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Bone tissue engineering (BTE) aims to develop strategies to regenerate damaged or diseased bone 

using a combination of cells, growth factors, and biomaterials. This article highlights recent 

advances in BTE, with particular emphasis on the role of the biomaterials as scaffolding material 

to heal bone defects. Studies encompass the utilization of bioceramics, composites, and myriad 

hydrogels that have been fashioned by injection molding, electrospinning, and 3D bioprinting over 

recent years, with the aim to provide an insight into the progress of BTE along with a commentary 

on their scope and possibilities to aid future research. The biocompatibility and structural efficacy 

of some of these biomaterials are also discussed.
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1. Introduction:

The occurrence of bone related disorders and diseases has increased drastically over recent 

years worldwide [1]. This trend is expected to double in the near future, with the aged and 

obese being at a greater risk [1]. Bones have healing and regenerative potential, but bone-

healing cannot be accomplished by itself for large segmental bone defects caused by factors 

like old age, traffic accidents, non-union fracture, bone tumor resection, and others, 

constituting serious problems in orthopaedics that can adversely affect the health and quality 

of life [2].

Bone lesions are termed “critical bone defects” when loss of length exceeds twice the 

diaphyseal diameter of a long bone [3–5], and remain a considerable challenge in orthopedic 

surgery and may be a result of trauma, infection, tumor, and developmental abnormalities 

which contributes to their complexity. There is limited evidence to guide the treatment of 

critical sized bone defects, with an absence of controlled trials comparing techniques. These 

defects typically carry a poor prognosis with amputations being a common outcome. Current 

treatment options include both allograft and autograft bone to replace the defect, the 

Masquelet technique which takes advantage of the body’s foreign body response to induce a 

membrane of fibrous tissue around the defect site, and distraction osteogenesis which uses 

the bone’s natural healing properties to fill in defective bone. All of these techniques have 

demonstrated successful union in limited case series, but also have specific challenges and 

complications.
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Autologous bone grafting remains the gold standard for bone tissue repair due to their 

histocompatibility and non-immunogenicity while also providing the imperative properties 

essential for a bone graft [6]. It has also been shown to promote osteoinduction, osteogenesis 

and osteoconduction [6]. Despite the many advantages of bone grafting, there exists issues 

such as secondary damage, significant donor site injury and morbidity, deformity, scarring, 

in addition to surgical risks such as bleeding, inflammation, and high cost [7]. Autografts are 

also not applicable in cases involving bone defects which require larger volumes of bone 

graft than what is available or feasible [8].

Tissue engineering has become an alternate strategy targeting bone repair through the use of 

a synergistic combination of biomaterial scaffolds, cells, and signaling molecules/growth 

factors to induce the formation of new bone tissues by eliminating the risks associated with 

autografts [9]. This review attempts to offer insights into the role of scaffolds, their 

fabrication methods, efficacy compared to the human bone in terms of biocompatibility and 

mechanical properties, challenges, and prospective directions for scaffold-based BTE.

2. Scaffolds for BTE

Scaffold-based BTE has garnered a lot of interest among researchers. Bone tissue 

engineering offers a more sustainable, long term treatment strategy for the reconstitution of 

bones by enabling the fabrication of implants with a combination of scaffolds, cells, and 

mechanical/soluble factors. The primary role of scaffolds is to maintain a balance between 

temporary mechanical functions and mass transport to assist in biological delivery and tissue 

regeneration [10]. Thus, scaffolds act as temporary extracellular matrixes and assist 

proliferation, differentiation and biosynthesis of cells on the surface of their own. In 

addition, scaffolds positioned at the regeneration sites also hinder disturbing cells from 

invasion into the sites of action [10]. The scaffolds are required to meet several specific 

criteria to achieve the objective of bone reconstruction. Firstly, the scaffolds must be 

composed of highly biocompatible materials that do not elicit any adverse permanent 

immune responses in the host tissue following implantation. Cell seeding and fixation can be 

facilitated only if the scaffold possesses a certain degree of surface roughness. Further, a 

stable biological interface can be created only through the bonding of the artificial scaffolds 

with the host tissue without the formation of any type of scars. Cell migration, 

vascularization and the diffusion of oxygen and other nutrients are largely dependent on the 

degree of porosity and pore dimensions. In order to enable proper tissue ingrowth, 

vascularization and the delivery of nutrients, it is recommended that the scaffolds possess a 

highly networked and porous geometry, comprising of micro- and macro-pores with more 

than 60% of the pores having pore diameters ranging between 150 – 400 μm and at least 

