
REGULAR ARTICLE

Gene expression profile correlates with molecular and clinical features in
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Key Points

•Gene expres-
sion–based classifica-
tion of primary and
secondary MF corre-
lates with patients’
clinical and molecular
characteristics.

• A gene expression sig-
nature identifies patient
subgroups with differ-
ent overall survival.

Myelofibrosis (MF) belongs to the family of classic Philadelphia-negative myeloproliferative

neoplasms (MPNs). It can be primary myelofibrosis (PMF) or secondary myelofibrosis (SMF)

evolving from polycythemia vera (PV) or essential thrombocythemia (ET). Despite the

differences, PMF and SMF patients are currently managed in the same way, and prediction

of survival is based on the same clinical and genetic features. In the last few years, interest

has grown concerning the ability of gene expression profiles (GEPs) to provide valuable

prognostic information. Here, we studied the GEPs of granulocytes from 114 patients with

MF, using a microarray platform to identify correlations with patient characteristics and

outcomes. Cox regression analysis led to the identification of 201 survival-related transcripts

characterizing patients who are at high risk for death. High-risk patients identified by this

gene signature displayed an inferior overall survival and leukemia-free survival, together

with clinical and molecular detrimental features included in contemporary prognostic

models, such as the presence of high molecular risk mutations. The high-risk group was

enriched in post-PV and post-ET MF and JAK2V617F homozygous patients, whereas pre-PMF

was more frequent in the low-risk group. These results demonstrate that GEPs in MF

patients correlate with their molecular and clinical features, particularly their survival,

and represent the proof of concept that GEPs might provide complementary prognostic

information to be applied in clinical decision making.

Introduction

Classic Philadelphia-negative myeloproliferative neoplasms (MPNs) consist of 3 clinical entities:
polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF). PMF can be
subdivided into a prefibrotic/early stage (pre-PMF) and an overt fibrotic stage (overt PMF), according to
the degree of bone marrow (BM) fibrosis.1 Moreover, PV and ET can evolve into secondary myelofibrosis
(SMF) giving rise to post-PV myelofibrosis (PPV-MF) and post-ET myelofibrosis (PET-MF).2 These
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malignancies are grouped together according to their overlapping
features. Although the absence of BM fibrosis is considered the
chronic phase of these malignancies, myelofibrosis (MF) onset
represents the advanced stage that might precede acute myeloid
leukemia (AML) transformation, the main cause of death for these
patients.3,4

MPNs originate from the mutation of hematopoietic stem cells, which
generates a neoplastic clone that gives rise to the myeloproliferative
phenotype. Clonal hematopoiesis in MPNs has been demonstrated
by the presence of recurrent gene mutations that is shared by the 3
clinical entities.5,6 Mutations in JAK2, calreticulin (CALR), and MPL
proto-oncogene thrombopoietin receptor (MPL) genes are consid-
ered driver events. Although a JAK2V617F mutation is carried by
almost all patients with PV, it occurs at a 55% frequency in PMF and
a 65% frequency in ET. CALR indels affect 25% to 35% of PMF
patients and 15% to 24% of those with ET, whereasMPL mutations
occur in ;8% and 4% of patients with PMF and ET, respectively.
Almost 5% of PMF patients and 10% of those with ET do not harbor
any of the 3 driver mutations and are considered triple negative.5,7

Nevertheless, many other somatic mutations and genomic aberra-
tions have been identified that might represent driver events but, in
most cases, they accompany other lesions and influence disease
outcome.3

PMF and SMF patients are currently managed in the same way
because they share common histopathologic features and clinical
manifestations. Prediction of survival influences the therapeutic
strategy used and is based on prognostic models, such as the
International Prognostic Scoring System (IPSS) and Dynamic-
IPSS (DIPSS), which have been designed for PMF based on
clinical features. Nevertheless, because these tools are not able
to accurately distinguish different risk categories in SMF,8,9

the Myelofibrosis Secondary to PV and ET-Prognostic Model
(MYSEC-PM)10 was recently created. The need for more specific
and more accurate prognostic models in PMF and SMF arises from
the observation that only allogeneic stem cell transplantation (ASCT)
is potentially curative and is able to prolong survival in patients;
however, the incidence of mortality and severe adverse events
justify this approach only in high-risk patients.11 New prognosti-
cation models have been developed: the Mutation-enhanced
International Prognostic Score System (MIPSS70) and the most
recent MIPSS701 version 2.0 integrate clinical information
with mutation and cytogenetic data to identify high-risk PMF
patients aged # 70 years who are candidates for ASCT.12,13 If
cytogenetics is available, a genetically inspired prognostic scoring
system (GIPSS) can be applied to predict patients’ survival based on
mutations and karyotype information.14

