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ABSTRACT
Objective  Non-alcoholic fatty liver disease (NAFLD)-
associated hepatocellular carcinoma (HCC) is an 
increasing healthcare burden worldwide. We examined 
the role of dietary cholesterol in driving NAFLD–HCC 
through modulating gut microbiota and its metabolites.
Design  High-fat/high-cholesterol (HFHC), high-fat/
low-cholesterol or normal chow diet was fed to C57BL/6 
male littermates for 14 months. Cholesterol-lowering 
drug atorvastatin was administered to HFHC-fed mice. 
Germ-free mice were transplanted with stools from 
mice fed different diets to determine the direct role 
of cholesterol modulated-microbiota in NAFLD–HCC. 
Gut microbiota was analysed by 16S rRNA sequencing 
and serum metabolites by liquid chromatography–
mass spectrometry (LC–MS) metabolomic analysis. 
Faecal microbial compositions were examined in 59 
hypercholesterolemia patients and 39 healthy controls.
Results  High dietary cholesterol led to the sequential 
progression of steatosis, steatohepatitis, fibrosis and 
eventually HCC in mice, concomitant with insulin 
resistance. Cholesterol-induced NAFLD–HCC formation 
was associated with gut microbiota dysbiosis. The 
microbiota composition clustered distinctly along stages 
of steatosis, steatohepatitis and HCC. Mucispirillum, 
Desulfovibrio, Anaerotruncus and Desulfovibrionaceae 
increased sequentially; while Bifidobacterium and 
Bacteroides were depleted in HFHC-fed mice, which was 
corroborated in human hypercholesteremia patients. 
Dietary cholesterol induced gut bacterial metabolites 
alteration including increased taurocholic acid and 
decreased 3-indolepropionic acid. Germ-free mice 
gavaged with stools from mice fed HFHC manifested 
hepatic lipid accumulation, inflammation and cell 
proliferation. Moreover, atorvastatin restored cholesterol-
induced gut microbiota dysbiosis and completely 
prevented NAFLD–HCC development.
Conclusions  Dietary cholesterol drives NAFLD–HCC 
formation by inducing alteration of gut microbiota and 
metabolites in mice. Cholesterol inhibitory therapy and 
gut microbiota manipulation may be effective strategies 
for NAFLD–HCC prevention.

INTRODUCTION
Non-alcoholic fatty liver disease (NAFLD) is the 
hepatic manifestation of metabolic syndrome, 
which encompasses a spectrum of liver pathologies 
that range from simple steatosis to non-alcoholic 
steatohepatitis (NASH).1 NASH can progress to 

Significance of this study

What is already known on this subject?
►► Non-alcoholic fatty liver disease (NAFLD)-
associated hepatocellular carcinoma (HCC) is 
an increasing healthcare burden worldwide.

►► Cholesterol is a major lipotoxic molecule.

What are the new findings?
►► High-fat high-cholesterol diet (HFHC) 
spontaneously and sequentially induced fatty 
liver, steatohepatitis, fibrosis and NAFLD–HCC 
development, while high-fat low-cholesterol 
diet induced only hepatic steatosis in male 
mice.

►► Dietary cholesterol-induced NAFLD–HCC 
formation was associated with gut microbiota 
dysbiosis. The microbiota composition changed 
along stages of NAFLD–HCC formation: 
Mucispirillum, Desulfovibrio, Anaerotruncus 
and Desulfovibrionaceae were sequentially 
increased; while Bifidobacterium and 
Bacteroides were depleted in HFHC-fed 
mice, which was corroborated in human 
hypercholesteremia patients.

►► Gut bacterial metabolites alteration including 
increased serum taurocholic acid (TCA) 
and depleted 3-indolepropionic acid (IPA) 
was found in NAFLD–HCC. IPA inhibited 
cholesterol-induced lipid accumulation and cell 
proliferation, while TCA aggravated cholesterol-
induced triglyceride accumulation in human 
normal immortalised hepatocyte cell line.

►► Germ-free mice gavaged with stools from 
HFHC-fed mice manifested hepatic lipid 
accumulation, inflammation and cell 
proliferation, in consistence with donor mice 
phenomes.

►► Anticholesterol treatment restored dietary 
cholesterol-induced gut microbiota dysbiosis 
and completely prevented NAFLD–HCC 
formation.

How might it impact on clinical practice in the 
foreseeable future?

►► Our findings indicate that anticholesterol drug 
and manipulation of the gut microbiota might 
represent effective strategies in preventing 
NAFLD–HCC.
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hepatic cirrhosis, end-stage liver failure and hepatocellular carci-
noma (HCC).2 Currently, NAFLD is a major cause of morbidity 
and a healthcare burden worldwide. Large population-based 
cohort studies demonstrate that the prevalence of NAFLD–HCC 
has increased by fourfold in the last decade compared with 2.5-
fold for hepatitis, making it the most rapidly growing indication 
for liver transplantation.3 Lipotoxicity drives the progression of 
NASH, fibrosis/cirrhosis, and even HCC.4 Among hepatic lipid 
species, cholesterol is considered a major lipotoxic molecule 
in NASH development.4 The liver is central to the regulation 
of systemic cholesterol homeostasis. Abnormalities in hepatic 
cholesterol homeostasis have been demonstrated in both human 
and experimental models of NASH.5 6 We have revealed that 
squalene epoxidase, a rate-limiting enzyme in cholesterol biosyn-
thesis, drives NAFLD–HCC development.7 Dietary cholesterol 
has an important impact on plasma and hepatic cholesterol 
homeostasis.5 Although the contribution of dietary cholesterol 
to NASH progression has been reported,5 8 the role and patho-
genic basis of long-term cholesterol treatment on spontaneous 
and progressive NAFLD–HCC development are unknown.

