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Abstract

Cluster randomized trials (CRTs) refer to experiments with randomization carried out at the cluster 

or the group level. While numerous statistical methods have been developed for the design and 

analysis of CRTs, most of the existing methods focused on testing the overall treatment effect 

across the population characteristics, with few discussions on the differential treatment effect 

among subpopulations. In addition, the sample size and power requirements for detecting 

differential treatment effect in CRTs remain unclear, but are helpful for studies planned with such 

an objective. In this article, we develop a new sample size formula for detecting treatment effect 

heterogeneity in two-level CRTs for continuous outcomes, continuous or binary covariates 

measured at cluster or individual level. We also investigate the roles of two intraclass correlation 

coefficients (ICCs): the adjusted ICC for the outcome of interest and the marginal ICC for the 

covariate of interest. We further derive a closed-form design effect formula to facilitate the 

application of the proposed method, and provide extensions to accommodate multiple covariates. 

Extensive simulations are carried out to validate the proposed formula in finite samples. We find 

that the empirical power agrees well with the prediction across a range of parameter constellations, 

when data are analyzed by a linear mixed effects model with a treatment-by-covariate interaction. 

Finally, we use data from the HF-ACTION study to illustrate the proposed sample size procedure 

for detecting heterogeneous treatment effects.
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1 | INTRODUCTION

Cluster randomized trials (CRTs), or sometimes called group randomized trials (GRTs), 

refer to experiments with randomization carried out at the cluster or the group level.1 CRTs 

are conducted because the intervention is naturally performed at the group level (e.g., a 

clinical decision support system delivered to the entire clinic), because the investigators wish 

to minimize the risk of treatment contamination within the same cluster, or because it is 

more ethical if the same treatment is applied to individuals in the same geographical unit 

(e.g., village or county), among others. Such trials are common in epidemiology, social 

science, and medicine. Over the past decade, CRTs are also adopted for studies embedded in 

the healthcare delivery systems, where there is a great interest in learning the real-world 

effectiveness of a system-based intervention.2 Numerous statistical methods have been 

developed for the design and analysis of CRTs; see, for example, the recent methodological 

reviews by Turneretal.3,4 However, these previous methods have primarily focused on the 

overall treatment effect (OTE) averaged over the population characteristics, and little 

discussion has been offered to address the differential treatment effect among 

subpopulations. A recent systematic review by Starks et al5 also found that only 18 out of 64 

health-related CRTs published between 2010 and 2016 examined heterogeneity of treatment 

effect (HTE) in subgroups. Although not as commonly seen in previous CRTs, the 

investigation of HTE has received increasing attention because cluster randomized designs 

are gaining popularity in intervention studies embedded in healthcare systems, where 

patient-level information is routinely collected and readily available.6,7 Responding to the 

lack of guidance on HTE analysis in CRTs,5 this article provides a model-based approach to 

design CRTs that allows investigators to detect HTE for continuous outcomes, with a 

particular emphasis on sample size and power requirements. Our method applies to two-

level CRTs with continuous or binary covariates that are measured at the individual or 

cluster level.

The concept of HTE refers to potentially variable treatment effects between patient 

subgroups that can arise due to different reasons, such as different responses to treatment, 

different vulnerability to certain diseases, and adverse effects.8 When HTE is present, the 

treatment of interest may provide benefit to some patients, but could be neutral or harmful to 

others.8 HTE is usually identified by separate subgroup analysis, or formalized by 

parametric statistical interaction terms in individually randomized trials. Systematic reviews 

of individually randomized trials suggest that HTE tends to be overlooked and inadequately 

reported.9–11 In particular, the sample size estimates provided in the design stage are usually 

specific to testing the OTE in the study population, and it is unknown whether the trial has 

adequate power to detect the HTE. Furthermore, separate subgroup analyses are frequently 

conducted in an ad hoc fashion and could involve multiple comparisons that are subject to 

false positive results. Similar concerns translate into the design and analysis of CRTs, with 
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the caveat that CRTs usually require a larger sample size for detecting the OTE due to 

within-cluster correlations.

Because the unit of randomization is each cluster, another distinguishing feature of CRTs is 

that the individual-level outcomes are correlated within the same cluster, possibly due to 

social connections or shared healthcare resources. The intraclass correlation coefficient 

(ICC) characterizes the similarity of values (e.g., outcomes) for pairs of individuals in the 

same cluster, and plays an important role in determining the sample size for CRTs. The 

sample size requirements for testing the OTE in CRTs have been well studied;1 a typical 

strategy is to inflate standard sample size estimate obtained under individual randomization 

by a design effect (also called the variance inflation factor),

θ1(m) = 1 + (m − 1)ρy, (1)

where ρy is the ICC for individual-level outcomes and m is the cluster size.12–14 In CRTs, 

the number of clusters and the cluster size jointly determine the total sample size. Based on 

this simple expression of design effect, others have also studied the trade-off between 

increasing cluster sizes vs increasing the number of clusters, and provided insights on 

optimal design of CRTs to reach the maximum statistical efficiency.15,16 While these results 

are particularly powerful in designing CRTs to evaluate the OTE, they do not take into 

account additional covariates (either cluster-level or patient-level), and so do not apply 

directly for HTE analysis. On the other hand, the sample size methodology for detecting 

HTE in individually randomized trials has been formalized either as examining the cross-site 

difference in treatment effect17 or as testing the statistical interaction between the treatment 

and covariates; see, for example, Brookes et al18 and Shieh19 for continuous outcomes, 

Greenland20 and Demidenko21 for binary outcomes, and Kang et al22 for censored time-to-

event outcomes. We take the latter approach by formalizing the detection of HTE as a test 

for treatment-by-covariate interaction in a random-effects model that accounts for within-

cluster correlations, and aim to clarify the essential ingredients for appropriate sample size 

planning with HTE analysis in CRTs.

In the educational statistics literature, several authors have previously studied power 

formulas for HTE analysis in CRTs. For example, Spybrook et al23 proposed power 

formulas for detecting treatment-by-covariate interaction effects in CRTs with a binary 

covariate. They also extended the formula to account for additional adjustment variables 

which further improve the test power. Dong et al24 extended these formulas to three-level 

CRTs under both fixed-slope and random-slope models. While these previous results 

explicitly involve the ICCs of the outcome, the impact of the clustering of the covariate on 

power has not been explicitly considered. In addition, these previous sample size formulas 

have not been empirically validated in Monte Carlo simulation studies, and their finite-

sample operating characteristics remain to be explored. On the other hand, sample size 

procedures for testing interaction terms have been discussed in individually randomized 

studies with repeated measures, namely studies where treatment is randomized to individuals 

and repeated measurements are then taken for each individual across several time points. In 

that context, the target parameter that describes the intervention effect is the change in slopes 

of the individual outcome trajectory, and is parameterized as the statistical interaction 
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between treatment and time (in continuous scale). For continuous outcomes, Heo and 

Leon25 provided a sample size formula to detect the two-way and three-way slope change 

over time; their test statistic is based on method of moments and the intraclass correlation 

for repeated measurements has only been considered in variance estimation. Jung and Ahn26 

derived a sample size formula for the slope change based on continuous outcomes analyzed 

by independence generalized estimating equations.27 Our interaction test for detecting HTE 

in CRTs is related to and generalizes the results developed for the slope test in longitudinal 

studies. While the interaction is defined as the product between the treatment and a time 

variable in longitudinal studies, the interaction term can be defined as the product between 

the treatment and a general covariate. The general covariate could be either continuous or 

binary, and could be either measured at the cluster level or individual level, depending on the 

scientific question. These considerations motivate us to formalize a sample size procedure 

applicable to the interaction test used to describe HTE in CRTs for continuous outcomes.

The remainder of this article is organized as follows. In Section 2, we introduce the linear 

mixed effects model with a treatment-by-covariate interaction. In Section 3, we develop a 

closed-form sample size formula for testing the treatment-by-covariate interaction and 

provide extensions to multiple covariates. We present numerical evidence in Section 4 to 

illustrate the proposed sample size formula, and conduct a Monte Carlo simulation study in 

Section 5 to investigate the accuracy of the proposed power formula. In Section 6, we use 

data obtained from the HF-ACTION study to illustrate the new sample size formula to detect 

HTE. Section 7 concludes with a discussion.

2 | STATISTICAL MODEL

We consider a parallel CRT with n clusters randomly assigned to two arms or conditions. 

Typically, individuals are recruited in each cluster and the outcomes will be measured for 

each individual. Let Yij be a continuous outcome for the jth individual (j=1, … , mi) in the 

ith cluster (i=1, … , n). The linear mixed effects model is commonly used to analyze 

individual-level outcomes in CRTs, with a random cluster intercept that accounts for the 

outcome ICC.4 When the focus is on the overall intervention effect, a linear mixed effects 

model with a treatment indicator and a random intercept is written as:

Y ij = α1 + α2W i + λi + ξij, (2)

where α1 is the grand mean, Wi is the binary treatment indicator (Wi =1 if cluster i is 

assigned to intervention and Wi =0 otherwise), α2 is the OTE, λi N 0, σλ
2  is the random 

cluster effect, and  ξij N 0, σξ
2  is the residual error, independent of the random cluster effect.