To identify disease subtypes that are characterized by a poor
outcome, we studied the correlation between gene expression
profiles (GEPs) of PMF and SMF patients and their clinical
characteristics, with particular interest in survival. This approach
has already been successfully applied in other solid and hematological
malignancies, including AML15,16 and myelodysplastic syndromes,17-19

leading to the discovery of gene expression signatures that
identify patients with inferior survival. These studies demon-
strated that gene expression profiling could be a useful tool for
the classification of hematological malignancies, because it
might improve the identification of high-risk patients who have
a poor prognosis.

Starting from these observations, in this proof-of-concept study, we
analyzed the GEP of granulocytes from patients affected by PMF
and SMF. To assess the correlation between GEP and survival, we
applied a Cox proportional-hazards model to our data set, which led
to the identification of a list of genes whose expression can divide
patients into 2 subgroups with different outcomes. Overall, our
results suggest that gene expression analysis may complement
current methods for risk stratification in MF.

Patients and methods

Patients and samples

This study was conducted using granulocyte samples from 114
patients with a diagnosis of PMF or SMF recruited from 5 Italian
centers. PMF was diagnosed according to 2016 World Health
Organization criteria,1 whereas International Working Group for
Myeloproliferative neoplasms Research and Treatment criteria2

were used for the diagnosis of PET-MF and PPV-MF. The study
was conducted in accordance with the Declaration of Helsinki and
was approved by local ethics committees. All subjects provided
informed written consent.

Granulocytes were collected from peripheral blood using a density
gradient. Following centrifugation, granulocytes and erythrocytes
formed a cell pellet at the bottom of the tube, and granulocytes can
be purified using red blood cell lysis reagent. The different units
provided frozen granulocyte pellets and lysed cells.

As previously described,12,20 gene mutations were detected in
DNA from peripheral blood cells. Real-time quantitative polymerase
chain reaction was used to identify JAK2V617F and MPLW515x
mutations, whereas CALR mutations were detected by capillary
electrophoresis, followed by bidirectional sequencing, and classi-
fied as type 1/type 1-like or type 2/type 2-like.21 Next-generation
sequencing was used to detect high molecular risk (HMR)
mutations (ie, ASXL1, EZH2, IDH1, IDH2 and SRFSF2).

RNA extraction and gene expression profiling

Total cellular RNA was isolated from stored frozen granulocyte
pellets using TRIzol Reagent (Invitrogen, ThermoFisher Scientific),
following the manufacturer’s instructions. RNA sample concentra-
tion was evaluated using a NanoDrop ND-1000 spectrophotometer
(ThermoFisher Scientific), and purity was assessed using 260/280 nm
and 260/230 ratios. An Agilent 2100Bioanalyzer (Agilent Technologies)
was used to determine the integrity of total RNA.

Gene expression profiling was performed using HG-U219 Array
Strips (Affymetrix), as previously described.22 Biotin-labeled
complementary RNA was synthesized starting from 100 ng of
total RNA using a GeneChip HT 39 IVT PLUS Reagent Kit (Applied
Biosystems), according to the standard protocol supplied, whereas
microarray hybridization, staining, and scanning were performed
using a GeneAtlas Hybridization,Wash, and Stain Kit (Affymetrix) and
a GeneAtlas System (Affymetrix), following the manufacturer’s
recommendations.