20% of the pores are smaller than 20 μm [10]. It is also imperative that the artificial scaffolds 

also possess similar mechanical properties as the bone tissue which is being replaced so as to 

hamper the effects of stress shielding, which comes into play due to the removal of typical 

stress from the bone by an implant due to a difference in the stiffnesses between the two. 

This leads to a drastic reduction in the bone density, also known as bone resorption, 

following the hypothesis that bone remodeling occurs because of osteocytes mediating bone 

adaptation in response to mechanical strain. Additionally, the scaffolds must be composed of 

materials with controlled biodegradability so that the resorption rate of the scaffold is 
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coincidental as much as possible with the rate of bone formation, implying that the scaffold 

will lend structural support within the body, while the osteoblasts develop their own natural 

matrix structure around themselves and eventually deteriorate enabling the newly formed 

bone tissue to take over the mechanical load. The biomaterial to be employed for the 

fabrication of bone scaffolds is decided based on factors such as ease of fabrication and 

processability, malleability, and scalability, in addition to the extent of conformation and 

injectability [10].

Although metallic scaffolds (stainless steel 316 L, Co based alloys, Titanium alloys etc.) 

have been successfully used to develop implants mimicking native bone tissue [11], they 

raise the possibility of toxic metallic ion release through corrosion leading to inflammation 

and allergic responses that decrease biocompatibility and trigger tissue loss [12]. 

Additionally, metallic scaffolds require surface modification prior to their usage as implants 

as their metallic surfaces need to be controlled so as stimulate the adhesion and proliferation 

of cells and the adsorption of essential biomolecules. There is also an imperative need 

integrate cell-recognizable ligands and signaling growth factors on the scaffold surface to 

promote cellular communication which facilitates their organization within the porous 

scaffold [13]. Researchers have consequentially explored bioceramics [14] and/or 

biopolymers [15] as BTE scaffolds.

Scaffolds comprised of photo-crosslinkable bioglass reinforced akermanite mimicking the 

Haversian bone were developed using Digital Light Processing-based 3D printing in a one-

step process [16], eliminating cytotoxicity arising from the use of UV- or chemical- 

crosslinking. This study exhibited how scaffold parameters could be altered resulting in 

varying mechanical and porosity properties (Figure 1) and hence, can be adopted to fabricate 

bone tissues with varying structures and strength to cater to patients with different ages and 

diseases [16]. This research can be expanded by investigating other bioceramics that could 

be fabricated the same way and performing more bone-resident cell studies to understand 

their individual effects on the formation of new bone tissue, blood vessels and nerves in the 

scaffolds.

Cojocaru et al. developed bone tissue scaffolds by using a composite made out of a 

combination of biopolymers dispersed with MNPs [17]. It was observed that the MNPs 

promoted osteogenesis and increased the osteogenic differentiation while also enhancing cell 

growth osteogenesis and increased the osteogenic differentiation while enhancing cell 

growth [17], a concept that has never been explored before, lending novelty to this study. 

MNPs can also be incorporated into other commonly used bone tissue engineered 

scaffolding materials such as PCL, PLLA, HA, and alumina to understand how varying 

scaffolds influences the ability of the MNPs to direct osteoblast growth and differentiation. 

In the next section, we describe the role of polymer based injection molded scaffolds and 

their efficacy in BTE.

3. Injection Molding

The ease with which polymeric materials plasticize or toughen through incorporation of 

additional constituents, makes them desirable as working materials in BTE. Among the most 
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common polymeric product fabrication methods utilized in both industry and research, we 

find injection molding. This extrusion method is easily tailored by modifying the glass 

transition temperature through the amalgamation of different polymeric species that may, in 

turn, adjust the mechanical properties to desired parameters [18]. Due to their 

biocompatibility and accessible working parameters, the most widely used polymers are 

PLA and PCL as promising scaffold materials [19–21].