The intestinal microbiota has a symbiotic relationship with 
its host and contributes nutrients and energy by metabolising 
dietary components including cholesterol in the large intes-
tine.9 Several studies have suggested that the gut microbiome 
represents an environmental factor contributing to the devel-
opment of NAFLD and its progression to NAFLD–HCC.10 11 
Microbe-derived metabolites, such as bile acid, short-chain 
fatty acids and trimethylamine and the signalling pathways they 
affect may contribute to NAFLD development.12 13 In partic-
ular, 3-(4-hydroxyphenyl) lactate, a metabolite derived from gut 
microbiome, has a shared gene‐effect with both hepatic steatosis 
and fibrosis.14 Moreover, the alteration of gut microbiota profile 
by dietary cholesterol has been reported.15 However, whether gut 
microbiota dysbiosis is the cause or effect of dietary cholesterol-
induced NASH and NAFLD–HCC progression remains unclear.

The present study was performed to determine the role and 
the associated molecular mechanisms of dietary cholesterol 
in the development of NAFLD–HCC. We found that dietary 
cholesterol caused spontaneous NAFLD–HCC formation by 
cholesterol-induced gut microbiota changes and metabolomic 
alterations. Cholesterol inhibition restored gut microbiota and 
completely prevented NAFLD–HCC development.

MATERIALS AND METHODS
Animals and diets
Male C57BL/6 wild-type littermates (8 weeks old) were fed with 
normal chow (NC, 18% fat, 58% carbohydrate, 24% protein, 
0% cholesterol), high-fat/low-cholesterol diet (HFLC, 43.7% 
fat, 36.6% carbohydrate, 19.7% protein, 0.013% cholesterol) or 
high-fat/high-cholesterol diet (HFHC, 43.7% fat, 36.6% carbo-
hydrate, 19.7% protein, 0.203% cholesterol) (Specialty Feeds, 
Glen Forrest, WA) ad libitum for 14 months. Mice were also fed 
with HFLC or HFHC for 3, 8,10 and 12 months (n=8–19 per 
group). In additional experiments, atorvastatin (20 mg/kg) was 
administered to HFHC-fed mice after 7 months of diet initiation 
and continued for additional 7 months (n=10 per group). Mice 
were kept on a 12/12 hour light/dark cycle. At experimental end 
points, mice were fasted and serum/tissues were harvested.16 
Body weights and visceral fat weights were recorded. Livers 
were rapidly excised and weighed. The presence and dimensions 
of surface nodules were evaluated. HCCs were confirmed histo-
logically from both grossly and histologically evident nodules. 
Liver tumours were isolated, snap frozen in liquid nitrogen and 

stored at −80°C for further experiments. Mice stool samples 
were collected for bacterial 16S rRNA gene sequencing and oral 
gavage.

C57BL/6 male germ-free mice (7 weeks) were bred at the 
Department of Laboratory Animal Science at the Third Military 
Medical University in Chongqing, China. Adult mice (8 weeks 
old) were divided into three groups (11–28 mice per group), 
and gavaged twice at 0 and 7 months with stools obtained from 
conventional mice fed with NC, HFLC, HFHC or HFHC mice 
treated with atorvastatin for 14 months. Briefly, 1 g of stool 
samples were homogenised in 5 mL of phosphate buffered saline 
(PBS). Recipient mice were then transplanted with 200 μL of 
the suspension by gastric gavage. Mice from each group were 
randomly selected and sacrificed at 8, 10 or 14 months following 
transplantation.

Additional methods are provided in online supplementary file 
1.

RESULTS
Dietary cholesterol drives the development of NAFLD–HCC 
spontaneously
To examine the role of dietary cholesterol in the evolution of 
steatosis, NASH, fibrosis and subsequent NAFLD–HCC, mice 
were fed with HFHC,17 HFLC or NC. Serum level of alpha-
fetoprotein (AFP, marker for liver cancer) was monitored at 
different time points (3, 8, 10, 12 and 14 months). An elevated 
AFP level was observed at month 10 (107.1±127.9 ng/mL), 
which was further increased at month 12 (151.6±129.3 ng/mL) 
and month 14 (174.2±203.1 ng/mL) in mice fed with HFHC 
compared with HFLC (50.9±7.5 ng/mL in HFLC) or NC 
(59.7±20.9 ng/mL) at month 14 (figure 1A). MRI scan showed 
liver tumours in HFHC-fed mice but not in HFLC-fed or 
NC-fed mice at month 14 (figure 1B). Mice were then harvested 
at month 14. Liver tumours were identified in 68% (13/19) of 
mice fed with HFHC but not in mice fed with HFLC or NC diet 
(figure 1C). Histological examination of liver sections confirmed 
that all liver tumours were HCCs (figure 1C) with an average 
number of 2.7±2.6 HCCs per mouse and maximal tumour diam-
eter of 4.1±5.0 mm. The liver sections of HFHC-fed mice have 
significantly more Ki-67 positive cells compared with HFLC-fed 
mice, indicating increased cell proliferation in HFHC-fed mice 
(figure 1C). These results demonstrate that dietary cholesterol 
can spontaneously induce NAFLD–HCC formation.