Partek Genomics Suite (GS) software, version 7.0 (Partek Inc.,
St. Louis, MO) was used to normalize the probe level data and convert
them into expression values by means of robust multiarray average.
An exploratory principal component analysis was performed, and
the existing batch effect due to the clinical unit of origin was
removed using Partek GS. The “Remove batch effect” function in
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Partek GS is based on a mixed-model analysis of variance and
allows adjustment of the gene expression matrix, removing differ-
ences between batches. Principal component analysis was then
used to verify the batch effect adjustment. Cox regression analysis
function was run to identify probesets whose expression correlates
with patient survival. Probesets with a P value, .005 were selected
for further analysis and were used to perform supervised hierarchical
clustering with Partek GS.

Classification model construction

The classification model was built starting from the list of probesets
resulting from Cox regression analysis and risk classes defined with
hierarchical clustering. The “nearest shrunken centroids” super-
vised learning technique, implemented in the pamr.train function of
the R package pamr (v.1.56.1), was applied for the classification
model generation. A standardized centroid was calculated for each
risk class and then it was shrunk toward the overall centroid by 30
different thresholds. The threshold giving the lowest error rate was
selected. The “nearest shrunken centroids” technique made it
possible to optimize the number of probesets by excluding from
the prediction rule those whose expression was not sufficiently
different between the 2 groups (and thus not contributing to the
classification). Briefly, the centroid is defined as the median
expression of each probeset in each class divided by the standard
deviation in each class. Each of the class centroids was shrunk
toward the overall centroid by an amount called threshold. This
shrinkage consists of moving the centroid toward 0 by threshold,
setting it equal to 0 if it hits 0. If a probeset was shrunk to 0 for all
classes, then it did not survive the threshold.

The resulting model was cross-validated with a k-fold cross-
validation method, with k 5 20, using the pamr.cv function in the
R package pamr. The whole data set was split into k smaller sets
and then several models were defined using k 2 1 of the folds. The
remaining data were used for testing the model, repeating the
procedure until each fold was used as the test set. The class of
the test samples was predicted based on the nearest centroid.

To further optimize the number of probesets, model generation and
cross-validation were repeated m 2 1 times (where m is the total
number of probesets). As described previously,23 starting from 2
probesets, each time 1 probeset was sequentially added from the
top of the rank-ordered probeset list based on the hazard ratio (HR),
until all of the probesets were used. The model’s performance was
assessed with the use of the cross-validated misclassification error
calculated with the pamr.cv function from the pamr R package; the
model with the optimized set of probesets that provided the lowest
error was selected.

Statistical analysis

Differences in the distribution of numerical variables were evaluated
using the Mann-Whitney U test or the Kruskal-Wallis test for the
comparison of 2 groups or .2 groups, respectively. Categorical
variables were compared using the x2 test or Fisher’s exact test.
Overall survival (OS) was calculated from the date of sample
collection to the date of death or last follow-up. When calculating
leukemia-free survival (LFS), the date of leukemic transformation
was used in place of the date of death. OS and LFS analyses were
performed with the Kaplan-Meier method, and the log-rank test was
used to compare curves. Univariate and multivariate analyses were
carried out using Cox proportional-hazards regression for OS.

Analyses were performed using R version 3.4.1. A P value , .05
was considered statistically significant.

Results

Patients

A total of 114 patients (35 pre-PMF, 37 overt PMF, 26 PET-MF, and
16 PPV-MF) was studied. Table 1 shows the distribution of patients
with regard to MF clinical subtype. No difference in terms of OSwas
detected among these groups (Table 1; supplemental Figure 1),
whereas some dissimilarities were evident in terms of the clinical
characteristics. Pre-PMF patients displayed increased hemoglobin
(Hb) levels and were less frequently anemic; platelet count was
increased in this group, and splenomegaly was more frequent.24,25

Hb was also increased in PPV-MF, as were white blood cell counts.
Anemia was less frequent in these patients, whereas leukocytosis
was more common.20,26 PET-MF patients showed increased
platelet counts.20,26 All PPV-MF patients harbored a JAK2V617F
mutation, with the exception of 1 patient who displayed a mutation
on exon 12. Patients with pre-PMF displayed an increased
frequency of SRSF2 mutations and .2 HMR mutations. Leukemic
transformation occurred in 13 patients, whereas 49 died of causes
related to the disease.

