-values from binary analysis, quantitative analysis, and meta-
analysis. The Z-score was calculated based on the Z distribution. 
Moreover, we performed 1,000× permutation tests to control the 
false discovery rate (FDR). The significance threshold was set at 
FDR < 0.05.

Metagenomic sequencing analysis

The RFI values of all 208 experimental pigs were adjusted 
to the effects of sex and batch. According to the residuals, 
the samples ranked the top 4 and the lowest 4 were selected 
for metagenomic sequencing (Supplementary Figure 1). DNA 
libraries were constructed according to the manufacturer’s 
instructions and sequenced on a Hiseq2500 platform (Illumina). 

We used the same procedures as described by Qin et al. (2012) 
to perform the bioinformatics analysis of the metagenomic 
sequencing data. Reads containing more than 10% of uncertain 
bases (N bases), adaptor sequences (15 bases or longer regions 
aligned to adaptor sequences), and sequencing reads with 
Q  <  20 were removed. Moreover, the reads having more than 
90 % sequence identity with the pig genome were excluded 
from further analyses by blasting with pig reference genome 
assembly Sscrofa 11.1. The high-quality sequence reads were 
assembled using SOAPdenovo2 (Luo et al., 2012). The assembly 
was grouped into longer contigs using Rabbit (You et al., 2013). 
Contigs <500 bp were filtered out from the subsequent analysis. 
We used MetaGeneMark (v2.10) to predict open reading frames 
(Zhu et  al., 2010). The predicted genes were combined and 
clustered using CD-Hit software (v4.6.1) to remove redundant 
genes at the threshold of sequence identity >95% and >90% of 
sequence overlap (Li and Godzik, 2006). The non-redundant gene 
set was annotated to the CAZy database (carbohydrate-active 
enzymes; Lombard et al., 2014) and the KEGG database (Kyoto 
Encyclopedia of Genes and Genomes; Kanehisa et  al., 2008) 
using BLAST software (Altschul et al., 1990). MEGAN (v4.6; Huson 
et al., 2007) was used for taxonomic assignment of metagenomic 
sequencing data by blasting the gene set against the NR 
database (non-redundant protein sequence database) with the 
LCA algorithm. LEfSe analysis was performed to compare the 
abundances of bacterial species and functional capacities of the 
gut microbiome between high and low RFI pigs. We calculated 
the Spearman correlation between differential bacterial species 
and differential functional genes with the corr.test function in 
the R package. Metagenomic sequencing data were submitted to 
the CNGB database with the accession number of CNP0000824.

Determination of serum metabolomic profiles

We collected 50 serum samples (20 from females and 30 
from males) from the present experimental pig cohort when 
feces samples were collected at 9 to 11 a.m. after feeding. All 
samples were performed the untargeted metabolome analysis 
with ultra-performance liquid chromatography coupled with 
quadrupole time-of-flight mass spectrometry (UPLC-QTOF/MS). 
All serum samples were thawed on ice and precipitated with 
pre-cooled methanol. Three hundred microliter methanol was 
added into 100 μL serum, vortexed for 1 min and conserved at 
–20 °C for 20 min. The mixture was centrifuged at 14,000 rcf for 
15 min at 4 °C. The supernatant was pipetted into a clean tube 
and dried in a savant vacuum evaporator. The dried supernatant 
was redissolved in 150-μL water: methanol (85%: 15%, v/v) 
and transferred to a sampling bottle for metabolite detection 
by UPLC-QTOF/MS (Waters Corp.; Dunn et  al., 2011). An equal 
volume (15  μL) solution was taken from each sample and 
mixed to prepare a pool as quality control (QC) samples. In both 
positive and negative electrospray ion modes, serum samples 
were eluted using a linear gradient as described in our previous 
study (He et  al., 2019). The collocation of mass spectrometric 
data was performed using a Waters Q-TOF Premier (Waters 
Corp.) coupled with an electrospray source operating in either 
ES+ or ES−. MassLynx (Waters Corp.) and Progenesis QI (v2.0; 
Nonlinear Dynamics) were used to process the preliminary data. 
MetaScope package in Progenesis QI was used to annotate serum 
metabolites according to the HMDB database based on neutral 
mass, isotope distribution, retention time, the collisional cross-
sectional area, and MS/MS fragmentation data (Rusilowicz et al., 
2016). When a feature was annotated to multiple metabolites 
in the HMDB database, we retained an optimal outcome based 
on mass error, match score, fragmentation score, and isotope 
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similarity. The annotation results were further filtered by 
removing peaks with missing values (ion intensity = 0) in more 
than 80% of individuals and 50% of QC samples. Support vector 
regression algorithm of “MetNormalizer” in R package was 
applied to normalize the retained peaks to the QC samples 
(Shen et  al., 2016). The relative standard deviation in the QC 
samples was set at a threshold of 30% to assess the repeatability 
of metabolomic data sets.