Along with HCC formation, mice fed with HFHC showed 
significantly increased body weight, visceral fat, liver weight and 
liver-to-body weight ratio compared with NC-fed mice at month 
14 (figure 1D). HFLC-fed mice also displayed enhanced body 
weight, visceral fat and liver weight (figure  1D). Significantly 
increased serum cholesterol, hepatic free cholesterol and choles-
terol ester, glucose intolerance and fasting insulin were demon-
strated in HFHC-fed mice compared with HFLC-fed or NC-fed 
mice (figure  1E). Enhanced glucose intolerance and fasting 
insulin were also observed in mice fed with HFLC compared 
with NC (figure 1E).

NASH and fibrosis are present in mice fed with high-
cholesterol diet for 14 months
Further examination of liver sections revealed the presence of 
steatohepatitis characterised by steatosis and lobular inflamma-
tion in HCC adjacent liver tissues and non-HCC liver tissues of 
mice fed with HFHC for 14 months, while only steatosis was 
observed in HFLC-fed mice (figure  2A, online supplementary 
figure S1). Consistent with histological inflammation, serum 
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alanine aminotransferase (ALT) (p<0.01) and aspartate amino-
transferase (AST) (p<0.01) levels were significantly increased 
in HFHC-fed mice compared with mice fed with HFLC or 
NC (figure 2B). Serum and hepatic proinflammatory cytokines 
including IL-6, IL-1α and IL-1β (figure 2C,D) and proinflamma-
tory factors (online supplementary figure S2A-B) are increased 
in HFHC-fed mice as measured by cytokine profiling assay and 
ELISA. The crucial NASH-related proinflammatory cytokines, 
including Cx3cl1, Mcp1, Cxcl10, Mip1β, Mip1α, Ccl5, Cxcl16 
and Tnfα, are significantly upregulated in the liver tissues of 14 
months HFHC-fed mice compared with HFLC-fed mice as indi-
cated by RNA sequencing analysis (figure 2D). HFHC-fed mice 

presented severe fibrotic injury with significantly more collagen 
distribution areas (figure  2E), collagen content by hepatic 
hydroxyproline assay (figure 2F) and hepatic stellate cells acti-
vation as evidenced by increased alpha-smooth muscle actin 
(α-SMA) mRNA and protein levels (figure  2E). Examination 
of hepatic oxidative stress revealed that oxidised nicotinamide 
adenine dinucleotide (NAD+) to NADH (reduced form of 
NAD)ratio and antioxidant superoxide dismutase (SOD) activity 
were significantly decreased in HFHC-fed mice (figure  2G), 
suggesting the induction of hepatic oxidative stress by dietary 
cholesterol. Collectively, these findings indicate that NASH and 

NC HFLC 3m  8m  10m 12m  14m

A

C

Se
ru

m
 c

ho
le

st
er

ol
 

(m
g/

dl
)

H
ep

at
ic

 fr
ee

ch
ol

es
te

ro
l 

(m
g/

g 
liv

er
)

E

H
ep

at
ic

 c
ho

le
st

er
ol

 e
st

er
 

(m
g/

g 
liv

er
)

800

600

400

200

0

1.5

1.0

0.5

0.0

5

4

3

2

1

0

500

400

300

200

100

0

D

Li
ve

r w
ei

gh
t (

g) ** *
Li

ve
r/b

od
y

w
ei

gh
tr

at
io

**
*

****

B
od

y 
w

ei
gh

t (
g)

NC HFLC HFHC Vi
sc

er
al

fa
t w

ei
gh

t(
g) ***80

60

40

20

0

6

4

2

0

6

4

2

0

0.15

0.10

0.05

0.00

Time (min)

G
lu

co
se

 (m
m

ol
/L

)

In
su

lin
 (n

g/
m

L)30

20

10

0
0 30 60 90 120

5
4
3
2
1
0

*
*

**
H&E staining

**

****** ** *
***

***

*
*

A
FP

 (n
g/

m
L)

HFHC

HFHC 14 months
MRIB

NC HFLC HFHC NC HFLC HFHC NC HFLC HFHC

NC HFLC HFHC NC HFLC HFHC NC HFLC HFHC NC HFLC HFHC

******

NC

HFLC

HFHC

NC
HFLC
HFHC

NC 14 months HFLC 14 months

T T

Ki-67 staining

NC HFLC HFHC

K
i-6

7 
sc

or
es

2.0

1.5

1.0

0.5

0.0

* **
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fibrosis were formed in non-HCC liver tissues of HFHC-fed 
mice.