However in the case of injection molding, a major drawback is the difficulty to produce 

porous surfaces within the monolithic final product that comes from relatively homogeneous 

solidification. As porosity affects cell proliferation, migration, and tissue formation, this is a 

key consideration in regenerative medicine [22]. Usage of porogens has solved this problem 

to an extent. Porogens, or particles with a specific geometry and different melting 

temperatures in the polymeric matrix, have shown promise in inducing enhanced pore 

formation [23]. Alternatively, molds can be created with the porogen material, similar to 

metal-casting, in which the sacrificial material is then removed through dissolution (Figure 

2) [19, 24, 25]. This allows for a better tailored material that mimics osseous structures 

where osteoblasts can be introduced with efficacy and decreased cytotoxicity.

Another attractive mechanism to induce porosity in injection-molded biomaterials for BTE 

applications, is microcellular injection molding [26]. Its popularity in regenerative medicine 

has increased due to its unexpected level of precision and does not cause environmental 

complications or use organic solvents [27]. This relies on the addition of a supercritical fluid 

to the polymer melt at an elevated temperature inside the mold, which will begin nucleating 

bubbles from changing thermodynamic conditions [25, 28].

These methods of introducing pores to a scaffold have been shown to be effective, due to the 

incorporation of sacrificial materials. Hence, incorporating porosity via injection molding is 

predominantly managed by secondary constituents that are disposed of without 

compromising the matrix material. Because of these inherent deficiencies with injection 

molded scaffolds, we highlight the role of electrospun scaffolds in BTE, in the next section.

4. Electrospun Scaffolds

In BTE there is a need to culture cells on complex surface geometries that mimic the 

anisotropic nature of ECM of specific tissues, especially in bone [29]. Electrospun scaffolds 

exhibit an intrinsically extremely porous environment when compared to bulk-polymer, 

which allows for better cell communication and nutrient transport throughout the scaffold 

[30]. Current literature reveals that researchers have optimized the electrospinning method 

for specific applications regarding BTE [31].

Collagen is a natural polymer and main component of ECM; however, it needs a toxic 

solvent in order to be employed in electrospinning. Türker et al. show how they used a non-

toxic solvent to co-electrospin a scaffold with collagen and PLLCL. Figure 3 depicts a 

schematic of how the desired PLLCL/collagen scaffold was synthesized by the dissolution 

of PVP from an electrospun scaffold. This group also concluded that these scaffolds could 
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be used in treating bone defects because of its improved cell adhesion and proliferation 

compared to flat cell-culture surfaces [32].

The degradation rate of the scaffold material should be considered when determining which 

material to utilize, especially in drug delivery systems. Belgheisi et al. used the degradation 

properties of an electrospun scaffold to control the release of vitamin D3, a vital nutrient that 

aids in the body’s uptake of calcium. They further concluded that optimized vitamin D3 

loaded PCL/clay scaffolds had potential for applications in bone tissue engineering because 

of the controlled release of vitamin D3 [33].

Though electrospun scaffolds provide little structural support, they greatly influence the 

bioactivity of a scaffold due to their relatively large surface area. Future research may 

incorporate alternative compounds such as growth factors and cell-signaling molecules into 

the scaffold matrix to aid in bone’s natural regenerative process. Electrospun scaffolds may 

also act as a periosteal layer when designing a bone implant; in this case, the bioactivity of 

both sides of the scaffold are critical. While one side of the scaffold interfaces with muscle 

and connective tissues, the other interfaces with engineered tissue and should promote 

osteogenesis and vascularization. Alternative additives may influence the degradation rate of 

the scaffold and may be favorable to drug delivery researchers who want to administer 

specific drug doses over extended periods.