The Spearman correlation was calculated between serum 
metabolites and the RFI values by corr.test. The qvalue package 
in R (v4.0.0) was used to correct the multiple tests (Storey et al., 
2020). Metabolic pathway analysis was performed for those 
serum metabolites showing the tendency to association with 
the RFI (P < 0.05).

Measurement of fecal SCFAs

A total of 162 feces samples (55 from females and 107 from 
males) were selected from 208 samples, which were performed 
16S rRNA gene sequencing, and measured the concentration of 
SCFAs using a gas chromatograph (SHIMADZU, Japan). About 
300-mg stool sample was mixed with DNase/RNase-Free water 
at the ratio of 1:5 in a 1.5-mL EP tube, homogenized by vortex 
for 30 s, and centrifuged at 5,000 rpm for 4 min. The supernatant 
was transferred to a new EP tube, mixed with the 240-μL mixture 
of metaphosphoric acid and crotonic acid, and centrifuged at 
15,000 rpm for 15 min. The supernatant was collected and filtered 
through a 0.45-μm filter membrane. Finally, 1 µL standard sample 
and 1 µL of each supernatant sample were separately injected 
onto columns of the gas chromatograph for measuring SCFAs. 
The detecting temperature was set at 280 °C. The retention times 
of the standard sample were used for qualitative analysis. The 
concentrations of acetic acid, propionic acid, isobutyric acid, 
butyric, isovaleric acid, and valeric acid were calculated using the 
external reference method of peak area. To eliminate the effects 
of temperature during sample handling and storing time of 

fecal samples on SCFAs, relative ratios of SCFAs were calculated 
and used for subsequent statistical analysis (Cunningham 
et al., 2020). Spearman correlation test was used to investigate 
the association between the concentrations of SCFAs and the 
abundances of bacterial phyla and families. The multiple tests 
were corrected by the Benjamini–Hochberg FDR procedure.

Results

Gut microbial taxa associated with porcine RFI 
based on 16S rRNA gene sequencing data

A total of 208 microbial DNA samples were performed 16S 
rRNA gene sequencing. After QC, an average of 34,382 high-
quality tags per sample was obtained. Based on 97% of sequence 
identity, 872 OTUs on average were identified for each sample. 
We found that Firmicutes, Bacteroidetes, Spirochaetes, and 
Proteobacteria were the most abundant phyla in the gut 
microbiota of experimental pigs (Figure 1A). At the genus level, a 
total of 44 bacterial genera were detected in the tested samples 
(Figure 1B and Supplementary Table 1).

The phenotypical values of RFI in 208 experimental pigs 
followed the normal distribution (Figure 2A). The average RFI 
value in the experimental pig cohort was –0.01  ± 0.13 (mean 
± SD). Wilcoxon–Rank test showed that sex had a significant 
effect on the RFI values, but the sampling batch (n = 2) showed 
no significant effect on the RFI (Figure 2B and C).