Identification of a gene signature that correlates

with OS

Cox-regression analysis identified 832 probesets (corresponding to
596 genes) that correlated with patient survival; among them, 433
genes were associated with inferior survival (supplemental Table 1).
According to hierarchical clustering (Figure 1A), this list splits our
data set into 2 main branches composed of 62 (left) and 52 (right)
samples. As shown in Figure 1B and supplemental Table 2, the
cluster on the right was characterized by significantly inferior OS
(P 5 4.38E-6, log-rank test). Moreover, the frequency of dead
patients was significantly higher in the right branch (P 5 3.08E-4,
Fisher’s exact test) (supplemental Table 2); therefore, we named
this cluster the high-risk group, whereas the other one was termed
the low-risk group.

The majority of pre-PMF samples were included in the low-risk
cluster, whereas SMF was more frequent in the high-risk group
(Figure 1A; supplemental Table 1). The high-risk group was also
enriched in patients harboring JAK2V617F mutations; the fre-
quency of homozygous mutations was increased in this subgroup,
whereas JAK2 heterozygosity was more frequent in the low-risk
group. Moreover, 26 of 52 samples (65%) in the high-risk group
harbored $1 HMR mutation (Figure 1A; supplemental Table 2).
Despite this, we identified a significant difference only in the
distribution of patients with ASXL1 mutations (P value 5 2.79E-4,
Fisher’s exact test). Considering clinical characteristics, the high-
risk group displayed features of patients with predictable inferior
survival. Indeed, the median age at the time of sample collection
was higher in this group compared with the low-risk group. White
blood cell count was increased in high-risk patients, whereas Hb
levels and platelet count were decreased compared with the low-
risk group. The high-risk group had greater frequencies of patients
with .1% or 2% circulating blasts, splenomegaly, and BM fibrosis
grade $ 2 (supplemental Table 2). Taken together, these results
demonstrated that Cox-regression analysis led to the identification
of genes whose expression correlates with OS in MF patients.
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Table 1. Clinical and laboratory characteristics of patients included in our dataset, divided according to diagnosis

Variable Pre-PMF (n 5 35) Overt PMF (n 5 37) PET-MF (n 5 26) PPV-MF (n 5 16) P

Follow-up, median (95% CI), y 6.88 (3.39-NA) 5.54 (3.26-6.36) 4.55 (2.91-NA) 4.18 (1.72-6.79) 6.15E-01

Males 19 (54.3) 21 (56.8) 13 (50.0) 7 (43.8) 8.33E-01

Age

Median (range), y 62.90 (34.6-80.9) 63.80 (31.1-84.3) 65.80 (32.1-81.0) 71.10 (42.6-85.6) 9.62E-02

.65 y 13 (37.1) 15 (40.5) 14 (53.8) 11 (68.8) 1.38E-01

Hb

Median (range), g/dL 12.40 (8.0-16.6) 11.20 (5.2-15.3) 10.75 (6.5-14.6) 12.55 (9.2-15.9) 2.52E-04

,10 g/dL 2 (5.7) 9 (24.3) 9 (34.6) 2 (12.5) 2.75E-02

Leukocytes

Median (range), 3109/L 8.70 (3.6-41.0) 10.00 (2.8-89.0) 9.58 (2.3-104.0) 14.90 (5.9-88.7) 1.35E-02

.25 3 109/L 3 (8.8) 6 (16.2) 3 (11.5) 7 (46.7) 9.09E-03

Platelets

Median (range), 3109/L 410.0 (72-1299) 179.0 (22-1252) 377.5 (61-1568) 224.5 (20-1271) 6.54E-03

