Skip to main content
. 2021 Mar 10;6(6):1–9. doi: 10.1001/jamacardio.2021.0122

Table 3. Performance of the XGBoost and Meta-Classifier Models Compared With Logistic Regressiona.

Model Expanded LR, No. of patients (% observed mortality)
<1% 1%-5% >5% All
XGBoost vs LR
Expanded XGBoost
<1% 65 193 (0.27) 31 971 (0.65) 422 (1.18) 97 586 (0.40)
1%-5% 3384 (0.95) 44 486 (2.21) 13 155 (3.91) 61 025 (2.51)
>5% 68 (2.94) 2899 (6.21) 28 906 (20.79) 31 873 (19.42)
All 68 645 (0.30) 79 356 (1.73) 42 483 (15.37) 190 484 (4.26)
Meta-classifier vs LR
Expanded meta-classifier
<1% 65 694 (0.27) 30 661 (0.65) 175 (0.00) 96 530 (0.39)
1%-5% 2930 (1.06) 45 726 (2.17) 9033 (3.55) 57 689 (2.33)
>5% 21 (0.00) 2969 (6.03) 33 275 (18.66) 36 265 (17.61)
All 68 645 (0.30) 79 356 (1.73) 42 483 (15.37) 190 484 (4.26)

Abbreviation: LR, logistic regression.

a

Pairwise comparisons of the same patients classified into low (<1%), medium (1-5%), and high (>5%) risk of death based on logistic regression and XGBoost (top) and meta-classifier (bottom).