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Microbial dysbiosis is associated with aggressive histology and adverse
clinical outcome in B-cell non-Hodgkin lymphoma
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Key Points

• The GMB differs be-
tween indolent lym-
phoma and DLBCL;
pretreatment diversity
and composition pre-
dicted treatment
response.

•Our results, if validated,
could improve treat-
ment outcomes by im-
proving medication
stewardship and
informing novel GMB-
targeted therapies.

B-cell non-Hodgkin lymphoma cell survival depends on poorly understood immune

evasion mechanisms. In melanoma, the composition of the gut microbiota (GMB) is

associated with immune system regulation and response to immunotherapy. We

investigated the association of GMB composition and diversity with lymphoma biology

and treatment outcome. Patients with diffuse large B-cell lymphoma (DLBCL), marginal

zone (MZL), and follicular lymphoma (FL) were recruited at Mayo Clinic, Minnesota, and

Perlmutter Cancer Center, NYU Langone Health. The pretreatment GMB was analyzed

using 16S ribosomal RNA gene sequencing. We examined GMB compositions in

3 contexts: lymphoma patients (51) compared with healthy controls (58), aggressive

(DLBCL) (8) compared with indolent (FL, MZL) (18), and the association of GMB

with immunochemotherapy treatment outcomes (8 responders, 6 nonresponders).

Respectively, we found that the pretreatment GMB in lymphoma patients had a distinct

composition compared with healthy controls (P , .001); GMB compositions in DLBCL

patients were significantly different than indolent patients (P 5 .01) with a trend toward

reduced microbial diversity in DLBCL patients (P5 .08); and pretreatment GMB diversity

and composition were significant predictors of treatment responses (P5 .01). The impact

of these pilot results is limited by our small sample size, and should be considered a proof

of principle. If validated, our results could lead toward improved treatment outcomes by

improving medication stewardship and informing which GMB-targeted therapies should

be tested to improve patient outcomes.

Introduction

B-cell non-Hodgkin lymphoma (NHL) is highly dependent upon its ability to escape natural host
defenses, yet the immune evasion strategies used are poorly understood. Growing evidence
suggests that gut microbiota (GMB) play important roles in regulating innate and adaptive
immunity.1-3 Murine experiments demonstrate the influence of the GMB on the development4

and homeostasis of the host immune system,5-9 and mechanistic preclinical studies show that
introduction of specific bacterial populations directly affects endogenous immunity.10-12 This
immune regulation is critical for the detection of nascent tumor cells.13,14 In melanoma patients,
the GMB composition influences the clinical response to immunotherapy15-17; in allogeneic
stem cell transplant, low GMB diversity and specific species are associated with increased risk

Submitted 5 August 2020; accepted 10 January 2021; published online 26 February
2021. DOI 10.1182/bloodadvances.2020003129.

Data will be shared by the corresponding author, Catherine Diefenbach
(catherine.diefenbach@nyulangone.org) in response to e-mail requests within the
guidelines of institutional policy for data sharing.

The full-text version of this article contains a data supplement.
© 2021 by The American Society of Hematology

1194 9 MARCH 2021 x VOLUME 5, NUMBER 5

mailto:catherine.diefenbach@nyulangone.org


of graft vs host disease and poor survival.18,19 However, the
connections between the human GMB and lymphoma remain
poorly understood. Compounding this, at least one-quarter of
human-targeted medications collaterally affect the bacterial
microbiota communities.20 It is not known to what degree
lymphoma treatment affects the microbiota of patients and how
this might hinder successful outcomes of therapy in the long
term. Here, we investigated the relationship of GMB composi-
tion and specific taxon abundances with lymphoma biology and
clinical outcome.

Methods

The Institutional Review Board of the Mayo Clinic approved the
Mayo study, and the institutional review board of the Perlmutter
Cancer Center (PCC) of NYU Langone Health approved the
PCC study, which at both institutions was done according to the
Declaration of Helsinki and International Harmonization Guidelines
for Good Practice. Patients with diffuse large B-cell lymphoma
(DLBCL), marginal zone (MZL), and follicular lymphoma (FL) were
recruited at Mayo Clinic (Rochester, MN) or PCC (New York, NY).
All enrolled patients provided written informed consent. All patients
were recruited before initiating treatment or during expectant
monitoring if they had indolent lymphoma. Patients who had used
antibiotics within 30 days of screening were excluded. One patient
failed screening for antibiotic use and was not included in the study.
All registered patients completed a structured questionnaire,
including travel, and medication history, and their clinical and
medical information was extracted from electronic health records.
The control subjects were selected from the Mayo Clinic Biobank
and representative fecal samples were chosen according to sex,
age, race, body mass index (BMI), alcohol use, and tobacco use.
The collection and processing methods were the same as controls.
The bacterial composition of the GMB, using pretreatment stools,
was assessed using 16S ribosomal RNA gene sequencing of
pretreatment fecal samples. Briefly, amplicon libraries covering
the V4 region of the 16S ribosomal RNA gene were sequenced
on Illumina MiSeq with a 2 3 150 bp paired-end kit, a highly
reproducible assay,21 and sequence reads were grouped into
operational taxonomic units (OTUs) and assigned microbial
taxonomy using the Quantitative Insights Into Microbial Ecology
(QIIME) 2 Deblur workflow. One replicate was studied using
standard Earth Microbiome Project protocols for stool DNA
extraction, amplification, and sequencing at the Argonne National
Laboratory.22 We compared GMB overall structure and taxon
abundance in relation to lymphoma biology (aggressive DLBCL)
vs indolent (FL and MZL) and subsequent immunochemotherapy
outcomes.