High-cholesterol diet causes fatty liver, steatohepatitis and 
fibrosis sequentially in mice
To clarify the progression of NAFLD prior to HCC formation by 
dietary cholesterol, we monitored serum ALT, AST, cholesterol, 
AFP and liver histological changes in mice fed with HFHC. 
Mice were harvested at 3, 8, 10 and 12 months following diet 
feeding (figure 3A). We observed increases in body weight and 
visceral fat weight (online supplementary figure S3A), accompa-
nied with increased liver weight and liver-to-body weight ratio in 
mice fed with HFHC compared with mice fed with HFLC at 3 
and 8 months (online supplementary figure S3B). The increased 
profiles of serum ALT and AST (online supplementary figure 
S3C) were consistent with enhanced serum cholesterol levels 
in HFHC-fed mice (online supplementary figure S3D). Liver 
histology of HFHC-fed mice showed steatosis with mild inflam-
mation at 3 months, steatohepatitis with fibrosis at 8 months 
and HCC formation at 10, 12 and 14 months, while HFLC-fed 
mice showed only steatosis without further HCC development 
at 3, 8, 10 and 14 months (figure 3B and online supplementary 
figure S4A-B). We also performed immunohistochemistry for 
two HCC markers AFP and Golgi protein 73 (GP73). Positive 
staining was observed on liver tissues from HFHC-fed mice but 
not from HFLC-fed mice (figure 3B and online supplementary 
figure S4A). Scores of hepatic steatosis, and lobular inflamma-
tion and hepatic collagen areas confirmed the increased severity 
of liver histology across the disease stages (figure 3B). Moreover, 
10% (1/10) of HFHC-fed mice developed HCC at 10 months 
(tumour number=0.1 ± 0.32, maximum tumour diameter=0.55 
± 1.74 mm), 25% (3/12) developed HCC at 12 months (tumour 
number=0.25 ± 0.45, maximum tumour diameter=1.57 
± 3.10 mm) and 68% (13/19) developed HCC at 14 months 
(figure 3C), indicating that HFHC-fed mice progressively devel-
oped steatosis, steatohepatitis, fibrosis and NAFLD–HCC.

Dietary cholesterol-induced gut microbiota dysbiosis in the 
initiation and progression of NAFLD–HCC
In order to explore the potential involvement of the gut micro-
biota in mediating dietary cholesterol-induced NAFLD–HCC, we 
performed 16S rRNA gene sequencing on stools from HFLC-fed 
and HFHC-fed mice at 14 months. Rarefaction analysis shows 
that observed number of operational taxonomic units (OTUs) 
reached saturation (online supplementary figure S5A-B). Gut 
microbiota compositional discrimination, by weighted Unifrac 
principal component analysis (PCA), was observed between 
HFLC-fed and HFHC-fed mice at 14 months (p<0.001) 
(figure 4A). Additionally, lower bacterial diversity and increased 
bacterial richness were observed in HFHC-fed mice with HCC 
than HFLC diet-fed mice with only simple steatosis at 14 months 
(figure 4A). Cholesterol associated bacterial taxa were determined 
by differential abundance analysis. Several bacterial OTUs were 
differentially abundant in mice fed with HFHC compared with 
HFLC-fed mice (figure 4B, online supplementary tables S1-5). 
Principal component and redundancy analyses also showed that 
the microbiota composition clustered distinctly for mice fed with 
HFHC for 3 months (simple steatosis with mild inflammation), 
8 months (steatohepatitis with fibrosis) and 14 months (HCC) 
(figure 4C) indicating compositional changes in gut microbiota 
along stages of NAFLD–HCC progression. Moreover, bacterial 
richness was sequentially increased with NAFLD–HCC progres-
sion (figure 4D). In particular, Mucispirillum schaedleri_Otu038, 

Desulfovibrio_Otu047, Anaerotruncus_Otu107 and Desulfovib-
rionaceae_Otu073 were observed to have sequentially increased 
from 3 to 8, and to 14 months of HFHC feeding (figure 4D). 
Also, among others, we observed the enrichment of Clostridium 
OTUs such as Clostridium celatum_Otu070, C. ruminan-
tium_Otu059, C. cocelatum_Otu036 and C. methylpentosum_
Otu053, and the depletion of Bifidobacterium_Otu026, 
Akkermansia municiphila_Otu034, Lactobacillus_Otu009, 
Bacteroides acidifaciens_Otu032, Bacteroides_Otu012, B. 
uniformis_Otu080 and B. eggerthii_Otu079 with high dietary 
cholesterol. Moreover, HFHC-enriched Helicobacter ganmanii_
Otu031 was more abundant in HFHC-fed mice with tumour 
compared with HFHC-fed mice without tumour, while HFHC-
depleted Bacteroides_Otu012 was reduced in HFHC-fed mice 
with tumour compared with HFHC-fed mice without tumour 
(online supplementary figure S5C). These suggest that further 
enrichment of Helicobacter ganmanii_Otu031 and depletion of 
Bacteroides_Otu012 may be important for the role of gut micro-
biota in NAFLD–HCC. In addition, gut microbiota associated 
tryptophan metabolising capacity was reduced in HFHC-fed 
mice compared with HFLC-fed mice (figure 4E). These, taken 
together, suggest that high-cholesterol diet-induced gut micro-
biota dysbiosis and impaired microbial tryptophan metabolism.