Individual-level covariates are often collected at baseline in CRTs embedded within the 

healthcare delivery systems.6,28 In addition to testing for the OTE, investigators may wish to 

test possible treatment effect heterogeneity with respect to some covariates. In this case, as 

the power and sample size requirements for the OTE are relatively well known, it would be 

important to understand the sample size and power requirements with respect to the 

interaction effect parameter describing treatment effect heterogeneity. Assume that Xij is a p-

Yang et al. Page 4

Stat Med. Author manuscript; available in PMC 2021 March 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



dimensional vector of individual-level covariates, such as age, gender, and race among 

others, we could extend model (2) for the analysis of individual-level outcomes as

Y ij = β1 + β2W i + β3
TXij + β4

TXijW i + γi + ϵij, (3)

where Xij =(Xij1, … , Xijp)T is the set of covariates measured for individual j in cluster i, Wi 

is defined in model (2), XijWi represents a vector of interactions between treatment and 

covariates, β1 is the grand mean, β2 is the main treatment effect, β3 = (β31, … , β3p)T and β4 

= (β41, … , β4p)T are regression coefficients for the covariates and the interaction terms. For 

example, assuming Xij is a binary covariate, race, and Xij =1 denotes black while Xij =0 

white. The parameter β1 represents the mean response among white patients in the control 

arm, β2 represents the treatment effect for white patients, β1 + β3 represents the mean 

response among black patients in the control arm, and β4 represents the difference in 

treatment effect among black and white patients, which could be the parameter of interest. 

Similar to the assumptions in model (2), we assume in model (3) γi N 0, σγ2  and 

ϵij N 0, σϵ2 , and independence between γi and ϵij. This same model has also been discussed 

in Spybrook et al,23 where Xij is binary. Of note, model (3) is a direct extension of those 

studied in Raudenbush,29 Li et al,30 and Yang et al,31 where only main effects of Wi and Xij 

are considered. Further extensions of model (3) to allow for random coefficients for Xij can 

be found in Jaciw et al32 and Dong et al.24

To proceed, we let W = E W i  denote the proportion of clusters that are randomized to the 

intervention group. When half of clusters are randomized to the intervention arm, W = 1/2, 

but our results allow W  to be any value in (0,1). We reparameterize model (3) by subtracting 

W  from the treatment variable, and obtain

Y ij = β1 + β2W + β2 W i − W + β3 + β4W TXij + β4
TXij W i − W + γi + ϵij

= b1 + b2 W i − W + b3
TXij + b4

TXij W i − W + γi + ϵij,
(4)

where the coefficients are b1 = β1 + β2W , b2 = β2, b3 = β3 + β4W , and b4 = β4. From model 

(4), the total variance of Yij adjusting for Xij is var Y ij ∣ W i, Xij = σγ2 + σϵ2 = σy ∣ x
2 , and 

cov Y ij, Y i′j′ ∣ W i, Xij = ℐ i = i′ σγ2 + ℐ i = i′, j = j′ σϵ2, where ℐ is the indicator function. 

The outcome ICC adjusting for Xij is then defined as29

ρy ∣ x = σγ2

σy ∣ x
2 = σγ2

σγ2 + σϵ2
. (5)

Following the terminology in Murray and Blitstein,33 we define σγ2, σϵ2 as the adjusted 

variance components, and ρy|x as the adjusted outcome ICC. Furthermore, the joint 

covariance matrix of within-cluster observations is compound symmetric. In other words, if 

we define Y i = Y i1, …, Y imi
T , we can write in matrix notations that 
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cov Y i ∣ W i, Xij = σy ∣ x
2 1 − ρy ∣ x Imi + ρy ∣ xJmi = σy ∣ x

2 Ri, where Imi is the mi × mi identity 

matrix, Jmi is the mi × mi matrix of ones, and Ri is the exchangeable correlation matrix.

Define the collection of design points Zij = 1, W i − W , Xij
T , Xij

T W i − W T
 and 

 Zi = Zi1, …, Zimi
T . Given the values of σγ2 and σϵ2, the covariance matrix and the 

correlation matrix of Yi are known. The best linear unbiased estimator (BLUE) of b 
=(b1,b2,b3,b4)T is given by the generalized least squares (GLS)

b = ∑
i = 1

n
Zi

TRi
−1Zi

−1
∑
i = 1

n
Zi

TRi
−1Y i . (6)

When n is large, b  is approximately normally distributed with mean b and variance matrix

Σn = σy ∣ x
2 Un

−1,       where Un = ∑
i = 1

n
Zi

TRi
−1Zi . (7)

In practice, both σγ2 and σϵ2 are unknown, and therefore will be estimated from the data. The 

restricted maximum likelihood (REML) approach can be used to estimate both b and 

variance components; additional technical details for estimation can be found in Pinheiro 

and Bates.34

3 | SAMPLE SIZE AND POWER CALCULATION

3.1 | Basic setting with one covariate

We first derive the sample size formula when the treatment effect heterogeneity concerns 

one covariate. In other words, p =1; this is the case, for example, when the covariate of 

interest is race (a binary covariate) or age (a continuous covariate). We keep the race variable 

as a running example through this section. The interaction effect, β4 is a scalar, and we are 

interested in testing the null hypothesis H0 : β4 = 0 using a two-sided test. In our running 

example, we would be interested in testing whether the treatment effect differs between two 

different racial groups. Based on the linear mixed effects model (4), the scaled GLS 

estimator n β4 − β4  is asymptotically normal with mean zero and variance equal to the 

lower right element of Σ = limn→∞nΣn, which we denote by σ4
2. This suggests the use of the 

z-test statistic, nβ4/σ4, which will be referenced to the standard normal distribution. For a 

prespecified test size β4 = Δ, it then follows that the required number of clusters with a 

nominal test size α and power 1 – λ is given by

n =
σ4

2 z1 − α/2 + z1 − λ
2

Δ2 . (8)
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To derive an expression for σ4
2, we examine the expression for U = limn→∞n−1Un (readers 

who want to skip the technical intermediate steps can jump to Equation (9) without loss of 

continuity). Following the conventions in designing CRTs, here we make the simplification 

assumption that the cluster sizes are equal, namely, mi = m for all i. With this assumption, 

the inverse of the exchangeable working correlation structure can be written as35

Ri−1 = 1
1 − ρy ∣ x

Im −
ρy ∣ x

1 − ρy ∣ x 1 + (m − 1)ρy ∣ x
Jm = cIm + dJm,

where we define c = 1/(1 – ρy|x), and d = −ρy|x/[(1 – ρy|x){1 + (m − 1)ρy|x}]. This allows us 

to write Un = cSn + dTn, where

Sn = ∑
i = 1

n
∑

j = 1

m
ZijZijT = ∑

i = 1

n
∑

j = 1

m

1 W i − W Xij W i − W Xij

W i − W W i − W 2 W i − W Xij W i − W 2Xij

Xij W i − W Xij Xij2 W i − W Xij2

W i − W Xij W i − W 2Xij W i − W Xij2 W i − W 2Xij2

and

Tn = ∑
i = 1

n
∑

j = 1

m
Zij ∑

j = 1

m
Zij

T
= ∑

i = 1

n
m2

1 W i − W Xi W i − W Xi

W i − W W i − W 2 W i − W Xi W i − W 2Xi

Xi W i − W Xi Xi
2 W i − W Xi

2

W i − W Xi W i − W 2Xi W i − W Xi
2 W i − W 2Xi

2

,

where Xi
l = m−1∑j = 1

m Xij
l
 for l =1,2 represent the cluster-specific moment values for the 

covariate. Next, define μl = limn ∞ (nm)−1∑i = 1
n ∑j = 1

m Xij
l , η2 = limn ∞ n−1∑i = 1

n Xi
2 as 

the limits of covariate moments and σw2 = W (1 − W ) as the variation in the treatment 

assignment, we can obtain the limits

S = lim
n ∞

 n−1Sn = m

1 0 μ1 0

0 σw2 0 μ1σw2

μ1 0 μ2 0

0 μ1σw2 0 μ2σw2

and

T = lim
n ∞

 n−1Tn = m2

1 0 μ1 0

0 σw2 0 μ1σw2

μ1 0 η2 0

0 μ1σw2 0 η2σw2

.