Results and discussion

Lymphoma patients have an altered GMB

To ascertain microbiota dysbiosis in lymphoma patients, we first
sought to compare their GMB with nonlymphoma healthy controls.
We analyzed an aliquot of the first 51 patient pretreatment fecal
samples including DLBCL18 indolent B-cell NHL (FL 13, MZL 5,
mantle cell lymphoma 3), and other or unclassified including HL,4

and T-cell3 patients from the University of Iowa/Mayo Clinic
Lymphoma SPORE pilot study, and 58 age-matched Mayo Midwest
Microbiome Clinic noncancer controls stool samples. The GMB of
the lymphoma patients was significantly different from the controls

(Figure 1A; P , .001, PERMANOVA of unweighted UniFrac).
Specifically, the GMB of lymphoma patients showed an increase
in Bacteroidetes with a concomitant decrease in Firmicutes at
the phylum level (Figure 1B). We did not see significant differences
in the distribution of demographic variables (age, sex, ethnicity, BMI)
for the Mayo cohort, following the literature, which suggests the sex
effect on the GMB is very moderate.23 These results suggest that
the GMB is perturbed in lymphoma patients prior to initiation of their
antilymphoma treatment.

GMB and lymphoma aggressiveness

At the PCC, we compared the GMB of patients with indolent
NHL (MZL, 8; FL, 10) (N5 18) and aggressive lymphoma (DLBCL)
(N 5 8) to test if the GMB is also associated with aggressive
disease biology before treatment. PCC patients with DLBCL
exhibited a trend toward further reduced GMB diversity than
patients with indolent NHL (P 5 .08, Wilcoxon rank-sum test of
Shannon index; Figure 1C). Additionally, patients with DLBCL
had a distinct GMB composition compared with indolent
patients (R2 5 7.1% and P 5 .01, PERMANOVA of Jensen
Shannon divergence) (Figure 1D). Several OTUs of obligate
anaerobe taxa were depleted in DLBCL patients (all false
discovery rate–adjusted P , .10, Wilcoxon rank-sum test)
(Figure 1E). The observed effect size in Shannon index is 0.7
standard deviations between indolent and aggressive patients
(Figure 1D; supplemental Table 1).

GMB in response to subsequent

immunochemotherapy outcomes

Recent evidence suggests that the GMB modulates response to
checkpoint blockade immunotherapy in melanoma patients.16,24

We sought to explore whether the same may be true in lymphoma
patients undergoing immunochemotherapy. Of the 26 NHL
patients described previously, 14 received subsequent treatment
(8 with DLBCL; 6 indolent lymphoma patients who transformed to
aggressive lymphoma). There were 8 responders with complete or
partial response and 6 nonresponders (NR). Responders tended
to have higher pretreatment GMB diversity than NR (P 5 .08,
Wilcoxon rank-sum test of Shannon index) (Figure 2A). Further-
more, pretreatment responders vs NR had distinct overall GMB
composition (R2 5 14.6% and P 5 .01, PERMANOVA of Jensen
Shannon divergence) (Figure 2B). Findings were similar after
adjustment for age, sex, race, BMI, and history of treatment, stage,
or tumor histology (P 5 .05). Unsupervised hierarchical clustering
of all OTUs present in at least 50% of the treated patients clustered
patients almost perfectly into NR and responders (Figure 2C),
indicating differential abundance of specific OTU by therapeutic
response status. Among others, the relative abundance of OTUs
within Dorea formicigenerans (associated with indolent lymphoma;
Figure 2C) and Faecalibacterium prausnitzii (associated with
favorable melanoma immunotherapy response24) was higher in
responders compared with NR patients (P , .05, Wilcoxon rank-
sum test). The observed effect size in Shannon index is 1 standard
deviation between NR and responders (Figure 2B; supplemental
Table 1).

We found that lymphoma patients at diagnosis have altered
GMB compositions; DLBCL patients have a less diverse overall
microbiota diversity compared with patients with indolent NHL.
Furthermore, we also found that the pretreatment microbiome
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was a significant predictor of lymphoma treatment response.
The impact of these pilot results is limited by our small sample
size and may be overestimated because of the Winner’s Curse
effect25 and should be considered a proof of principle, which
requires validation in large histology-specific data sets. How-
ever, if validated, these findings could have major implications

for improving treatment outcomes by identifying predictive signa-
tures that could facilitate personalized treatment decision-making
by using easily obtainable stool samples and by improved
medication stewardship seeking to reduce diversity loss.
Importantly, our findings may inform the development of personal-
ized, microbe-targeted therapies, a new minimally toxic treatment
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Figure 1. Gut microbiome in lymphoma patients and healthy controls. (A) Principal coordinate analysis of unweighted UniFrac distances. (B) Differentially abundant

taxa. Gut microbiome and lymphoma aggressiveness: Shannon diversity index between indolent NHL (MZL, FL) and aggressive lymphoma (DLBCL) (C); principal coordinate

analysis of Jensen Shannon divergence (D); and differentially abundant OTUs (E).
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paradigm for aggressive and treatment refractory lymphomas, an
unmet medical need.
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