A correlation analysis was first performed between the 
RFI values and the α-diversity of the gut microbiota, but no 
significant correlation was identified (Supplementary Figure 2).  
We then performed a CAG analysis with 745 OTUs passed 
QC by the SparCC method. These OTUs were clustered into 
eight CAGs (Figure 2D). The CAG1 which was comprised of 
112 OTUs showed a negative association with the phenotypic 
values of RFI (P  =  0.024; Figure 2E). Otu378 annotated to 

Figure 1.  Microbial composition of gut microbiota in experimental pigs at different taxonomic levels by 16S rRNA gene and metagenomic sequencing. (A and B) The 

distribution of bacterial taxa in the gut microbiota of experimental pigs at the phylum (A) and genus level (B) by shotgun metagenomic and 16S rRNA gene sequencing. 

(C) Microbial composition of the gut microbiome at the species level by shotgun metagenomic sequencing.

http://academic.oup.com/jas/article-lookup/doi/10.1093/jas/skab045#supplementary-data
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Ruminococcaceae was the hub in the CAG1. Furthermore, 
we used a 2-part model to analyze the relationship between 
OTUs and the RFI. However, we only identified 21 OTUs 
showing the tendency to correlation with the RFI (P  <  0.01; 
Figure 2F). Among these 21 OTUs, 12 OTUs were annotated 
to Clostridiales, such as Otu291 and Otu406 to Clostridiales, 
and Otu159 to Christensenellaceae (Figure 2F). Most members 
of these OTUs annotated to Clostridiales had a negative 
correlation with the RFI. In addition, 5 OTUs (e.g., Otu296_
Prevotella and Otu370_Paraprevoaceae) showed the tendency 
to a positive correlation with the RFI.

Identification of potential bacterial species 
associated with porcine RFI with metagenomic 
sequencing data

Considering the limited resolution of bacterial taxa based on 16S 
rRNA gene sequencing data, we further performed metagenomic 
sequencing analysis in 8 feces samples from the pigs with 
extreme RFI values (4 samples for each of high and low RFI 
groups) to identify potential bacterial species associated with the 
RFI. We obtained a total of 3.2 million contigs with an average size 
of 1,233 bp, and an average N50 length of 1,406 bp (Supplementary 
Table 2). Similar to the results from 16S rRNA gene sequencing 
data, Firmicutes, Bacteroidetes, Spirochaetes, and Proteobacteria 
were the most abundant phyla in metagenomic sequencing 
data (Figure 1A). At the genus level, all contigs were assigned to 

1,255 genera (Supplementary Table 1). A  total of 4,442 bacterial 
species were detected in 8 samples, indicating that the phylotype 
resolution was largely improved using metagenomic sequencing 
at both genus and species levels. Prevotella copri, Treponema 
bryantii, and Treponema succinifaciens were the known species with 
the highest abundances in the tested samples (Figure 1C).

Metagenomic sequencing data were further used to identify 
the association between the RFI and bacterial species. PCA analysis 
revealed a clear structural difference of the gut microbiota between 
high and low RFI pigs (Figure 3A). LEfSe analysis identified 18 and 
16 species that were enriched in low and high RFI pigs, respectively 
(Figure 3B). Among the 18 species enriched in low RFI pigs, 9 species 
belong to Clostridiales, including Lachnospiraceae bacterium 28-4, 
Butyrivibrio proteoclasticus, Roseburia inulinivorans, Lachnospiraceae 
bacterium NK4A179, Lachnospiraceae bacterium 3_1_57FAA_CT1, 
Roseburia hominis, Coprococcus eutactus, Lachnospiraceae bacterium 
5_1_57FAA, and Ruminococcus flavefaoiens. Meanwhile, 6 out of the 
16 species having a higher abundance in the high RFI pigs were 
annotated to Prevotellaceae, such as Prevotella copri, Prevotella 
multisaccharivorax, and Prevotella timonensis.