Correlation analysis was performed to determine the poten-
tial association of bacterial abundance with mice phenomes. We 
observed that M. schaedleri_Otu038, Desulfovibrio_Otu047, 
Anaerotruncus_Otu107, C celatum_Otu070, C. cocelatum_
Otu036 and C. methylpentosum_Otu053 which were enriched 
in faecal samples of HFHC-fed mice were positively correlated 
(figure  4F) while Bifidobacterium_Otu026, B. acidifaciens_
Otu032, B. uniformis_Otu080, A. municiphila_Otu034 and 
Lactobacillus_Otu009, which were depleted in HFHC-fed mice, 
were negatively correlated with high-cholesterol diet, serum and 
liver cholesterol levels (figure 4F). These results suggest that gut 
microbiota dysbiosis in NAFLD–HCC correlates with choles-
terol levels.

To corroborate our findings from animal experiments in 
human patients, we analysed the correlation of serum choles-
terol and gut microbiota in 59 cases of hypercholesterolemia 
and 39 healthy subjects. The characteristics of these 98 subjects 
are shown in online supplementary table S6. Bifidobacterium 
and Bacteroides were negatively correlated with serum total 
cholesterol and low-density lipoprotein (LDL)-cholesterol but 
positively correlated with high-density lipoprotein (HDL)-
cholesterol (figure  4G). These results were consistent with 
observations in HFHC-fed mice (online supplementary tables 
S1-5), further inferring the involvement of the gut microbiota in 
contributing to cholesterol-induced disorder.

Dietary cholesterol promotes NASH–HCC progression by 
inducing metabolites alteration
To reveal metabolic phenotypes, related to the gut microbiome, 
that are potentially involved in cholesterol-induced NAFLD–
HCC, we performed metabolic profiling of the serum from 
HFHC-fed and HFLC-fed mice. Serum metabolites were signifi-
cantly different according to dietary cholesterol content by PCA 
(figure 5A and online supplementary table S7). Bile acid biosyn-
thesis was a key pathway altered in mice fed with high-cholesterol 
diet (figure  5B). Primary bile acids including taurocholic acid 
(TCA), tauroursodeoxycholic acid (TUDCA), glycocholic acid 
(GCA) and taurochenodeoxycholic acid (TCDCA) were outlier 
upregulated metabolites in HFHC-fed mice (figure 5C). On the 
other hand, 3-indolepropionic acid (IPA), which is a product of 
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microbial tryptophan metabolism,18 was an outlier down-regulated 
metabolite in HFHC-fed mice (figure 5C). Moreover, serum lipo-
polysaccharides (LPS) concentration in portal vein was elevated 
and loss of colonic E-cadherin was identified in HFHC-fed mice 
compared with HFLC-fed mice (figure 5D), suggesting that dietary 
cholesterol could impair intestinal barrier function. Correlation 
analysis was performed to determine the potential association 
of the HFHC-altered microbes and metabolites. Consistently, 

correlation analysis revealed that HFHC-enriched Mucispirillum 
schaedleri_Otu038 is positively correlated with TUDCA, TCDCA, 
TCA and GCA. HFHC-enriched Roseburia_Otu056 and Heli-
cobacter_ganmanii_Otu031 are also positively associated with 
TUDCA and TCDCA. Moreover, HFHC-depleted Akkermancia_
muciniphila_Otu034 is negatively associated with TCDCA and 
TUDCA while HFHC-enriched Anaerotruncus_Otu107 is nega-
tively correlated with IPA (figure 5E).
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Further experiments revealed that high dietary cholesterol could 
not change the mRNA expression of bile acid synthesis enzymes, 
including cytochrome P450 (Cyp)7a1, Cyp8b1, Cyp27a1 and 
Cyp7b1 in the liver (figure 5F). Additional in-vitro experiments 
showed that TCA aggravated cholesterol-induced triglyceride 
accumulation in human normal immortalised hepatocyte cell line 
LO2 (figure 5G), while IPA suppressed cholesterol-induced lipid 
accumulation (figure  5G), and cell proliferation (figure  5H) in 
NASH–HCC cell lines, HKCI-2 and HKCI-10. These results indi-
cated that cholesterol promoted NASH–HCC progression through 
the modulation of host serum metabolites and, at least in part, 
through increased TCA and decreased IPA.

High cholesterol-modulated gut microbiota promotes 
steatohepatitis and hepatocyte proliferation in germ-free 
mice
We evaluated the contribution of cholesterol-modulated 
microbiota in NAFLD–HCC by faecal microbiota transplan-
tation (FMT). Stools of NC-fed, HFLC-fed and HFHC-fed 
mice (14 months) were gavaged to germ-free mice (G-NC, 
G-HFLC and G-HFHC) under NC diet (figure 6A). The liver-
to-body weight ratio was significantly higher in G-HFHC mice 
compared with G-NC mice (online supplementary figure S6A). 
Moreover, hepatic lipid accumulation by triglyceride assay and 
Oil Red O staining (figure 6B) and peroxidation by thiobar-
bituric acid reactive substances assay (figure 6B) were signifi-
cantly increased accompanied with impaired liver histology by 
H&E staining (figure 6B) in G-HFHC mice at 8, 10 and 14 
months following FMT. Increased inflammation was evidenced 
by enhanced hepatic cytokines and chemokines including IL-6 
(figure  6C) by cytokine profiling assay, Fos, Ccl12, Cxcr1, 
Ccl1, Myd88, Il-1β, Cxcl10 and C3ar1 (online supplementary 
table S8) by cDNA expression assay and enhanced CD45+ 
lymphocytes accumulation (online supplementary figure S6B) 
by flow cytometry in G-HFHC mice compared with G-HFLC 
mice.