5. 3D-Printing for Mimicking Bone

Three-dimensional bioprinting is the most advanced and strategic technique in the treatment 

of critical size bone defects as demonstrated by Lipskas et al. in their development of a 

minimally invasive approach to repair faulty bone and cartilage using robot-assisted 

extrusion 3D bioprinting [34]. In their study, Lipskas et al. used a viscous alginate-

poly(ethylene glycol)diacrylate hydrogel to restore defective bone by 3D printing that 

material over the contours of the defect as seen in Figure 4 (Top Panel). This novel study 

introduced a feasible selection for focal defect restoration and as prospective technique for 

3D printing in vivo. Future studies may focus on optimizing nozzle path generation 

algorithms to counteract nozzle inclined effects and reduce dimensional errors. Resources 

should be allocated to optimizing printing parameters and creating a protocol for 3D 

scanning/printing at defect sites in-situ.

Increasing trends have been observed in the usage of 3D printable biomaterials to create 

alternative methods for improvement of defects in the underlying bone structure. However, a 

persisting challenge is the achievement of mechanical properties that mimic native bone 

[35]. An experiment to analyze the current state of 3D printed bio-alternatives and compare 

their efficacy with native human bone was conducted in our laboratory by Alvarez-Primo et 

al., in order to produce viable evidence of what a frame of reference for what a range of 

mechanical properties of the tested materials and manufacturing methods normally produce. 

PLA samples were 3D printed in a gyroid or mesh lattice (Figure 4: Bottom Panel) via FDM 

in compliance with ASTM D695.1291. and stated specifications for mechanical testing. 

Both geometries underwent compression testing. Upon statistical analysis, there was no 

evidence of any functional difference between samples, however the volumetric differences 
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between groups and their respective 3D print raster patterns did play a significant role in the 

expression of compressive strength, with the mesh pattern reaching a higher ultimate 

compressive strength and compressive modulus in relation to the gyroid sample. 

Deformation of the polymeric samples presented an elastic response without brittle fracture. 

PLA on its own, although a greatly biocompatible material, may require addition of a 

reinforcing phase or secondary constituent to form a polymer blend which would in turn 

increase compressive modulus altogether. Healthy femoral compact bone’s ultimate 

compressive strength lays within a broad range between 100 – 200 MPa [36, 37], which is 

incomparable to current models developed through additive manufacturing techniques [38–

40]. The variation in compressive strength, and mechanical properties altogether are seen to 

be correlated to the porosity present in samples, as well as the shrinking that occurs as a 

consequence of the sintering process in 3D printed powder structures [41]. 3D printed PLA 

samples in this study provided results comparable to the higher range of polymeric bone 

structure replacements, however there is a need for blend improvement, manufacturing 

material quality control, and non-destructive analysis of microscopic features attributed to 

the volumetric differences in directionally preferential designs [38, 40, 41]. In the following 

section we describe some biocompatibility evaluation for these engineered BTE scaffolds.

6. Biocompatibility Studies

Orthopedic biomaterial development has been focused on two main constituents: metals/

alloys and nonmetallic materials [42]. From this conventionality, maximizing the 

functionality of each group has progressed into inducing increased cellular adherence and 

proliferation [42]. Due to the corrosive nature of metallic implants, the use of ceramics and 

polymers to substitute their load bearing function, has been extensively advanced through 

the addition of natural polymers (chitosan, hyaluronic acid, collagen, keratin, etc) [42]. 

Enhancement of biocompatibility has been observed in mimicking the bone tissue matrix 

through incorporation of nanomaterials or nanophase treatment that improves cellular 

interaction [42]. Polymers, through chemical synthesis and their geometric flexibility, 

provide an adaptable framework [42]. In one such study, it was shown that a lower amount 

concentration of HA NP’s mixed within a polymeric alginate-matrix was optimal in bone 

regeneration, where excessive amounts of HA NP’s resulted in an insufficient amount of 

area for cell growth that leads to growth abnormalities [43]. Thus, molecular concentrations 

play a vital role in what produces the most conducive environment for tissue proliferation, a 

limiting factor that requires extensive testing.