Comparison of functional capacity of the gut 
microbiome between high and low RFI pigs

Based on the metagenomic sequencing data, we investigated 
the association of functional capacity of the gut microbiome 
with porcine RFI. LEfSe analysis identified 13 KEGG pathways 

Figure 2.  The distribution and influencing factor of phenotypic values of the RFI, and the correlation between gut microbiota and the RFI based on 16S rRNA gene 

sequencing data. (A) The distribution of phenotypic values of the RFI in 208 experimental pigs. (B) and (C) The effects of sex (B) and batch (C) on phenotypic values of 

the RFI by Wilcox test. (D) CAG network of OTUs. The Spearman rank correlation was used. The OTUs with correlation coefficients > 0.5 are shown. Grey lines between 

nodes represent positive correlations, and blue lines refer to the negative correlations. The network was plotted by Cytoscape software (E) A negative correlation 

between CAG1 and the RFI values. (F) The 21 OTUs showing the tendency of correlation with the RFI by the 2-part model. The broken circles from the inside out indicate 

Z score = 1.0 and 4.0, respectively.

http://academic.oup.com/jas/article-lookup/doi/10.1093/jas/skab045#supplementary-data
http://academic.oup.com/jas/article-lookup/doi/10.1093/jas/skab045#supplementary-data
http://academic.oup.com/jas/article-lookup/doi/10.1093/jas/skab045#supplementary-data
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having higher abundance in high RFI pigs, while 13 pathways 
were enriched in low RFI pigs (Figure 4A). The pathways related 
to carbohydrate metabolism and biosynthesis (e.g., fructose 
and mannose metabolism, galactose metabolism, pentose, and 
glucuronate interconversions, lipopolysaccharide biosynthesis, 
and other glycan degradation), the antimicrobial pathways (CAMP 
resistance and β-lactam resistance), and oxidative phosphorylation 
were significantly enriched in the gut microbiome of high RFI 
pigs. However, those pathways related to amino acid metabolism 
and biosynthesis (such as aminoacyl-tRNA biosynthesis, lysine 
biosynthesis, phenylalanine metabolism, and protein export), 
fatty acid metabolism, and 2-component system had higher 
abundances in the pigs with low RFI (Figure 4A).

Correlations between serum metabolites and the 
RFI values

A total of 2,347 serum metabolite features were detected by 
the UPLC-QTOF/MS. However, we did not detect the significant 
associations between serum metabolites and the RFI values at 
the significance threshold of q  <  0.05. However, we found 110 
metabolites showing the tendency to correlation with the RFI 
(P < 0.05 and q > 0.05; Figure 4B). Among these 110 metabolites, 
91 metabolites had a tendency of negative correlations with 
the RFI, while 19 metabolites showed a tendency to positive 
correlations with the RFI. Pathway analysis further showed that 
the 91 metabolites negatively related to the RFI were mainly 
enriched in the pathways related to amino acid metabolism, 

including d-glutamine and d-glutamate metabolism, arginine 
and proline metabolism, alanine, aspartate and glutamate 
metabolism, and arginine biosynthesis (Figure 4C). However, the 
19 metabolites positively related to the RFI were not enriched in 
any pathways.

Association of SCFAs of feces samples with the RFI

A total of 162 feces samples were determined the concentrations 
of SCFAs. Acetic acid, butyric acid, and propionic acid were the 
dominant SCFAs in feces, which accounted for 41%, 21.5%, 
and 21.3% of relative abundances, followed by isovaleric acid 
(8.8%), valeric acid (4.5%), and isobutyric acid (2.9%; Figure 
5A). Among SCFAs, acetic acid was negatively correlated with 
nearly all other SCFAs, whereas, isobutyric acid and isovaleric 
acid had the strongest positive association (r = 0.88, P < 0.01; 
Figure 5B). Only propionic acid showed a significantly negative 
association with the RFI (P < 0.05, Figure 5C). However, the other 
SCFAs had no significant correlations with the RFI (P > 0.05). As 
for the correlation between gut bacterial composition and fecal 
SCFAs, Cyanobacteria showed the most significant correlation 
with most of SCFAs, while only Firmicutes had a significant 
association with propionic acid (Supplementary Figure 3). 
At the family level, 27 bacterial families had significant 
associations with 6 SCFAs. Especially, Desulfovibrionaceae, 
Coribobacteriaceae, S24-7, Christensenellaceae, and 
Lachnospiraceae exhibited significant correlations with more 
than 4 SCFAs (Figure 5D).