Yang et al. Page 7

Stat Med. Author manuscript; available in PMC 2021 March 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



These calculations allow us to obtain the structure of the limit of the precision matrix in a 

block form as

Notice that each block in U is actually a diagonal matrix, which permits a simple closed-

form derivation of the lower right element of U−1 via block matrix inversion. Specifically, 

we observe A = μ1
−1C, and B = C, then the lower right block becomes (D − CA−1B)−1 = (D 

− CC−1μ1B)−1 = (D − μ1B)−1. It follows that the lower-right element of Σ = σy ∣ x
2 U−1

becomes

σ4
2 =

σy ∣ x
2

mσw2 c μ2 − μ1
2 + dm η2 − μ1

2

=
σy ∣ x

2 1 − ρy ∣ x 1 + (m − 1)ρy ∣ x
mσw2 1 − ρy ∣ x μ2 − μ1

2 + mρy ∣ x μ2 − η2
,

(9)

where σw2 = 1/4 in most CRTs due to balanced allocation of treatment.

Equations (8) and (9) provide a simple approach to calculate the required number of clusters 

to power the test of treatment effect heterogeneity. Given information on the cluster size m, 

adjusted ICC of the outcome ρy|x, and moment values μ1, μ2, and η2, one could obtain the 

required number of clusters n by simple calculation. On the other hand, if we have 

information on the maximum number of clusters n, Equations (8) and (9) imply a quadratic 

function of the cluster sizes required to achieve the desired level of power, and therefore m 
can be obtained by the quadratic formula. To get further insights on the sample size formula, 

it is possible to simplify Equation (9) by introducing a new quantity, ρx, which measures the 

intraclass correlation for the covariate of interest. The concept of covariate ICC has been 

previously mentioned in Raudenbush,29 and can be viewed as the counterpart of outcome 

ICC. In our running example, ρx measures the degree of similarity between within-cluster 

individuals in terms of their racial groups. Formally, we define

ρx =
E XijXik − μ1

2

μ2 − μ1
2 ,

where Xij, Xik are measured for pairs of individuals in the same cluster. With this quantity, it 

follows that

η2 = lim
n ∞

  1
nm2 ∑

i = 1

n
∑

j = 1

m
Xij2 + ∑

j ≠ k
XijXik = 1

m 1 + (m − 1)ρx μ2 + (m − 1) 1 − ρx μ1
2 .
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Plugging this expression into (9), and notice that the marginal variance of the covariate Xij is 

σx2 = μ2 − μ1
2, we have

σ4
2 =

σy ∣ x
2 1 − ρy ∣ x 1 + (m − 1)ρy ∣ x

mσw2 σx2 1 + (m − 2)ρy ∣ x − (m − 1)ρxρy ∣ x
, (10)

and the required total number of individuals in a CRT satisfies

nm =
z1 − α/2 + z1 − λ

2σy ∣ x
2 1 − ρy ∣ x 1 + (m − 1)ρy ∣ x

Δ2σw2 σx2 1 + (m − 2)ρy ∣ x − (m − 1)ρxρy ∣ x
. (11)

Sample size formula (11) depends on the marginal variance of the covariate σx2 and the two 

ICC parameters ρy|x and ρx. Compared with the conventional CRT powered to test for the 

overall treatment effect, we require information of the adjusted outcome ICC, and 

information of Xij through two second-order parameters σx2 and ρx. The above expression 

allows us to study the relationship between sample size and distributions of Xij. Particularly, 

larger values of marginal variance σx2 reduce the required sample size for fixed outcome ICC, 

while larger values of covariate ICC ρx increase the required sample size for fixed outcome 

ICC. This is intuitive since larger marginal variability of Xij and smaller covariate ICC imply 

more per unit information on estimating the treatment effect heterogeneity and hence 

improve the efficiency. On the other hand, the relationship between the required number of 

clusters and the adjusted outcome ICC seems less clear, and we will conduct numerical 

studies in Section 4.1 to assess such relationships. Another noticeable feature of sample size 

formula (11) is that it does not depend on the grand mean term or main effect sizes of the 

treatment and covariate, which suggests that knowledge of the effect size for the interaction 

term suffices.

The above sample size formula can be inverted to obtain the minimum detectable effect size 

(MDES) given the available number of clusters n and the cluster size m. In this case, we can 

easily see that the study would have 1 − λ power to detect an interaction effect size of at 

least |Δ|, where

MDES = Δ =
|z1 − α/2 + z1 − λ|σy ∣ x

σwσx
1 − ρy ∣ x 1 + (m − 1)ρy ∣ x

nm 1 + (m − 2)ρy ∣ x − (m − 1)ρxρy ∣ x
.

It is important to notice that sample size formula (11) includes two interesting special cases.

Case 1 (cluster-level covariate). When the covariate of interest is at the cluster-level (e.g., 

proportion of black patients in each clinic) and hence Xij = Xi for all j, we naturally have ρx 

= 1 (because the covariate is perfectly correlated with itself in each cluster), and the above 

formulas reduce to
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σ4
2 =

σy ∣ x
2 1 + (m − 1)ρy ∣ x

mσw2 σx2
, (12)

nm =
z1 − α/2 + z1 − λ

2σy ∣ x
2 1 + (m − 1)ρy ∣ x

Δ2σw2 σx2
, (13)

from which we immediately recognize that the term, 1 + (m − 1)ρy|x, corresponds to the 

usual design effect in a parallel CRT powered for testing OTE, except that the adjusted 

outcome ICC is used. This is expected because XiWi degenerates to a cluster-level covariate, 

and the variance inflation for XiWi due to clustering resembles that for the treatment, which 

is also a cluster-level covariate. Furthermore, under equal treatment allocation and when Xi 

is a binary cluster-level covariate with prevalence 1/2, Equation (13) reduces to equation 

(10) in Spybrook et al.23 In this regard, formula (13) generalizes equation (10) in Spybrook 

et al23 to allow for unequal allocation and an arbitrary cluster-level covariate.

Case 2 (no residual clustering). If there is no residual clustering and that we are interested in 

testing treatment effect heterogeneity in an individually randomized trial, then we must have 

ρy|x = 0. The variance expression and required sample size can be shown to be

σ4
2 =

σy ∣ x
2

mσw2 σx2
, (14)

N =
z1 − α/2 + z1 − λ

2σy ∣ x
2

Δ2σw2 σx2
, (15)

where N now represents the total number of individuals, and σy ∣ x
2  is the adjusted total 

variance. This sample size formula is closely connected with the one provided in Shieh et al,
19 although they did not provide an explicit expression and focused on the t-test statistic.

The forms of Equations (13) and (15) provide the basis for formally defining the design 

effect due to clustering with respect to testing treatment effect heterogeneity. That is, the 

design effect for testing treatment heterogeneity with respect to a cluster-level covariate has 

the same form as that defined for testing OTE,

θ1(m) = 1 + (m − 1)ρy ∣ x, (16)

while the design effect for testing treatment effect heterogeneity with respect to an 

individual-level covariate is implied from Equations (11) and (15),

θ2(m) = 1 − ρy ∣ x 1 + (m − 1)ρy ∣ x
1 + (m − 2)ρy ∣ x − (m − 1)ρxρy ∣ x

. (17)
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Unlike θ1(m), which diverges to infinity as cluster size increases indefinitely, the design 

effect θ2(m) converges to a finite constant θ2(∞) = (1 − ρy|x)/(1 − ρx). Hence, depending on 

the relative magnitude of the two ICCs, the limit of the design effect θ2(∞) may be either 

greater or smaller than one, which represents a distinguishing feature between θ1(m) and 

θ2(m). In addition, the limit of the design effect θ2(∞) decreases as ρy|x increases and ρx 

decreases, while θ1(m) is monotone in ρy|x. Finally, when the adjusted outcome ICC equals 

to the covariate ICC, there is no efficiency loss due to clustering in testing the treatment 

effect heterogeneity, because θ2(m) = 1 for any m.

3.2 | Extensions to multiple covariates

Although we mainly focus on the basic scenario, it is possible to extend the above sample 

size procedure for jointly testing the interactions with multiple covariates. In this case, Xij 

=(Xij1, Xij2, … , Xijp)T is the set of p ≥ 2 covariates, and the interaction parameters of 

interest are β4 = (β41, β42, … , β4p)T. We are interested in testing the global null hypothesis 

H0 : β4 = 0 based on a Wald test. In the context of the running example, we could have 

access to p =2 covariates: race and gender, and would be interested in jointly testing whether 

race and gender modify the treatment effect. From the linear mixed effects model (4), the 

scaled GLS estimator n β4 − β4  is asymptotically normal with mean zero and variance 

equal to the lower-right p × p block of Σ = limn→∞nΣn, which we denote by Ω4. This 

motivates the Wald test statistics Q = nβ4
TΩ4

−1β4, which converges to a Chi-squared 

distribution χ2(p, ϑ) with p degrees of freedom and the noncentrality parameter 

ϑ = nβ4
TΩ4

−1β4. For fixed effect size vector β4, the corresponding power equation of the Wald 

test is approximated by

1 − λ = ∫χ1 − α
2 (p)

∞
f(x; p, ϑ)dx, (18)

where f(x;p,ϑ) is the probability density function of the χ2(p, ϑ) distribution. Fixing n or m, 

solving Equation (18) for m or n then gives the required sample size.