Stem cell-based bone regeneration has proven to be a promising alternative to healing an 

osteopathic injury. Mesenchymal cells (MSCs) found in bone marrow, have been known to 

repair cartilage and bone pertaining to the skeletal system [44]. Among all MSCs, human 

synovial fluid mesenchymal stem cells (SF-MSCs) are the most popular candidate for bone 

regeneration as they have proven to possess the greatest osteogenic potential of all [45]. 

PEKK is a thermoplastic commonly used in 3D-printed scaffolds to mimic bone because of 

its similar properties. In one study, PEKK was seeded with SF-MSCs and utilized in an in-

vivo study as a 3D scaffold, then observed by Scanning Electron Microscopy (SEM) to 

illustrate growth of filopodia and lamellipodia on its surface, indicating the affluence for cell 

proliferation [45]. The potency in in-vivo was similarly studied with the implantation of 
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PEKK in a rabbit’s bone and continuously observed for growth at 12 weeks post-surgery. 

The group containing SF-MSCs seeded on PEKK scaffolds (PEKK + SF) had the greatest 

volume of bone regeneration at 12 weeks [45]. The study demonstrated the advancement of 

polymer and stem cell integration to create a substantial cohesive environment that allows 

full tissue regeneration for an orthopedic application.

The inclusion of nanoparticles in both gelatin scaffolds (hydro-, micro-, nano- gels) and 

surface treatments of implants (Ti, Mg- alloys, stainless steel, Co-Cr) have significantly 

improved cellular interactions by promoting osteoblasts and inducing bone tissue 

regeneration [42]. This extension includes nanosurface modification that has allowed 

topographical refinement of the grain size, surface energy, and surface functionality through 

varying coatings that improve cellular adherence. Notably, the use of polydopamine coatings 

has been able to offer a provisional surface that targets both the improvement to cellular 

adherence due to interaction with functional groups, whilst also providing the ability to 

synthesize the compound with antibacterial additives [46]. The use of microwave surface 

modification is inclusionary in the emerging novel techniques as it offers a homogenous 

crystalline topography through improved intraparticle interaction, overall increasing surface 

stability [42]. Refinement of the processing treatment and their long-term efficacy, along 

with the dynamic molecular interaction and their promotion of growth factors, remain 

aspects that need to be extensively studied for the overall commercialization of orthopedic 

implants on the industrial scale.

7. Challenges and Future Direction

The challenges of selecting a biomaterial for BTE come from the paradigm between a 

material’s mechanical and biological properties. Though researchers prefer to utilize 

materials with high strengths and stiffnesses to match that of natural bone, materials should 

also achieve some threshold of bioactivity to minimize the probability of host-rejection as 

well as promote naturally regenerative processes such as osteogenesis and vascularization. 

Metals are among the most popular high strength materials and better serve BTE when used 

on material surfaces to promote wear-resistance such as in hip replacements. However, when 

designing scaffolds whose main purpose is structural support, i.e. femoral and tibial 

segmental scaffolds, the aforementioned high strength materials may cause an unwanted 

phenomenon called stress shielding which can weaken segments of native bone over time. In 

addition, many high strength metals are prone to corrosion and subsequently mechanical 

failure. Polymeric and bio-ceramic materials have begun to see use in structural scaffolds 

because of the ease of processing as well as favorable bioactivity.

The current direction of biomaterials in BTE is creating a polymer composite that matches 

native bone in mechanical strength and stiffness, yet also contains enough bioactive 

components to promote formation of new and healthy bone. Popular scaffolds include a high 

strength polymer such as PCL, PLA, or polyether-ether ketone in conjunction with bioactive 

minerals loaded into the polymer matrix to promote naturally regenerative processes. 

Copolymer blends are also favorable for optimizing a biomaterial’s mechanical and 

biological properties. One of the most popular additives in BTE is HA because of the 

biomimetic nature of the presence of calcium phosphate. More research should be done on 
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bioactive additives in BTE scaffolds since many copolymers have already been shown to 

have mechanical properties similar to natural bone.