Figure 3.  Identification of gut bacterial species associated with porcine RFI with metagenomic sequencing data. (A) Principal component analysis of the gut microbiota 

between high and low RFI pigs. The result shows the distinct composition of gut microbiome between high and low RFI pigs. (B) The bacterial species associated with 

the RFI by the LEfSe analysis. LRFI: low RFI, HRFI: high RFI. The X-axis shows LAD scores.

http://academic.oup.com/jas/article-lookup/doi/10.1093/jas/skab045#supplementary-data
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Discussion
In our previous study, we unraveled the fecal microbiota and 
metagenomic function capacity associated with FE in 280 
Duroc pigs from Shahu farm (Yang et  al., 2017). To further 
explore bacterial species and functional capacity of the gut 
microbiome associated with porcine FE in more experimental 
pig cohorts, in this study, we performed 16S rRNA gene and 
shotgun metagenomic sequencing analysis to detect bacterial 
taxa and functional capacity of the gut microbiome associated 
with porcine RFI in another cohort comprised of 208 Duroc pigs 
from Jiangyin farm. Especially, to our knowledge, for the first 
time, we measured the metabolomic profiles of serum samples 
and the concentrations of fecal SCFAs to isolate the metabolites 
and SCFAs associated with porcine FE. We also evaluated the 
correlation between gut microbiota, and the shifts of serum 
metabolites and fecal SCFAs.

Although the sample size used for metagenomic sequencing 
was quite small, the gut microbial composition was similar to 
that obtained from 16S rRNA gene sequencing data (Figure 1), 
indicating the repeatability of sequencing data. At the threshold 
of FDR < 0.05, we did not detect any associations between OTUs 
and the RFI by the 2-part model. However, we identified 21 OTUs 
showing the tendency to correlations with the RFI (P < 0.01). More 
than half of these OTUs belong to Clostridiales that could degrade 

cellulose and help the host to digest dietary polysaccharides. 
At the higher phylotype resolution, metagenomic sequencing 
analysis identified that the pigs with high FE had higher 
enrichment for Clostridiales, including Ruminococcus flavefaciens, 
Lachnospiraceae spp., Butyrivibrio proteoclasticus, Roseburia 
spp., Coprococcus eutactus, and Eubacterium eligens (Figure 3B). 
Eubacterium eligens can be promoted by pectin and competes 
with Bacteroides species under certain pH values (Chung et al., 
2016). Ruminococcus flavefaciens is one of the predominant 
cellulolytic bacterial species (Julliand et  al., 1999). The species 
from Clostridiales species were closely related to the production 
of SCFAs and had certain anti-inflammatory effects (Canani 
et  al., 2011; Scott et  al., 2011; Martin-Gallausiaux et  al., 2020). 
Interestingly, we observed that SCFAs (propionic acid) had a 
positive correlation with FE (Figure 5C). This gave us a clue that 
the gut microbiota in pigs with high-FE had higher abundances 
of Clostridiales and might potentially be “healthier” (McCormack 
et al., 2017).

Consistent with the findings from our previous study (Yang 
et al., 2017) and McCormack (McCormack et al., 2017), those pigs 
with high-FE had higher abundances of the pathways related to 
amino acid metabolism and biosynthesis, such as phenylalanine 
metabolism and lysine biosynthesis in the gut microbiome 
(Figure 4A). The metabolic pathways of the metabolism of 