An explicit sample size equation with multiple covariates now requires the derivation of the 

variance matrix Ω4, which determines the noncentrality parameter. We show in Web 

Appendix A that

Ω4

=
σy ∣ x

2 1 − ρy ∣ x 1 + (m − 1)ρy ∣ x
mσw2

Ωx
−1/2 Γx

1 + (m − 2)ρy ∣ xΓx
1 − (m − 1)ρy ∣ xΓx

0 −1Ωx
−1/2

.

(19)

In this expression, information on covariates has been represented by two matrix 

expressions. The first matrix Γx
1 summarizes the marginal correlation between p covariates 

and is defined as

Γx1 = Ωx−1/2 E XijXijT − ℎ1ℎ1
T Ωx−1/2 = Ωx−1/2 H2 − ℎ1ℎ1

T Ωx−1/2,

Yang et al. Page 11

Stat Med. Author manuscript; available in PMC 2021 March 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



where ℎ1 = limn ∞ (nm)−1∑i = 1
n ∑j = 1

m Xij, H2 = limn ∞ (nm)−1∑i = 1
n ∑j = 1

m XijXij
T , 

Ωx = diag H2 − ℎ1ℎ1
T  is the diagonal matrix containing the marginal variances of all 

covariates. Therefore, the diagonal element of Γx
1 is one and the off-diagonal elements 

represent the marginal correlation between each pair of covariates. The second matrix Γx
0 is 

defined as

Γx0 = Ωx−1/2 E XijXik
T − ℎ1ℎ1

T Ωx−1/2,

which could be regarded as a multivariate extension of the scalar covariate ICC. Specifically, 

the diagonal element of Γx
0 is the ICC of each covariate, while the off-diagonal elements are 

the intraclass cross-correlations between two different covariates. To further aid the 

interpretations of the two correlation matrices in Equation (19), we provide in Web 

Appendix A a simple example where Xij is generated from a multilevel model, from which 

we derive explicit forms of Γx
1 and Γx

0. When p=2 covariates are considered, we additionally 

derive a more explicit expression of Equation (19) in Web Appendix A, as a function of 

scalar correlation parameters. Finally, we notice that the variance expression (10) is a special 

case of (19) when p=1. In that case, Γx
1 = 1, Γx

0 = ρx, Ωx = σx2 and σ4
2 is obtained.

Similar to Section 3.1, the expression (19) shed lights on two special cases. For example, 

when the multiple covariates of interest are all measured at the cluster-level (e.g., proportion 

of Black patients and proportion of female patients in each clinic), it is easy to verify that 

Γx
1 = Γx

0 = Γx, and so the variance expression simplifies to

Ω4 =
σy ∣ x

2 1 + (m − 1)ρy ∣ x
mσw2

Ωx
−1/2Γx

−1Ωx
−1/2, (20)

where we again see the expression 1 + (m − 1)ρy|x as the design effect due to clustering. 

Finally, in an individually randomized trial, one could similarly show that the variance 

becomes

Ω4 = σy ∣ x
2 /σw2 Ωx

−1/2Γx
−1Ωx

−1/2, (21)

which happens to be the expression (19) evaluated at ρy|x = 0.

4 | NUMERICAL ILLUSTRATIONS

In this section, we present some numerical evidence to further illustrate the variance 

expression (10) in the univariate case. In particular, we aim to study (i) how the power for 

testing H0 : β4 = 0, or equivalently σ4
2 changes as we vary the two ICC parameters and (ii) 

the comparisons between the required sample sizes for testing HTE vs those for testing OTE 

in CRTs.
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4.1 | Roles of the ICC parameters

Because the variance expression σ4
2 involves two ICC parameters, ρy|x for the outcome of 

interest, and ρx for the covariate of interest, it is of particular interest to understand how the 

values of these two parameters affect the σ4
2 and hence the power for testing H0 : β4 = 0. In 

Figure 1, we plot values of σ4
2 over the range of either ρx (upper panels) or ρy|x (lower 

panels), with cluster sizes varied from m∈{20,50,100}, and σy ∣ x
2 = σx2 = 1, σw2 = 1/4. Notice 

that we allow the largest ρx to be 1 and the largest ρy|x to be 0.5. The largest value ρx = 1 is 

observed when the covariate is measured at the cluster| level; this scenario allows us to 

compare the efficiency between the interaction test with an individual-level covariate and 

that with a cluster-level covariate. The largest ρy|x, however, may be unlikely to be seen in 

real-world CRT contexts. We include those values merely to illustrate the relationship 

between σ4
2 and ρy|x. From the upper panels, it is clear that larger values of the covariate ICC 

ρx inflate the variance σ4
2, and therefore reduce the power of the interaction test, when all 

other parameters are held fixed. This pattern confirms the analytical result in Section 3.1. 

When the adjusted outcome ICC is small (ρy|x = 0.01), the relationship between σ4
2 and 

covariate ICC ρx is relatively flat, indicating that the power (which is inversely related to σ4
2) 

is not sensitive to ρx. But as the adjusted outcome ICC grows larger (ρy|x = 0.1), the power 

of the test becomes increasingly sensitive to changes in ρx, especially when ρx is larger than 

0.5. Because ρx = 1 corresponds to the scenario with a cluster-level covariate, it is evident 

that the power to detect the cluster-level interaction effect could be much smaller than that to 

detect the individual-level interaction effect, when the adjusted outcome ICC is nontrivial 

(say, ρy|x ≥ 0.05) and the cluster size is not large. From the lower panels, we observe a 

parabolic relationship between σ4
2 and ρy|x. In general, as the adjusted outcome ICC 

increases, the variance σ4
2 first increases to its maximum and then decreases monotonically. 

In fact, we can use the quadratic formula to show that the value of ρy|x that gives the largest 

variance (stationary or critical point) is

ρy ∣ x = 1 − ρx 1 + (m − 1)ρx − 1
1 − ρx (m − 1) − 1 ∈ [0, 1), (22)

which clearly depends on both the covariate ICC and cluster size. As the covariate ICC 

becomes smaller or the cluster sizes become larger, ρy ∣ x moves toward zero. This underlies 

the reason why σ4
2 is nearly monotonically decreasing in ρy|x when ρx = 0.05. Web Figure 4 

presents the analogous results for m=10 (extremely small cluster sizes) and m=200. Results 

for m=10 and m =200 are qualitatively similar to those for m=20 and m=100, respectively. 

Therefore, the patterns seen in Figure 1 extend to smaller and larger cluster sizes.

4.2 | Sample size requirements for testing HTE vs testing OTE

Most current CRTs are powered to detect the OTE, parameterized by α2 in model (2). It is 

unknown whether such studies have adequate power to detect the treatment-by-covariate 

interaction, parameterized by β4 in model (3). In this section, we use a simple example to 
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numerically evaluate how many additional information is required to power the interaction 

test vs the overall treatment effect test. That is, the sample size difference between testing 

the null hypothesis H0 : β4 = 0 in model (3) vs H0 : α2 = 0 in model (2), when the true data 

generating process follows model (3).

A complication of this evaluation is that when β4 is nonzero, models (2) and (3) may not 

hold simultaneously (see Web Appendix B for further details). However, when the true 

model follows (3), it is possible to approximate the unadjusted model of form (2). To do so, 

we assume a single continuous covariate generated from a multilevel model such that Xij = μ 
+ μi + τij, where μ is the marginal mean, μi N 0, σμ2 , τij N 0, στ2 , and τij is independent of 

μi. We further assume the covariate is mean-centered such that μ = 0. The marginal variance 

of Xij is σx2 = σμ2 + στ2, and the covariate ICC is ρx = σμ2 / σμ2 + στ2 . We can then rewrite model 

(3) with this mean-centered covariate as

Yij = β1 + β2W i + β3 μi + τij + β4 μi + τij W i + γi + ϵij
= β1 + β2W i + β3μi + β4W iμi + γi + β3τij + β4W iτij + ϵij
= α1 + α2W i + λi + ξij,

where we treat α1 = β1, α2 = β2, λi = β3μi + β4Wiμi + γi, and ξij = β3τij + β4Wiτij + ϵij. The 

approximate model (2) can then be identified once we compute the induced variance 

components for λi and ξij. In Web Appendix B, we show that

σλ
2 = var λi = σγ2 + Bσμ2

σξ
2 = var ξij = σϵ2 + Bστ2,

and cov(λi, ξij) = 0, where B = β3
2 + β4

2W + 2β3β4W . Define σy2 = σλ
2 + σξ

2 and recall that 

σy ∣ x
2 = σγ2 + σϵ2, the unadjusted outcome ICC can be reasonably approximated by (see Web 

Appendix B for additional details)

ρy =
σλ

2

σy2
=

σy ∣ x
2

σy ∣ x
2 + Bσx2

ρy ∣ x + Bσx2

σy ∣ x
2 + Bσx2

ρx = ωρy ∣ x + (1 − ω)ρx, (23)

which appears as a weighted combination of the adjusted outcome ICC ρy|x and covariate 

ICC ρx (with weight ω). Specifically, when all the ICCs are nonnegative, ρy ≥ ρy|x if and 

only if ρx ≥ ρy|x. Furthermore, if the adjusted total variance σy ∣ x
2  is substantially larger than 

BσX
2 , then the unadjusted outcome ICC tends to be similar to the adjusted outcome ICC, ρy 

≈ ρy|x.