Increased hepatocyte proliferation was observed in the liver 
of the G-HFHC mice at 14 months (p<0.05) (figure 6D) but 
not at 8 and 10 months after FMT. Cancer pathways PCR array 
revealed the upregulation of genes involved in oncogenic path-
ways including cell proliferation (Cdc20), angiogenesis (Pgf), 
invasion/metastasis (Serpinb2, Snai3) and downregulation 
of genes involved in apoptosis (Fasl and Lpl) in liver tissues 
of G-HFHC mice compared with G-NC and G-HFLC mice 
(figure 6E1). Upregulation of CDC20 was validated by Western 
blot (figure 6E2). One liver nodule was observed in G-HFHC 
mice at 14 months, but not at 8 and 10 months (figure  6A). 
Histology examination confirmed the nodule as dysplasia with 
globules and increased cell proliferation (figure 6A). We evalu-
ated the composition of gut microbiota in recipient germ-free 
mice and their corresponding donor conventional mice. We 
found that gut microbiota was significantly different among the 
recipient germ-free mice in relation to donors’ diet (figure 6F). 
The microbial ecosystem after FMT remained stable over time in 
all groups of mice as shown by β-diversity and composition anal-
ysis (online supplementary figure S7A-D). Furthermore, analysis 
of serum metabolites from germ-free mice revealed decreased 
IPA in G-HFHC mice compared with G-HFLC mice in consis-
tence with conventional mice fed with HFHC (figure 6G). Taken 
together, these data indicated that dietary cholesterol-modulated 
microbiota promote NAFLD and hepatocyte proliferation by 
inducing metabolite alteration, in contributing to cholesterol-
induced NAFLD–HCC formation.

Anticholesterol treatment completely prevents NAFLD–HCC 
formation in HFHC-fed mice
As dietary cholesterol drives the progression of NAFLD–HCC, 
we evaluated if anticholesterol drug could dampen NAFLD and 
its progression to HCC. Atorvastatin (20 mg/kg), a cholesterol-
lowering drug, was administered to mice that had been fed with 
HFHC for 7 months, and continued for additional 7 months 
with HFHC and atorvastatin (figure 7A). At the end of experi-
ment (14 months), atorvastatin completely prevented NAFLD–
HCC formation induced by HFHC diet and improved severity 
of NASH (figure 7B). This was concomitant with significantly 
reduced serum cholesterol, hepatic free cholesterol, serum AFP 
(figure  7C), ALT, lowered serum pro-inflammatory cytokines 
(IL-6, IL-1α, IL-1β, MCP-1, MIP-1α and MIP-1β) and oxida-
tive stress (increased NAD+ to NADH ratio and SOD activity) 
(figure  7D). Atorvastatin also ameliorated liver fibrosis as 
supported by significant reduction of hepatic collagen deposition 
and hydroxyproline content (figure 7E). Microbiota analysis by 
16S rRNA gene sequencing was performed on the stools of mice 
fed with HFHC under atorvastatin treatment (HFHC+At) and 
compared with mice fed with NC, HFLC and HFHC. Bacterial 
richness which increased in HFHC-fed mice was significantly 
restored by anticholesterol atorvastatin treatment (figure  7F). 
Furthermore, among the dysregulated OTUs in HFHC-fed mice 
(figure 4B and D), the abundance of Mucispirillum schaedleri_
Otu038, Desulfovibrio_Otu047, Anaerotruncus_Otu107 and 
Desulfovibrionaceae_Otu073 were found to be reversed by anti-
cholesterol treatment (figure 7F). To study the direct effect of 
the microbiota in anticholesterol drug-prevented NAFLD–HCC, 
we gavaged stool from HFHC+At mice to germ-free mice 
(G-HFHCAt, n=10). G-HFHCAt mice showed improved liver 
histology with decreased liver triglyceride and lipid peroxida-
tion compared with G-HFHC group at 14 months after stool 
gavage (figure 7G). An induction of IPA and a reduction of TCA 
were observed in HFHC mice treated with atorvastatin (online 
supplementary figure S8). These results further show that gut 
microbiota plays an active role in mediating cholesterol-induced 
NAFLD–HCC.

DISCUSSION
Despite cholesterol being a known cytotoxic lipid in 
NASH,5 8 information about the role and the underline mecha-
nisms of cholesterol in HCC development from NASH is limited. 
In this study, we demonstrated for the first time that prolonged 
high dietary cholesterol feeding caused spontaneous NAFLD–
HCC development in mice. High-fat diet induces obesity, insulin 
resistance, glucose intolerance and steatosis. The progression 
of steatohepatitis to fibrosis and HCC was, however, predom-
inantly associated with high dietary cholesterol. Germ-free 
mice transplanted with faecal microbiota from high-cholesterol 
diet-fed mice substantially phenocopied the donor mice in lipid 
accumulation, inflammation and cell proliferation, suggesting 
that gut microbiota dysbiosis contributes to dietary cholesterol-
induced NASH and potential development of NAFLD–HCC.