,100 3 109/L 2 (5.9) 9 (25.0) 2 (8.3) 1 (6.2) 6.19E-02

Circulating blasts $1% 5 (15.2) 8 (25.8) 8 (34.8) 3 (20.0) 3.77E-01

Circulating blasts $2% 5 (15.2) 4 (12.9) 6 (26.1) 2 (13.3) 5.81E-01

BM fibrosis grade $2 — 33 (97.1) 23 (100) 13 (92.9) 4.44E-01

Constitutional symptoms 5 (14.7) 11 (30.6) 7 (26.9) 5 (31.2) 4.08E-01

Splenomegaly 16 (45.7) 31 (86.1) 22 (84.6) 10 (71.4) 6.24E-04

Driver mutation

JAK2 V617F 12 (34.3) 16 (43.2) 11 (42.3) 15 (93.8) 8.04E-04

JAK2 ex12 0 0 0 1 (6.2) —

CALR unspecified 0 0 1 (3.8) 0 —

CALR type 1 4 (11.4) 10 (27.0) 7 (26.9) 0 1.99E-01

CALR type 2 5 (14.3) 3 (8.1) 0 0 1.31E-01

MPL 5 (14.3) 3 (8.1) 3 (11.5) 0 7.07E-01

Triple negative 9 (25.7) 5 (13.5) 4 (15.4) 0 3.69E-01

ASXL1 mutation (n evaluable, total 5 85) 25 32 15 13

n (%) 11 (44.0) 10 (31.2) 5 (33.3) 6 (46.2) 6.81E-01

EZH2 mutation (n evaluable, total 5 82) 24 27 16 15

n (%) 3 (12.5) 2 (7.4) 0 1 (6.7) 5.27E-01

SRSF2 mutation (n evaluable, total 5 81) 23 27 16 15

n (%) 7 (30.4) 1 (3.7) 1 (6.2) 0 5.98E-03

IDH1/2 mutation (n evaluable, total 5 81) 23 27 16 15

n (%) 2 (8.7) 1 (6.7) 0 1 (6.7) 6.36E-01

HMR (n evaluable, total 5 86) 25 29 17 15

n (%) 14 (56.0) 12 (41.4) 6 (35.3) 7 (46.7) 5.66E-01

$2 8 (32.0) 2 (6.9) 0 1 (6.7) 6.82E-03

DIPSS (n evaluable, total 5 107) 31 36 25 15

Low 14 (45.2) 9 (25.0) 4 (16.0) 3 (20.0)

Intermediate-1 10 (32.3) 13 (36.1) 13 (52.0) 5 (33.3)

Intermediate-2 3 (9.7) 12 (33.3) 4 (16.0) 5 (33.3)

High 4 (12.9) 2 (5.6) 4 (16.0) 2 (13.3) 3.89E-01

MIPSS70 (n evaluable, total 5 73) 21 25 15 12

Low 10 (47.6) 2 (8.0) 0 1 (8.3)

Intermediate 4 (19.0) 14 (56.0) 10 (66.7) 5 (41.7)

High 7 (33.3) 9 (36.0) 5 (33.3) 6 (50.0) 1.71E-03

Unless otherwise noted, data are n (%). Significant P values (,.05) are highlighted in bold.
NA, not available. —, missing value.
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These genes identified 2 patient subgroups characterized by high-
level differences in terms of clinical and molecular features and OS.

Gene expression–based classification correlates with

patients’ clinical and molecular features

Starting with the list of 832 probesets derived from Cox-regression
analysis, we constructed a gene expression–based classifier for the
2 risk categories defined according to hierarchical clustering. As
detailed in the Patients and methods section, we applied
a supervised learning technique, the “nearest shrunken centroids”
method, to construct the model and cross-validated it using a 20-
fold cross-validation strategy exploiting the pamr.cv R function to
estimate the misclassification error and build a robust classifier. We
obtained an optimized model using the first 351 probesets of the
list, of which 273 (corresponding to 201 genes) survived the cross-
validation threshold (supplemental Table 3).

According to this classification, the low-risk and high-risk groups
were identified, which contained 60 and 54 patients, respectively
(Table 2). Patients in the high-risk group displayed several
detrimental characteristics. The high-risk class was enriched in
samples derived from dead patients (Table 2) and was character-
ized by a significantly inferior survival compared with the low-risk

group (P value 5 1.78E-7, log-rank test) (Figure 2A; Table 2).
Moreover, the low-risk group was enriched in pre-PMF samples,
whereas overt PMF samples were distributed equally between the
2 classes. On the contrary, higher percentages of PET-MF and
PPV-MF were present in the high-risk group. Taking into account
molecular characteristics, the high-risk group was enriched in
patients harboring the JAK2V617F mutation (Table 2); in particular,
homozygosity was more frequent in this group compared with the
low-risk one. The frequency of patients with $1 HMR mutation was
increased in the high-risk group; again, this group was enriched in
ASXL1-mutated patients compared with the low-risk one (Table 2).