These derivations allow us to approximate the asymptotic variance of n α2 − α2 , which is 

given by σ2
2 ≈ σy2 1 + m − 1 ρy / mσw2 . We further define the ratio of detectable effect size 

(RDES) as RDES = Δ/ΔOTE, where Δ is the hypothesized value of β4, and ΔOTE is the 

hypothesized value of α2 = β2. Based on expression (8), the ratio of total sample size 

required for testing HTE vs OTE is given by
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Θ(m) =
σy ∣ x

2 1 − ρy ∣ x
σy2σx2 1 + (m − 2)ρy ∣ x − (m − 1)ρxρy ∣ x

× 1 + (m − 1)ρy ∣ x
1 + (m − 1)ρy

× 1
RDES2

=
σy ∣ x

2 1 − ρy ∣ x
σy2σx2 1 + (m − 2)ρy ∣ x − (m − 1)ρxρy ∣ x

× 1 + (m − 1)ρy ∣ x
1 + (m − 1)ωρy ∣ x + (m − 1)(1 − ω)ρx

× 1
RDES2 ,

(24)

where the last equality results from the relationship (23), and σy2 = σy ∣ x
2 + Bσx2. A more 

detailed analytical investigation of Θ(m) as a function of covariate ICC can be found in Web 

Appendix B.

Figure 2 presents the values of Θ(20), Θ(50), and Θ(100), with various values of ρx and ρy|x, 

and fixing σx2 = σy ∣ x
2 = 1, β2 = β3 = 0.5 and W = 1/2 (equal randomization). This scenario 

corresponds to a CRT with both main effects as half the magnitude of the total adjusted 

standard deviation. We vary the RDES ∈{0.1,0.25,0.5,1} to represent scenarios where the 

interaction effect is one-tenth of, a quarter of, half as and identical to the OTE. Three 

patterns emerge from the Figure 2. First, Θ(m) appears mostly as a decreasing function of 

ρx, with a few exceptions when ρy|x is large. When the adjusted outcome ICC is small (ρy|x = 

0.01), the variance inflation factor Θ(m) is sensitive to covariate ICC, and decreases sharply 

as covariate ICC increases. However, as the adjusted outcome ICC increases, the 

relationship between Θ(m) and covariate ICC ρx becomes relatively flat. The total sample 

size required for the interaction test is more likely to exceed those required for the OTE test 

when the covariate ICC and outcome ICC are both small. For example, when the interaction 

effect is one half of the OTE, the total sample size required for testing HTE can be 2.5 times 

that required for testing the OTE, when the covariate ICC is close to 0, the adjusted outcome 

ICC is 0.01 and m=20. When the interaction effect is the same as the OTE, however, the 

total sample size required for testing HTE is smaller than that required for testing the OTE. 

For individually randomized trials, Brookes et al18 previously suggested that the sample size 

should be inflated at least 4- or 16-folds for testing the interaction effect with the same or 

half magnitude of the OTE with a binary covariate (in their case σx2 = 1/4). Extrapolating our 

results to a binary covariate with σx2 = 1/4, we find that the sample size should be inflated at 

most 3- and 10-fold for testing the interaction effect with the same or half the magnitude of 

the OTE in CRTs (these numbers are calculated by four times the numbers in the “worst case 

scenarios” where the covariate ICC is zero, adjusted outcome ICC is 0.01, W = 1/2, and 

cluster size is 20). Such indirect comparisons suggest that the sample size inflation for 

testing an interaction term in CRTs may be no larger than that in individually randomized 

trials, among the scenarios we considered. Second, Θ(m) becomes smaller as cluster size 

increases, which indicates that the total sample size required for the two tests are likely to be 

more comparable when the study involves clusters with more participants. Finally, the 

determining factor for power of the interaction test is still the RDES. When the RDES is 

very small (say 0.1), the variation inflation factor Θ(m) can be more than 50 when the cluster 

size is not large, and any realistic sample sizes used in current CRTs will not be able to 

power an interaction test with such small effect sizes. Nevertheless, when the interaction 
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effect size is close to OTE (RDES=1), the required sample size for the interaction test is 

frequently smaller than that for the overall effect test, across the ranges of ICC values we 

have considered. In the Web Appendix, we have varied the main effect of the covariate β3 ∈ 
{0.25,1} and the cluster size m∈{10,200}; the results are presented in Web Figures 5 to 8. 

Overall, those additional results are similar to Figure 2 and confirm that the patterns 

observed here extend to small and larger covariate main effect and cluster sizes.

5 | SIMULATIONS

5.1 | Simulation design

We investigate the performance of the new sample size formula for detecting treatment 

effect heterogeneity in finite samples via simulations. We focus on a cross-sectional CRT 

with clusters randomized to two arms in a 1:1 ratio, so that σw2 = 1/4. For simplicity, we 

consider a single individual-level covariate Xij, which could be either continuous or binary. 

From Equation (11), the total sample size depends on the following parameters: type I error 

rate, power, the total adjusted variance σy ∣ x
2  and the marginal variance of covariate σx2, 

adjusted outcome ICC and covariate ICC, cluster size, and the effect size for the treatment-

by-covariate interaction. Throughout we fix σy ∣ x
2 = 1, nominal type I error at 5%, desired 

level of power at 80%, and vary the remaining parameters in a factorial design. We consider 

four levels of cluster sizes m∈{10,20,50,100}, representing small to large cluster sizes; three 

levels of adjusted outcome ICC ρy|x ∈ {0.01,0.05,0.1}, representing values commonly 

reported in the CRT literature;1,36 three levels of covariate ICC ρx ∈ {0.1,0.25,0.5}, 

mimicking values considered in the illustrative example in Section 6. We fix the interaction 

effect size at zero to examine the empirical type I error rate, and choose the interaction effect 

size among {0.10,0.15,0.25} for the continuous covariate scenario and among 

{0.25,0.35,0.45} for the binary covariate scenario. The differences in the choice of effect 

size in the continuous and binary covariate scenarios are to offset the differences in the 

marginal variance σx2 and to obtain comparable sample size estimates. To summarize, for 

each type of covariate, there are in total 4×3×3×3=108 scenarios. We have also investigated 

additional scenarios when ρx = 0.01 and 0.05, and find similar results. Those results are 

omitted for brevity.

In the continuous covariate scenario, we fix the marginal variance σx2 = 1, and generate Xij 

from Xij = 1/2 + μi + τij, where μi N 0, ρxσx2 , and τij N 0, 1 − ρx σx2 . In the binary 

covariate scenario, we simulated Xij from the beta-binomial model, where the cluster-

specific prevalence πi ~ Beta(q1, q2), and Xij ~ Bernoulli(πi). The implied marginal 

prevalence across all clusters from this model is q1/(q1 + q2), and the covariate ICC can be 

analytically shown as ρx = (1 + q1 + q2)−1. We choose q1 and q2 to ensure the marginal 

prevalence of Xij is 30% and to maintain the desired level of covariate ICC. The implied 

marginal variance is therefore σx2 = q1q2/ q1 + q2
2. In each of the above scenario, we use our 

sample size formula (11) to estimate the required number of clusters, n, rounded to the 

nearest even integer above. Then given the value of n, we simulate individual-level outcomes 

Yij from model (3), where we choose β2 = 0.25 and β3 = 0.1. As we have explained in 

Section 3.1, these regression parameters are ancillary to sample size determination as they 
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are not part of Equation (11). A total of 5000 data replicates are generated for each scenario, 

and the linear mixed effects model (3) is fit to each data set using the restricted maximum 

likelihood estimation (REML). In the null scenario where β4 = 0, we calculate the empirical 

type I error rate (ψ0) as the proportion of false rejections to ensure the test carries a nominal 

size in finite samples. In the nonnull scenario where β4 ≠ 0, we calculate the empirical 

power (ϕ0) as the proportion of correct rejections and compare with the analytical prediction 

(ϕ). All analyses are conducted in R (version 3.4.4) using the nlme package.34

5.2 | Simulation results

Table 1 summarizes the estimated required number of clusters (n), the empirical type I error 

rate (ψ0), the empirical power (ϕ0), and the predicted power (ϕ), when the cluster size m ∈
{10,20,50,100}, and three levels of effect sizes Δ for the continuous covariate Xij. Table 2 

parallels Table 1 and summarizes the corresponding results when the covariate Xij is binary. 