8. Conclusion

Numerous advances have been made in the field of BTE over recent years. The search for 

biomaterials that mimic the mechanical and biological properties of native bone have led 

researchers to study bioceramics and polymer composites that counteract the negative effects 

of corrosion caused by metallic implants. Furthermore, the designing of these materials to 

best produce a favorable environment for bone regeneration has been accomplished through 

the introduction of porogens in injection molding and incorporating bone-benefiting 

nutrients into electrospun scaffolds that are released as a function of the scaffold’s 

degradation. As technology in the field of robotics and three-dimensional bioprinting is 

upgraded, researchers are looking for ways to deposit biopolymers directly onto the contours 

of the bone to treat defective bone without compromising their mechanical stability and 

biocompatibility.

Despite the progress in the fabrication of bone tissue scaffolds, there remain several 

unresolved issues like the ability of a newly formed bone tissue to be support and renew 

itself, whether a scaffold derived bone could promote hematopoiesis and whether different 

types of scaffolds should be used and their mechanical properties modulated for different 

bones. Presently, there is much focus on strategies involving immune-mediated tissue 

regeneration driven by biomaterial scaffolds or biomaterial scaffolds that could be used to 

activate a drug release where and when it is needed to circumvent systemic treatment effects. 

It has also been hypothesized that biomaterial scaffolds can be made to entrap cells, change 

them and subsequently release them for the fulfilment of specific functions which they 

would not have achieved otherwise. Significant benefits and a more profound knowledge of 

native tissues, developmental biology and the natural processes of tissue repair and 

regeneration could be derived by studying the integration of biomaterial scaffolds with 

molecules that that can influence cell behavior like inflammatory cytokines, adhesive ligands 

and ECM molecules for recapacitating the initial phases of tissue repair and remodeling. 

Bone tissue scaffolds should be designed to incorporate materials or growth factors that can 

enhance angiogenesis while also providing the necessary porosity to support vascular 

ingrowth to ensure the regeneration of vascularized bone. Understanding the nature and 

cellular response mechanisms to microenvironmental cues can potentially direct the design 

of a number of scaffold features such as the encompassing of bioactive ions and surface 

topographies by promoting cellular adhesion, proliferation and differentiation, and also the 

modification of the microstructure of the scaffold or the stiffness to alter the mechanical 

properties and cellular interactions. Another unmet need in BTE is to fabricate cell laden, 

vascularized, scaffolds that could be used to rectify large segmental bone defects. To 

overcome these challenges, it is required that the field of bone tissue engineering to be 

expanded into newer realms of research involving other areas like nanotechnology, 

manufacturing technologies, mechanobiology and medical diagnostics.
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AM additive manufacturing

ECM extracellular matrix

FDM fused deposition modeling

HA hydroxyapatite

HA NP hydroxyapatite nanoparticles

MNPs magnetic nanoparticles

PCL polycaprolactone

PEKK polyetherketoneketone

PLA Polylactic acid

PLLA poly-L-lactic acid

PLLCL L-blocked polycaprolactone

PVP polyvinyl pyrrolidone

SLS selective laser sintering
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Figure 1: 
Characterization of Haversian bone-mimicking bioceramic scaffolds by varying the number 

of Haversian canals (A-C) and their diameters (F-H) (indicated by blue arrows) as seen 

through micro-CT scans. Samples exhibited varying compressive strength (D, I) and 

porosity (E,J) for the two cases. Reproduced with permission from [16].
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Figure 2 (Top Panel): 
(A) Representative image of injection molding including porogens. (Bottom Panel): (B-E) 

Corresponding SEM images of porogen-incorporated PCL thermoplastic scaffolds. Both 

images are reproduced with permission [19].
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Figure 3: 
Schematic representing co-electrospinning and dissolution of unwanted PVP on the desired 

scaffolds. Figure reproduced with permission from [32].
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Figure 4 (Top Panel): 
Experimental arrangement (A) Surface registration. (B) bone milling. (C) 3D printing. Bone 

samples pre and post 3D printing process (D) Milled defect sample. (E) Hydrogel infill 

sample. Both figures are reproduced with permission from [34]. (Bottom Panel): 
Compressive strength graph of two 3D printed pattern types based on data obtained from 

mechanical testing at UTEP conducted for reference.
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