Next, we studied the distribution of clinical variables included in
contemporary prognostic models and observed that high-risk
classification correlated with the presence of clinical markers of
inferior survival. Indeed, patient age at sample collection was higher
in the high-risk group, which was also characterized by inferior Hb
levels and platelet counts, superior white blood cell counts,
increased incidence of splenomegaly, circulating blasts . 1% or
2%, BM fibrosis grade $ 2, and constitutional symptoms (Table 2).
Even if 9 of 13 patients who developed secondary AML clustered
within the high-risk group, this difference failed to reach statistical
significance (Table 2). Nevertheless, survival analysis revealed that

Table 1. (continued)

Variable Pre-PMF (n 5 35) Overt PMF (n 5 37) PET-MF (n 5 26) PPV-MF (n 5 16) P

MYSEC-PM (n evaluable, total 5 41) 23 15

Low — — 7 (30.4) 2 (13.3)

Intermediate-1 — — 9 (39.1) 7 (46.7)

Intermediate-2 — — 4 (17.4) 3 (20.0)

High — — 3 (13.0) 3 (20.0) 6.70E-01

Progression to leukemia 8 (22.9) 3 (8.1) 2 (7.7) 0 6.14E-02

Death 13 (37.1) 17 (45.9) 9 (34.6) 10 (62.5) 2.78E-01

Unless otherwise noted, data are n (%). Significant P values (,.05) are highlighted in bold.
NA, not available. —, missing value.
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Figure 1. Cox-regression analysis. (A) Hierarchical clustering of samples according to the expression of 832 probesets that correlated with OS. The dataset was divided

into 2 clusters. (B) The red cluster (on the right in the heatmap) displayed significantly inferior survival compared with the other one, as demonstrated by the result of log-rank

test. Therefore, we defined the blue group as low-risk, whereas the red one was named high-risk.
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LFSwas reduced significantly in the high-risk group (P value5 1.9E-2,
log-rank test) (Figure 2B). Collectively, these results demon-
strated that belonging to the high-risk group represents a risk
factor for survival (HR, 4.736; 95% confidence interval [CI],
2.5-8.9; P value 5 1.48E-6, Wald test) and for leukemic
transformation (HR, 3.976; 95% CI, 1.2-13.6; P value 5 2.75E-2,
Wald test). Of particular interest, this is also true considering samples
stratified according to diagnosis. Indeed, high-risk patients displayed
inferior OSwhen PMF and SMF samples were considered separately
(supplemental Figure 2).

Comparison with contemporary prognostic model

Next, we looked at the correlation between GEP-based and
prognostic model classifications. The low-risk group was significantly
enriched in patients belonging to DIPSS Low and Intermediate-1
categories (P value 5 6.00E-4, x2 test), whereas the majority of
patients classified as DIPSS Intermediate-2 (16/24 [66.7%]) or High
(10/12 [83.3%]) risk clustered within the gene expression–defined
high-risk group (Table 2). Interestingly, DIPSS Intermediate-1 and
Intermediate-2 patients belonging to the high-risk group, according to
our classification, showed a significantly inferior survival compared
with those identified as low-risk (P values 5 5.07E-4 and 2.53E-2,
respectively, log-rank test) (Figure 3A), and Cox-regression analysis
confirmed that high-risk classification represented a risk factor for
inferior survival in DIPSS Intermediate-1 and Intermediate-2 groups
(Figure 3B). High-risk classification retained its significance in

Table 2. Clinical and molecular characteristics of patients included in

our dataset, classified according to our gene expression–based

model

Variable

Low-risk

(n 5 60)

High-risk

(n 5 54) P

OS, median (95% CI), y 6.93 (5.56-NA) 3.26 (2.68-3.81) 1.78E-07

Males 32 (53.3) 28 (51.9) 1.00E100

Disease

Pre-PMF 25 (41.7) 10 (18.5)

Overt PMF 20 (33.3) 17 (31.5)

PET-MF 11 (18.3) 15 (27.8)