In the null scenario, the test for HTE maintains the nominal type I error rate across the 

parameter constellations, indicating that the test is valid. This ensures the validity of the 

subsequent comparisons between the empirical and predicted power. Across all levels of 

nonzero effect sizes, the predicted power obtained from our sample size formula is fairly 

close to the empirical power. Note since the required number of clusters are rounded to the 

nearest even integer above, the predicted power could be slightly greater than 0.80 in some 

cases. The mean absolute difference between the empirical and analytical power is 0.007 

(IQR=0.008) when Xij is continuous and 0.01 (IQR=0.011) when Xij is binary. Overall, our 

sample size formula performs well since the analytical prediction agrees with empirical 

power, based on a two-sided test that maintains the nominal type I error rate, even when the 

number of clusters is as small as 6. It is worth noting that with a small cluster size (eg, 

m=10), the required number of clusters to power the HTE test could be over 300, which is 

substantially larger than most current CRTs. However, with a relatively large cluster size (ie, 

m=50 or m=100), even a small HTE could be detected with enough power when the number 

of cluster is fewer than 40, which falls into the range of sample size used in most CRTs.

The results obtained in Tables 1 and 2 further allow us to evaluate the impact of different 

design parameters on the estimated required number of clusters n. We fit a multiple linear 

regression model, where n is the response variable, and cluster size m, covariate ICC ρx, 

adjusted outcome ICC ρy|x, and effect size Δ are four covariates (linear term only). Although 

we know from Equation (11) that their relationship is not necessarily linear, this approach 

may provide additional insights on the determining factors for sample size calculation for 

testing HTE in CRTs. We report the unstandardized and standardized regression coefficients 

and z-score values in Table 3. The standardized regression coefficient, also known as the β-

coefficient or β-weight, are obtained from a regression analysis where the variances of the 

response and independent variables are all scaled to unity, and is therefore invariant to unit 

of measurement for the original variables. Comparing the standardized coefficients could 

inform which design parameter has a greater effect on the required sample size. From Table 

3, it is evident that both the cluster size m and interaction effect size Δ have a major impact 

on the required number of clusters. In addition, the impact of covariate ICC ρx on sample 

size n appears larger than that of the adjusted outcome ICC ρy|x. The standardized 
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coefficient of ρx is two times that of ρy|x, highlighting the important role of ρx in powering 

the interaction test in CRTs.

6 | THE HF-ACTION DATA EXAMPLE

We illustrate our sample size procedure using data collected from the HF-ACTION study.37 

The HF-ACTION study is an individually randomized trial that aimed to test the efficacy 

and safety of exercise training program among patients with chronic heart failure and 

reduced ejection fraction. In the study, patients recruited from 82 sites (heart clinics or heart 

and vascular centers) were randomized to receive either usual care plus aerobic exercise 

training, or usual care alone. In Yang et al,31 we have previously used the outcome and 

covariate data from the HF-ACTION study to recreate a CRT to assess the bias in estimating 

the OTE due to baseline imbalance. In this section, we use the same context and baseline 

covariate data from HF-ACTION to inform the design parameters and exemplify how to 

estimate the required sample size and power for testing HTE, were the investigators to 

conduct a CRT using the HF-ACTION population.

Suppose the investigators are interested in conducting a CRT to evaluate the benefit of 

exercise training program among patients with chronic heart failure and reduced ejection 

fraction. In this case, each participating site will be randomized to either the aerobic exercise 

arm or the usual care arm, and σw2 = 1/4. Suppose the primary outcome of the study is the 

change of 6-minute walk test distance from baseline to 3 months. From the HF-ACTION 

baseline data, we estimate the marginal standard deviation of primary outcome to be σy ≈ 71 

m, and the unadjusted outcome ICC to be ρy = 0.04. In the HF-ACTION study, the overall 

treatment effect size is estimated to be ΔOTE = 18.85 (P <.001) m. Using the classical sample 

size calculation based on the design effect (1), and given each site is able to recruit m=27 

patients for the study, we found that about n=34 sites are required to ensure 80% power to 

detect the overall treatment effect size similar to that reported in the HF-ACTION study.

In addition to powering the OTE test, we are also interested in finding out how many more 

clusters are required to ensure 80% power to detect treatment effect heterogeneity. We use 

age as an example for the continuous covariate and race as an example for the binary 

covariate. The considerations for HTE with respect to race is particularly common, as 

previous studies suggest that black patients respond differently to therapies for heart failure,
38 and that there is a statistically significant interaction between black race and exercise 

training for the 6-minute walk test outcome.39 From the baseline data of HF-ACTION, the 

mean age is 59.3 years (σx = 12.7), and 34.4% are black race (σx = 0.48). Figure 3 presents 

the cluster-specific average age and proportion of black population, and clearly shows 

substantial variability of both covariates across clusters. We estimate the covariate ICC for 

age to be ρx = 0.08 and that for black race to be ρx = 0.22 (the binary ICC was estimated 

using the ANOVA method40). In this case, because σy|x ≈ 69 m for both age and race and is 

substantially larger than σx, adjusting for either age or race does not change the outcome 

ICC so that ρy x ≈ ρy = 0.04. This observation is consistent with the analytical insight 

provided by Equation (23). Suppose that the effect size for the treatment-by-age interaction 

is Δ = 0.05ΔOTE, which implies that one unit change in age (in years) translates into around 

1 m difference in 6-minute walk distance. We require about 41 sites to ensure 80% power for 
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the interaction test. Using the race variable as another example, suppose that the treatment-

by-black-race interaction effect is the same as that of OTE, which implies a Δ ≈ 19 m 

difference between the black and white populations. We require 80 sites to ensure 80% 

power to detect the in a CRT. Equivalently, based on expression (24), we can see that the 

number of clusters required for the OTE test needs to be increased by a factor of Θ(27) ≈ 
1.19 and Θ(27) ≈ 2.36 to obtain the same power for testing differential treatment effect by 

age and race, respectively. In particular, if the 82 sites included in the HF-ACTION study all 

agree to participate in a CRT, the study would be adequately powered for both the analysis 

of overall treatment effect as well as treatment-by-age, treatment-by-race interactions, with 

respect to the change of 6-minute walk distance outcome.

7 | DISCUSSION

Current cluster randomized trials are designed to evaluate the OTE, frequently using a 

random-effects model that includes only the treatment indicator. In recent years, 

investigating differential treatment effect among patient subgroups has become increasingly 

popular, but there has not been extensive discussion on the sample size requirements for 

testing HTE in CRTs, except in Spybrook et al23 and Dong et al.24 In this article, we develop 

a closed-form sample size formula that allows investigators to calculate the required number 

of clusters or patients to power the interaction test, while accounting for the intraclass 

correlation coefficients of both the outcome and the covariate. The proposed formula can 

accommodate an interaction test concerning either individual-level or cluster-level 

covariates. We realize that many CRTs include the analysis of OTE as their primary analysis, 

and therefore may not be designed to power the analysis of treatment-by-covariate 

interaction. In those context, however, our sample size procedure may also be useful in ad 

hoc power calculation to clarify the sample size requirements in secondary analysis that 

targets such treatment effect heterogeneity. Although the interaction test may require a larger 

sample size than the overall test in some scenarios (as in our data example of Section 6), we 

also demonstrate in Figure 2 that their sample size requirements could be comparable in 

regions where the adjusted outcome ICC is not too small and the cluster size is large. In any 

case, the proposed procedure provides a principled approach to identify such scenarios 

where the sample size requirements are similar for both analyses, and offers an opportunity 

to enhance the credibility of the analysis of treatment effect heterogeneity in CRTs. Notice 

that we have adopted a model-based framework and assume the covariate-adjusted linear 

mixed model (3) holds. However, the results may be somewhat different if one adopts a 

design-based perspective to the analysis of randomized trials as in Schochet et al41,42 and 

Ding et al.43

Although Equation (11) suggests a direct approach to calculate the required sample size for 

the interaction test, those who are more familiar with the traditional design effect θ1(m) 

could use the following three-step approach to obtain the same sample size result. Given the 

nominal type I error rate and power to detect an overall effect, one could obtain the number 

of patients (Nind) required for an individually randomized controlled trial (RCT). This can 

be done by using the general formula (8), but replacing σ4
2 with the total variance of the 

outcome. By assuming the number of patients that would be recruited in each cluster, the 
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second step is to inflate Nind by the traditional design effect θ1(m), and obtain NOTE = Nind 

× θ1(m), which is the number of patients required in a CRT. The required number of clusters 

for detecting the overall treatment effect is then NOTE/m, rounded to the nearest integer 

above. The above two steps are no different from the common practice used in designing 

CRTs. To calculate the sample size for detecting HTE, one could further inflate (or deflate) 

NOTE by a second design effect, Θ(m), defined in Equation (24). This requires knowledge of 

the relative effect sizes (RDES), the covariate ICC, the adjusted outcome ICC, and the 

adjusted total variance. The required number of patients to power the test for HTE is given 

by

NHTE = NOTE × Θ(m) = Nind × θ1(m) × Θ(m), (25)

and the required number of clusters would simply be NHTE/m, rounded to the nearest integer 

above. Depending on whether Θ(m) is greater than one, we may require more or fewer 

patients for detecting HTE than for detecting OTE in a CRT.