We investigated the underline mechanisms of HCC devel-
opment from NAFLD by high dietary cholesterol. We found 
enhanced ROS accumulation in NAFLD–HCC in mice fed with 
high-cholesterol diet. The accumulated ROS is a toxic mediator, 
which can induce inflammatory response, insulin resistance and 
oxidative damage.19 Indeed, our analysis revealed that dietary 
cholesterol induced both ROS and proinflammatory cytokines, 
thereby promoting NASH and HCC development. In line with our 
findings, Wolf et al have shown that long-term choline-deficient 

https://dx.doi.org/10.1136/gutjnl-2019-319664
https://dx.doi.org/10.1136/gutjnl-2019-319664
https://dx.doi.org/10.1136/gutjnl-2019-319664
https://dx.doi.org/10.1136/gutjnl-2019-319664
https://dx.doi.org/10.1136/gutjnl-2019-319664
https://dx.doi.org/10.1136/gutjnl-2019-319664
https://dx.doi.org/10.1136/gutjnl-2019-319664
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high-fat diet feeding in mice-induced hepatic ROS, intrahepatic 
CD8+ T cells, NKT cells and their secreted inflammatory cyto-
kines to promote NASH and HCC transition.20

Accumulating evidence demonstrates that the human gut 
microbiota can influence various pathologic conditions including 
liver cancer.21 We therefore explored the potential involvement 
of the gut microbiota in mediating dietary cholesterol-induced 
NAFLD–HCC. Along with sequentially increased bacterial 
richness, M. schaedleri_Otu038, Desulfovibrio_Otu047, Anaer-
otruncus_Otu107 and Desulfovibrionaceae_Otu073 increased 
along NAFLD–HCC progression. This is consistent with the 
report that M. schaedleri and Desulfovibrionaceae are strongly 
correlated with obesity, metabolic syndrome and inflammation in 
mouse models.22–24 Desulfovibrionaceae and Desulfovibrio were 
described to be abundant in a swine NASH model.25 Enriched 
Anaerotruncus was also reported in MCD diet-induced exper-
imental NASH mouse model.26 In addition, we observed that 
several Clostridium OTUs were enriched with high-cholesterol 
diet and positively associated with high serum cholesterol. 
Previous reports have shown increased prevalence of Clostridia 
in NASH patients,27 supporting our observation in this study. 
Moreover, the depletion of OTUs of Akkermansia, Lactobacillus, 
Bifidobacterium and Bacteroides were demonstrated in NAFLD–
HCC mice. These OTUs including A. municiphila_Otu034, 
Lactobacillus_Otu009, Bifidobacterium_Otu026, B. uniformis_
Otu080 and B. acidifaciens_Otu032 consistently decreased 
with high serum cholesterol. Bifidobacterium and Bacteroides 
were further shown to be negatively associated with total serum 
cholesterol in human hypercholesteremia patients in this study. 
Depletion of Bifidobacterium and Bacteroides has been previ-
ously demonstrated in human NASH patients.27 28 There are 
evidences that Bifidobacterium has cholesterol-lowering activity 
through gut microbiota modulation. Additionally, B. acidifaciens 
is a potential probiotic bacteria as it possess the ability to prevent 
obesity and improve insulin sensitivity in mice.29 A strain of B. 
uniformis, namely B. uniformis CECT 7771 reportedly amelio-
rated metabolic and immunological dysfunction induced by 
high-fat diet in mice.30 Strains of Lactobacillus has also been 
reported to be protective against NASH31 and beneficially influ-
ence liver cholesterol metabolism in a pattern similar to that 
resulting from statin treatment in murine model.32 Moreover, 
decrease in A. muciniphila reportedly promotes NAFLD through 
thinning of the intestinal mucus layer, thereby impairing gut 
permeability barrier.33 These results support our observations in 
this study and further indicate that the suppression of protective 
gut microbes might represent a means through which choles-
terol exerts its procarcinogenic effect in the liver. Our results 
provide new insights into the potential roles of gut dysbiosis in 
cholesterol-induced NAFLD–HCC progression.

In addition to gut microbiota dysbiosis, small molecule metab-
olites produced by commensal bacteria could contribute to the 
pathogenesis of NAFLD.13 Gut microbiota-related metabolites, 
including short-chain fatty acids, amino acid catabolites and 
bile acid, can both agonise and antagonise their cognate recep-
tors to reduce or exacerbate liver steatosis and inflammation.34 
Recently, a new gut flora generated metabolite, N,N,N-trimethyl-
5-aminovaleric acid (TMAVA), is found to be elevated in plasma 
of human liver steatosis and exacerbates fatty liver progression 
in mice.35 We therefore attempted to unravel metabolites that 
potentially mediate the NAFLD–HCC promoting effect of 
high dietary cholesterol. Metabolomics profiling revealed that 
bile acid metabolism was impaired with high-cholesterol diet. 
Primary bile acids including TCA, GCA, TCDCA and TUDCA 
were enriched in HFHC-fed mice, consistent with high plasma 