PPV-MF 4 (6.7) 12 (22.2) 1.17E-02

Age

Median (range), y 61.4 (32.1-81) 69.95 (31.1-85.6) 5.73E-05

.65 y 18 (30) 35 (64.8) 3.15E-04

Hb

Median (range), g/dL 12.1 (6.5-16.6) 11.15 (5.2-14.4) 1.89E-03

,10 g/dL 6 (10) 16 (29.6) 9.44E-03

Leukocytes

Median (range), 3109/L 8.00 (2.3-38.7) 14.2 (3.15-104) 3.98E-06

.25 3 109/L 1 (1.7) 18 (34) 3.80E-06

Platelets

Median (range), 3109/L 386 (22-1568) 226 (20-1271) 6.85E-03

,100 3 109/L 4 (7) 10 (18.9) 8.62E-02

Circulating blasts $1% 8 (14.3) 16 (34.8) 1.94E-02

Circulating blasts $2% 5 (8.9) 12 (26.1) 3.13E-02

BM fibrosis grade $2 33 (55.9) 36 (76.6) 3.97E-02

Constitutional symptoms 10 (16.7) 18 (34.6) 4.78E-02

Splenomegaly 34 (56.7) 45 (88.2) 2.93E-04

Driver mutation

JAK2 V617F 22 (36.7) 32 (59.3) 2.38E-02

JAK2 ex12 1 (1.7) 0 —

CALR unspecified 1 (1.7) 0 —

CALR type 1 14 (23.3) 7 (13) 2.26E-01

CALR type 2 6 (10) 2 (3.7) 2.77E-01

MPL 8 (13.3) 3 (5.6) 2.11E-01

Triple negative 8 (13.3) 10 (18.5) 6.08E-01

JAK2 V617F

Heterozygous 14 (66.7) 7 (22.6)

Homozygous 7 (33.3) 24 (77.4) 3.41E-03

CALR type 1 absence 46 (76.7) 47 (87) 2.26E-01

ASXL1 mutation (n evaluable,

total 5 85)

46 39

n (%) 9 (19.6) 23 (59) 2.79E-04

EZH2 mutation (n evaluable,

total 5 82)

48 34

n (%) 3 (6.2) 3 (8.8) 6.88E-01

SRSF2 mutation (n evaluable,

total 5 81)

47 34

n (%) 4 (8.5) 5 (14.7) 4.81E-01

Table 2. (continued)

Variable

Low-risk

(n 5 60)

High-risk

(n 5 54) P

IDH1/2 mutation (n evaluable,

total 5 81)

47 34

n (%) 3 (6.4) 1 (2.9) 6.36E-01

HMR (n evaluable, total 5 86) 48 38

n (%) 14 (29.2) 25 (65.8) 1.02E-03

$2 4 (8.3) 7 (18.4) 2.03E-01

DIPSS (n evaluable, total 5 107) 57 50

Low 23 (40.4) 7 (14)

Intermediate-1 24 (42.1) 17 (34)

Intermediate-2 8 (14) 16 (32)

High 2 (3.5) 10 (20) 6.00E-04

MIPSS70 (n evaluable, total 5 73) 41 32

Low 12 (29.3) 1 (3.1)

Intermediate 22 (53.7) 11 (34.4)

High 7 (17.1) 20 (62.5) 1.01E-04

MYSEC-PM (n evaluable,

total 5 38)

14 24

Low 5 (35.7) 4 (16.7)

Intermediate-1 5 (35.7) 11 (45.8)

Intermediate-2 3 (21.4) 4 (16.7)

High 1 (7.1) 5 (20.8) 4.36E-01

Progression to leukemia 4 (6.7) 9 (16.7) 1.40E-01

Death 15 (25) 34 (63) 6.01E-05

Unless otherwise noted, data are n (%). Significant P values (,.05) are highlighted
in bold.
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multivariate analysis when evaluated in the context of DIPSS
classification (P value 5 5.69E-5, Wald test) (Figure 3C), as well
as when considering risk factors included in the DIPSS
prognostic model (P value 5 4.96E-3, Wald test) (supplemental
Table 4). With regard to SMF, we found that the distinction
between high-risk and low-risk patients in terms of survival
reached statistical significance for MYSEC-PM lower-risk categories
(Low plus Intermediate-1), whereas it approached significance for
higher-risk classes (Intermediate-2 plus High) (P values 5 1.39E-2
and 7.26E-2, respectively, log-rank test) (supplemental Figure 3).