Figure 4.  The KEGG pathways of the gut microbiome and the serum metabolites showing different abundances between high and low RFI pigs. (A) The KEGG pathways 

of the gut microbiome showing different abundances between high and low RFI pigs by the LEfSe analysis. (B) The Spearman rank correlations between serum 

metabolites and the RFI. (C) Pathways enriched by the 91 metabolites negatively correlated with the RFI. LRFI: low RFI, HRFI: high RFI.
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aromatic amino acids (e.g., phenylalanine metabolism), which 
were related to the synthesis of indole propionic acid, have 
also been associated with the species from Lachnospiraceae 
(Vacca et al., 2020). In animal models, indole propionic acid (IPA) 
could help to improve host metabolism by enhancing intestinal 
barrier function, showing anti-inflammatory properties, and 
strengthening immune function (Cani et al., 2019). Interestingly, 
the serum metabolites negatively related to the RFI were 
mainly enriched in the pathways of amino acid metabolism 
(Figure 4B and C). Particularly, the metabolite of glutaminyl-
histidine that contains a sequence of glutamine and histidine 
joined by a peptide bond was most negatively correlated with 
the RFI. Glutamine is the most eager expendable for the cells 
of the intestine (Brosnan, 2003) and plays an important role 
in maintaining the normal integrity of the intestinal mucosa 
(Yamamoto et  al., 2017). In this study, the main ingredient of 
the diet provided to experimental pigs was a soybean meal with 
high concentrations of proteins. These results indicated that 
the gut microbiota of pigs with high-FE might have a stronger 
ability in protein degradation, fermentation, and transportation 
than that of pigs with low-FE.

16S rRNA gene sequencing analysis detected 5 OTUs 
showing the tendency to a positive correlation with the RFI. 
Two out of these 5 OTUs belonged to the Prevotellaceae. 

Metagenomic sequencing analysis also identified that 
Prevotella spp. were the most abundant microbes in the pigs 
with low-FE, especially the Prevotella copri. Yang et  al. (2018) 
found that Prevotella might be a keystone microbe increasing 
host feed intake. Correlation analysis indeed identified that 
the RFI had a significantly positive association with the feed 
intake and fat deposition (backfat thickness; Supplementary 
Figure 4). This result suggested that Prevotella could promote 
the host’s appetite and decrease FE. Prevotella has been 
reported to be associated with gut mucosal inflammation 
(Iljazovic et al., 2021). Comparison of KEGG pathways between 
pigs with high- and low-FE, we found that the pathways 
related to inflammation, e.g., lipopolysaccharide biosynthesis 
were enriched in the low-feed efficiency pigs. Prevotella-rich 
dysbiosis leads to the systemic release of lipopolysaccharides 
that promote obesity and systemic inflammation (Larsen, 
2017). Moreover, the pathway related to monosaccharide 
metabolism had a higher abundance in the low-feed efficiency 
pigs (Figure 4A). Stanhope indicated that the consumption 
of excessive monosaccharide accelerated the development 
of cardiovascular disease and type 2 diabetes indirectly by 
increasing fat deposition (Stanhope, 2016). Besides, Zhou 
et al. (2017) found that mice injected with d-galactose showed 
significant fat deposition and oxidative damage.

Figure 5.  The composition of SCFAs in feces samples and its association with the RFI. (A) The boxplot shows the distribution of 6 SCFAs. (B) Spearman rank correlation 

analysis between the ratio of 6 SCFAs and the RFI. (C) The Spearman rank correlations among 6 SCFAs. (D) The association of SCFAs with gut microbiota at the family 

level with the 16S rRNA gene sequencing data (+, P < 0.05, ++, P < 0.01, +++, P < 0.001). The associations were analyzed by Spearman rank correlation.

http://academic.oup.com/jas/article-lookup/doi/10.1093/jas/skab045#supplementary-data
http://academic.oup.com/jas/article-lookup/doi/10.1093/jas/skab045#supplementary-data
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In summary, we found that several members of Clostridiales 
were enriched in pigs with high-FE, while those bacteria related 
to inflammation such as Prevotella copri, had a higher abundance 
in pigs with low-FE. Propionic acid in feces and the metabolites 
related to amino acid metabolism in the serum had positive 
correlations with the FE. Nonetheless, the sample size used 
for metagenomic sequencing was quite small. The result was 
easily affected by an outlier. Further studies would be needed 
to confirm the causality of gut microbes with porcine FE and to 
elucidate the possible mechanism of gut microbiome affecting 
porcine FE. The results from this study also provide potential 
biomarkers of gut microbiota that may be used for improving 
pig FE.
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