We have studied how the design parameters influence the sample size determination and 

power of the interaction test. We have highlighted the roles of the two ICC parameters: ρy|x 

and ρx. First, while larger values of the covariate ICC reduce the power of the interaction 

test, it may reduce the power of the overall treatment effect even more when the outcome 

ICC is relatively small (see Figure 2 when ρy|x=0.01). Second, larger values of the adjusted 

outcome ICC may not necessarily lead to smaller power in testing the HTE. As a result, the 

role of the adjusted outcome ICC in testing HTE is strikingly different from the role of 

unadjusted outcome ICC in testing OTE. We have observed a parabolic relationship between 

the power of the HTE test and adjusted outcome ICC; the power of the test first reduces and 

then increases as the adjusted outcome ICC becomes larger. The critical point ρy ∣ x that 

leads to the smallest power is given in Equation (22) and depends on both the covariate ICC 

and cluster size. In particular, the outcome ICC (either adjusted or unadjusted) commonly 

reported in the CRT literature only occasionally exceeds 0.1.33,44 In Figure 1, we observe 

that when the covariate ICC larger than 0.5 and the cluster size is relatively small (say 

smaller than 50), the critical point ρy is usually no smaller than 0.1; in those case, the 

adjusted outcome ICC still inflates the required sample size for testing HTE. However, as 

the covariate ICC moves toward zero, the critical point ρy ∣ x also moves toward zero, 

suggesting that larger values of the adjusted outcome ICC may actually increase the power 

of the HTE test. This is actually the case in our data example of Section 6, because the 

covariate ICC for either age or race was estimated to be no larger than 0.25 and the 

anticipated cluster size is only 27. The important role of the covariate ICC has also been 

highlighted in Table 3, where the multiple linear regression analysis produces a much larger 

standardized coefficient for ρx than for ρy|x. Although it is currently recommended to report 

outcome ICC values in parallel CRTs,45,46 reporting covariate ICCs has not become standard 

practice. In scenarios where pilot studies are carried out or baseline information is readily 

available, the estimation of ICC for covariates can proceed using standard procedures 

developed for outcome ICC.3,47 Because the covariate ICC is an essential ingredient of the 

sample size formula, we advocate future CRTs that examine treatment effect heterogeneity 

to start reporting ICCs for the covariates of interest. Just like the outcome ICCs, values of 
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covariate ICCs can provide useful information for designing future trials that plan to assess 

the treatment-by-covariate interaction. In the absence of covariate ICC information, 

however, our power formula still provides a useful approach for sensitivity analysis, 

provided a plausible range of ρx can be elicited in the design phase.

It is important to notice that the new variance expression derived in this article (Equation 

(10)) differs from those studied in Spybrook et al23 and Dong et al.24 Within the same 

setting of a two-level CRT, the previous work has provided (or indirectly implied) an 

alternative variance expression for β4, which depends on both the residual variance of the 

unadjusted model σξ
2 and that of the adjusted model σϵ2. An R-squared parameter 

Ry ∣ x
2 = 1 − σϵ2/σξ

2 is further introduced to parameterize the sample size formula and 

represents the explained variation of the outcome due to covariates. By contrast, our variance 

expression only assumes knowledge from the adjusted model (3), and does not involve 

assumptions of the unadjusted model (2). These different assumptions could underlie the 

different forms of the variance expressions. On the other hand, it remains unclear from 

previous work whether the covariate ICC ρx plays a role in Ry ∣ x
2  and hence the sample size 

determination. Our approximate derivation in Section 4.2 and Web Appendix B shows that 

there may be cases where Ry ∣ x
2 , as a function of only σϵ2 and σξ

2, is invariant to ρx, whereas 

our analytical and simulation results clearly indicate ρx plays a major role in determining the 

required sample size for the interaction test. A keen reviewer also pointed out that the model 

used in Spybrook et al23 and Dong et al24 assumed that the covariates were centered around 

the cluster mean, which may help avoid the complication due to the covariate ICC. From this 

perspective, an important major contribution of this article is that it facilitates power 

calculation when the covariates are not centered around the cluster mean. In any case, 

additional further research is required to formally compare our sample size procedure with 

the previous procedures via extensive Monte Carlo simulations. These additional 

comparisons may be able to fully clarify the differences and make recommendations on 

appropriate use of different sample size formulas in different scenarios.

There are several potential limitations of this article, some of which will be addressed in our 

future work. Above all, although we provided the extension of the sample size procedure to 

accommodate multiple covariates, we have mainly focused our discussion and simulation 

experiments on a single covariate. We recognize that more efforts are required to come up 

with sensible effect sizes for multiple interaction terms in the design stage, and those values 

could possibly be informed once more treatment-by-covariate interaction effects are reported 

in CRTs. Second, we have only considered the interaction test between treatment and 

covariates in the absence of additional adjustment variables. There are scenarios where 

additional pretest variables are considered in addition to the treatment-by-covariate 

interactions to further improve precision; those scenarios have been addressed in Spybrook 

et al23 and Dong et al,24 and will be considered in our future work. Third, we have assumed 

the outcome to be a continuous variable, and therefore the proposed sample size formula 

could only approximate the required sample size for a binary or count outcome. Additional 

work is required to develop formal sample size procedures for categorical outcomes, based 

on the generalized linear mixed model or the generalized estimating equations; section 3 of 
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Li et al48 reviews technical details of these models commonly used in CRTs with a binary 

outcome. Fourth, we have limited our attention to parallel CRTs, while other recent CRTs 

have considered the crossover49 or stepped wedge designs.35,50,51 It would be interesting to 

extend the existing sample size procedures developed for these unidirectional designs to 

similarly accommodate an interaction test. Finally, we have assumed equal cluster sizes to 

simplify the derivation of the sample size formula. It remains to be explored whether 

unequal cluster sizes would drastically reduce the efficiency for testing the HTE as it does 

for testing the OTE in CRTs.13 We plan to carry out future work to investigate the impact of 

variable cluster sizes for testing HTE, and develop a modified sample size formula that 

adjusts for cluster size variability.
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FIGURE 1. 

Variance of the GLS estimator for the treatment-by-covariate interaction, σ4
2, as a function of 

the, A, covariate ICC ρx and, B, adjusted outcome ICC ρy|x with cluster sizes m∈
{20,50,100}, assuming σy ∣ x

2 = σx2 = 1, and σw2 = 1/4
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FIGURE 2. 
Ratio of total sample size required for testing HTE vs OTE as a function of the cluster size 

m, covariate ICC ρx, adjusted outcome ICC ρy|x, and ratio of detectable effect sizes (RDES), 

assuming σx2 = σy ∣ x
2 = 1, β2 = β3 = 0.5, and W = 1/2
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FIGURE 3. 
Distributions of proportion of black population and mean age across 82 sites (clusters) in the 

HF-ACTION study
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TABLE 1

Estimated required number of clusters n, empirical type I error Ψ0, empirical power ϕ0, and predicted power ϕ 
obtained from sample size formula, when Xij is continuous