TCA, GCA and TCDCA previously reported in human NASH 
patients compared with healthy subjects.36 Disruption of bile acid 
homeostasis alters metabolic homeostasis in the liver and can 
lead to hepatic inflammation and metabolic diseases including 
diabetes and NAFLD.37 38 TCA, GCA, TCDCA and TUDCA are 
key signalling molecules linking the gut and the liver to impact 
hepatic lipid accumulation and inflammation.39 Bifidobacte-
rium and Bacteroides are the main bacterial genera of the gut 
microbiota involved in bile acid metabolism.40 They can decon-
jugate taurine-conjugated and glycine-conjugated bile acids to 
their unconjugated free forms through bile acid hydrolase and 
convert the unconjugated primary bile acids into secondary bile 
acids.40 Therefore, the decreased Bifidobacterium and Bacte-
roides in the stool of HFHC-fed mice may account for the accu-
mulated taurine-conjugated bile acids in HFHC-fed mice. TCA 
aggravated cholesterol-induced triglyceride accumulation in 
vitro in this study which further supports its contribution and 
potentially, those of other enriched bile acids to the pathogen-
esis of cholesterol-induced NAFLD–HCC. Additionally, IPA, 
which is exclusively produced by commensal gut microbes,41 42 
was depleted in both HFHC-fed conventional mice and germ-
free mice transplanted with stools from HFHC-fed mice. IPA 
is a specific metabolite whose production completely depends 
on tryptophan metabolism by the gut microbiota18 and charac-
terised as being anti-inflammatory and protective of intestinal 
barrier integrity.42 We identified significant reduction in micro-
bial tryptophan metabolism. Our in-vitro functional analysis 
showed that IPA could inhibit cell proliferation and suppress 
lipid accumulation in NASH–HCC cell lines. Collectively, our 
findings suggest that cholesterol could impair bile acid metabo-
lism and microbial tryptophan metabolism, leading to enhanced 
serum TCA, and reduced IPA, thereby promoting NAFLD–HCC 
development (figure 7H).

Gut microbiota transfer through faecal transplantation have 
been used to demonstrate active roles of gut microbiota in 
metabolic diseases including obesity and NAFLD.27 43 There-
fore, we sought to determine whether the gut microbiota can 
play a direct causative role in dietary cholesterol-induced liver 
steatohepatitis and tumourigenesis. Compared with control 
groups, cholesterol-modulated microbiota promoted steatohep-
atitis and hepatocyte proliferation/dysplasia in germ-free mice. 
Proinflammatory factor, and decreased IPA were associated with 
microbiota-induced liver steatohepatitis and tumourigenesis in 
germ-free mice, in consistence with observations in conventional 
mouse model. In addition to hepatic lipid accumulation, inflam-
mation, cell proliferation and dysplasia, HCC was not observed 
in germ-free mice transplanted with faecal microbiota from 
high-cholesterol diet-fed mice for 14 months. This suggested 
that dietary cholesterol plays an important role in inducing 
NAFLD–HCC formation and that the change of gut microbiota 
by dietary cholesterol contributes to the disease progression.

If cholesterol plays a key role in the pathogenesis of NASH 
and HCC, it would be important to establish that its functional 
blockade ameliorates the severity of steatohepatitis and NAFLD–
HCC development. To test this, we used atorvastatin, a 3-hydro
xy-3-methyl-glutaryl-coenzyme A (HMG-CoA) reductase inhib-
itor widely used to treat hypercholesterolemia, to inhibit choles-
terol biosynthesis in HFHC-fed mice. We found that no HCC 
was identified in atorvastatin-treated mice and the severities of 
steatohepatitis and fibrosis were largely blunted. Additionally, 
bacterial richness, Mucispirillum, Desulfovibrio, Anaerotruncus 
and Desulfovibrionaceae which increased along cholesterol-
induced NAFLD–HCC progression were reversed with ator-
vastatin treatment. Restoration of the gut microbiota diversity 
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could be one of the mechanisms through which atorvastatin 
elicits its protective effect against NAFLD–HCC as shown in 
this study. Moreover, unlike the mice gavaged with stools from 
mice fed with HFHC only, the stools from atorvastatin-treated 
HFHC-fed mice did not promote hepatic cell proliferation in 
recipient germ-free mice. These observations further highlight 
the potential use of atorvastatin in preventing the development 
of cholesterol-induced NAFLD–HCC.

In conclusion, this study shows for the first time, that 
prolonged high dietary cholesterol induces spontaneous and 
progressive development of NAFLD–HCC in male mice by 
modulating the gut microbiota. Cholesterol induces increased 
TCA and decreased IPA through gut microbiota alteration, 
thereby promoting lipid accumulation, cell proliferation in the 
liver, leading to NAFLD–HCC development (figure 7H). Anti-
cholesterol treatment completely abrogated dietary cholesterol-
induced NAFLD–HCC formation. This study highlights that 
cholesterol inhibition and manipulation of the gut microbiota 
and its related metabolites might represent effective strategies in 
preventing NAFLD–HCC.
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