Δ = 0.10 Δ = 0.15 Δ = 0.25

ρx ρy|x n Ψ0 ϕ0 ϕ n Ψ0 ϕ0 ϕ n Ψ0 ϕ0 ϕ

m = 10 0.10 0.01 318 0.06 0.80 0.80 142 0.05 0.80 0.80 52 0.05 0.81 0.81

0.05 320 0.05 0.80 0.80 142 0.06 0.79 0.80 52 0.05 0.80 0.81

0.10 314 0.05 0.80 0.80 140 0.05 0.80 0.80 52 0.05 0.81 0.81

0.25 0.01 322 0.05 0.80 0.80 144 0.05 0.80 0.80 52 0.05 0.79 0.81

0.05 336 0.05 0.80 0.80 150 0.05 0.80 0.80 54 0.05 0.79 0.80

0.10 342 0.05 0.80 0.80 152 0.05 0.80 0.80 56 0.05 0.80 0.81

0.50 0.01 328 0.05 0.80 0.80 146 0.05 0.79 0.80 54 0.05 0.79 0.81

0.05 370 0.05 0.80 0.80 164 0.05 0.80 0.80 60 0.06 0.80 0.81

0.10 398 0.05 0.81 0.80 178 0.05 0.80 0.80 64 0.06 0.80 0.80

m = 20 0.10 0.01 160 0.05 0.80 0.80 72 0.05 0.80 0.81 26 0.05 0.80 0.81

0.05 162 0.05 0.81 0.80 72 0.06 0.81 0.80 26 0.05 0.79 0.80

0.10 158 0.05 0.80 0.80 70 0.05 0.81 0.80 26 0.05 0.82 0.81

0.25 0.01 164 0.05 0.79 0.80 74 0.05 0.80 0.81 28 0.05 0.81 0.83

0.05 176 0.04 0.80 0.80 78 0.05 0.80 0.80 28 0.06 0.80 0.80

0.10 178 0.05 0.80 0.80 80 0.06 0.81 0.81 30 0.05 0.81 0.82

0.50 0.01 172 0.05 0.81 0.80 76 0.05 0.79 0.80 28 0.05 0.78 0.81

0.05 206 0.05 0.80 0.80 92 0.05 0.80 0.81 34 0.05 0.79 0.82

0.10 222 0.05 0.80 0.80 100 0.05 0.79 0.81 36 0.05 0.80 0.81

m = 50 0.10 0.01 66 0.05 0.81 0.81 30 0.06 0.81 0.82 12 0.05 0.85 0.85

0.05 66 0.05 0.80 0.80 30 0.06 0.81 0.81 12 0.06 0.85 0.85

0.10 64 0.05 0.81 0.81 28 0.05 0.80 0.80 12 0.05 0.86 0.86

0.25 0.01 70 0.05 0.81 0.81 32 0.06 0.81 0.82 12 0.05 0.82 0.84

0.05 74 0.04 0.81 0.80 34 0.05 0.81 0.81 12 0.06 0.80 0.81

0.10 74 0.06 0.80 0.81 34 0.05 0.81 0.82 12 0.05 0.81 0.81

0.50 0.01 76 0.06 0.80 0.80 34 0.06 0.80 0.81 12 0.06 0.75 0.80

0.05 96 0.05 0.80 0.81 44 0.06 0.81 0.82 16 0.06 0.80 0.82

0.10 100 0.05 0.80 0.80 46 0.05 0.81 0.81 16 0.06 0.78 0.80

m = 100 0.10 0.01 34 0.05 0.81 0.81 16 0.05 0.83 0.83 6 0.05 0.84 0.85

0.05 34 0.05 0.83 0.81 16 0.05 0.84 0.83 6 0.05 0.83 0.85

0.10 32 0.05 0.81 0.81 14 0.05 0.80 0.80 6 0.04 0.86 0.86

0.25 0.01 36 0.05 0.80 0.80 16 0.06 0.80 0.80 6 0.06 0.80 0.82

0.05 40 0.05 0.82 0.82 18 0.05 0.82 0.82 8 0.06 0.88 0.90

0.10 38 0.05 0.81 0.81 18 0.05 0.83 0.83 6 0.06 0.80 0.80

0.50 0.01 42 0.06 0.80 0.80 20 0.06 0.80 0.83 8 0.05 0.82 0.87

0.05 52 0.05 0.80 0.80 24 0.05 0.81 0.82 10 0.05 0.86 0.87

0.10 54 0.06 0.80 0.81 24 0.05 0.81 0.81 10 0.05 0.86 0.86

Note: Δ is the effect size, ρy|x is the adjusted outcome ICC, and ρx is the covariate ICC. The results are based on 5000 simulations.
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TABLE 2

Estimated required number of clusters n, empirical type I error Ψ0, empirical power ϕ0, and predicted power ϕ 
obtained from sample size formula, when Xij is binary

Δ = 0.10 Δ = 0.15 Δ = 0.25

ρx ρy|x n Ψ0 ϕ0 ϕ n Ψ0 ϕ0 ϕ n Ψ0 ϕ0 ϕ

m = 10 0.10 0.01 242 0.05 0.80 0.80 124 0.05 0.80 0.80 76 0.05 0.81 0.81

0.05 244 0.05 0.80 0.80 126 0.05 0.81 0.81 76 0.05 0.81 0.80

0.10 240 0.05 0.80 0.80 124 0.05 0.80 0.81 74 0.04 0.80 0.80

0.25 0.01 246 0.06 0.80 0.80 126 0.05 0.80 0.80 76 0.05 0.80 0.80

0.05 256 0.05 0.79 0.80 132 0.05 0.79 0.80 80 0.05 0.79 0.80

0.10 260 0.05 0.80 0.80 134 0.05 0.81 0.80 82 0.05 0.80 0.81

0.50 0.01 250 0.05 0.80 0.80 128 0.05 0.80 0.80 78 0.05 0.79 0.81

0.05 282 0.05 0.82 0.80 144 0.05 0.80 0.80 88 0.05 0.80 0.81

0.10 304 0.05 0.80 0.80 156 0.05 0.80 0.80 94 0.05 0.79 0.80

m = 20 0.10 0.01 122 0.05 0.80 0.80 62 0.05 0.80 0.80 38 0.05 0.80 0.81

0.05 124 0.05 0.81 0.80 64 0.05 0.80 0.81 38 0.06 0.79 0.80

0.10 120 0.05 0.80 0.80 62 0.05 0.79 0.81 38 0.06 0.81 0.81

0.25 0.01 126 0.05 0.81 0.80 64 0.05 0.80 0.80 40 0.05 0.81 0.82

0.05 134 0.06 0.80 0.80 68 0.05 0.79 0.80 42 0.05 0.79 0.81

0.10 136 0.06 0.79 0.81 70 0.05 0.81 0.81 42 0.05 0.80 0.81

0.50 0.01 130 0.05 0.80 0.80 68 0.05 0.79 0.81 42 0.06 0.81 0.82

0.05 156 0.05 0.80 0.80 80 0.05 0.79 0.80 48 0.06 0.79 0.80

0.10 170 0.05 0.80 0.80 88 0.05 0.81 0.81 54 0.05 0.80 0.81

m = 50 0.10 0.01 50 0.05 0.80 0.81 26 0.05 0.80 0.81 16 0.06 0.80 0.82

0.05 50 0.05 0.79 0.80 26 0.05 0.81 0.81 16 0.05 0.80 0.82

0.10 48 0.05 0.80 0.80 26 0.05 0.83 0.82 16 0.06 0.81 0.83

0.25 0.01 52 0.05 0.79 0.80 28 0.05 0.81 0.82 18 0.05 0.83 0.84

0.05 58 0.04 0.81 0.81 30 0.06 0.81 0.82 18 0.05 0.80 0.81

0.10 56 0.05 0.80 0.80 30 0.05 0.82 0.82 18 0.05 0.81 0.82

0.50 0.01 58 0.05 0.79 0.81 30 0.06 0.80 0.81 18 0.06 0.76 0.81

0.05 74 0.05 0.80 0.81 38 0.05 0.81 0.81 24 0.05 0.81 0.83

0.10 76 0.05 0.79 0.80 40 0.05 0.80 0.81 24 0.05 0.78 0.81

m = 100 0.10 0.01 26 0.05 0.82 0.81 14 0.05 0.83 0.83 8 0.06 0.80 0.81

0.05 26 0.05 0.81 0.81 14 0.05 0.82 0.84 8 0.05 0.81 0.81

0.10 24 0.05 0.80 0.80 14 0.05 0.85 0.85 8 0.05 0.83 0.83

0.25 0.01 28 0.05 0.80 0.81 14 0.06 0.79 0.80 10 0.06 0.84 0.86

0.05 30 0.05 0.81 0.81 16 0.05 0.81 0.83 10 0.05 0.82 0.84

0.10 30 0.05 0.81 0.82 16 0.04 0.83 0.84 10 0.05 0.83 0.85

0.50 0.01 32 0.06 0.79 0.80 18 0.06 0.81 0.84 10 0.04 0.76 0.81

0.05 40 0.05 0.79 0.81 22 0.06 0.81 0.83 14 0.06 0.81 0.85

0.10 42 0.05 0.82 0.82 22 0.05 0.81 0.83 14 0.05 0.80 0.85

Note: Δ is the effect size, ρy|x is the adjusted outcome ICC, and ρx is the covariate ICC. The results are based on 5000 simulations.
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TABLE 3

Effect of design parameters on the sample size n: results from multiple linear regression analysis

Design parameter Unstandardized coefficient Standardized coefficient Standard error z-score P-value

ρx 41.00 0.08 24.39 1.68 .09

ρy|x 85.31 0.04 109.30 0.78 .44

m −1.39 −0.59 0.11 −12.11 <.001

Δ −255.26 −0.36 34.41 −7.42 <.001
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