More recently, outcome prediction in MF was improved by the
inclusion of molecular information in prognostic models. Because of
the lack of cytogenetics data for most of the samples, we decided
to compare our classification using the MIPSS70 model.12 Most

MIPSS70 High-risk patients clustered within the high-risk group,
whereas the low-risk group contained higher frequencies of Low
and Intermediate samples (P value 5 1.01E-4, x2 test) (Table 2).
Nevertheless, gene expression–based classification distinguished
high-risk patients from low-risk ones with different survival within
MIPSS70 Intermediate and High categories (P values 5 1.28E-2
and 8.59E-3, respectively, log-rank test) (Figure 3D). The high-risk
classification represented a risk factor for inferior survival for
patients belonging to these prognostic categories (Figure 3E), also
retaining its significance in multivariate analyses when considering
MIPSS70 classification (P value 5 5.12E-4, Wald test) (Figure 3F)
or factors included in the MIPSS70 model (P value 5 1.12E-4,
Wald test) (supplemental Table 5).

Taken together, these results demonstrated that a gene
expression–based classifier might also identify groups of patients
characterized by different outcomes in the context of contemporary
prognostic models.

Discussion

MF is a complex hematologic disorder arising from the mutation of
hematopoietic stem cells. Excessive proliferation of cells from the
neoplastic clones gives rise to granulocyte and megakaryocyte
hyperplasia, whereas the altered interaction between hematopoietic
and stromal cells in the BM microenvironment leads to the
development of the fibrosis that is the hallmark of the disease.27

PMF originates from the acquisition of somatic driver mutations in
JAK2, MPL, or CALR genes by hematopoietic stem/progenitor
cells, even if almost 5% of patients do not harbor any of these and,
therefore, are considered triple negative.7 Several other mutations
might be present in PMF patients; among them, those occurring in
EZH2, ASXL1, SRSF2, and IDH1/2 genes are termed HMR
because of their negative impact on OS and LFS.28

MF can be primary or secondary to PV and ET; moreover, a prefibrotic
stage and overt PMF must be distinguished within PMF, depending
on the degree of BM fibrosis, because they represent distinct entities.
As demonstrated by clinical features of patients included in our
data set, in agreement with literature findings, PET-MF was
characterized by increased platelet counts,20,26 whereas pre-PMF
displayed higher Hb levels and platelet counts and a lower
frequency of splenomegaly.24,25 Increased Hb was also evident in
PPV-MF, which was also characterized by an increased leukocyte
count and the presence of a JAK2V617F mutation in all patients.20,26

Despite these differences, MF cases are currently managed in the
same way.29 To study whether gene expression might provide clinical
and prognostic information at any time during the disease
course, we included samples from diagnosis and during follow-
up in our dataset and correlated GEP with patient features at
those time points. Many prognostic models were developed in
the last decade, allowing risk stratification in MF patients based
on clinical features (ie, IPSS, DIPSS), as well as on molecular
and cytogenetics characteristics (ie, DIPSS-plus, MIPSS70,
MIPSS701v2.0, GIPSS).12,13,30-32 These models were devel-
oped for prognostication in PMF but are also applied in SMF
cases, even if a specific model was recently developed (MYSEC-
PM).10 More recently, Grinfeld et al emphasized the impact of
driver mutations on patient prognosis by defining a classification
scheme for MPNs and related disorders based on the type of
genomic alterations harbored by patients.3
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Because clinical decision making in MF is mainly influenced by
survival prediction, it is fundamental to develop easy-to-use models
that can identify patients who are at the highest risk of death. Gene
expression analysis was recently adopted to predict the risk of

recurrence in breast cancer,33 but gene expression signatures were
also developed to predict survival in hematopoietic malignancies,
such as AML (ie, 17-gene leukemia stem cell score [LSC17]).15

Therefore, we decided to study the GEP of MF granulocytes to
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evaluate its impact on disease phenotype and patient outcome.
We focused on granulocytes because they represent an easily
accessible myeloid cell population that belongs to the neoplastic
clone, unlike peripheral blood mononuclear cells that also contain
lymphoid elements.34

Using Cox-regression analysis, we identified survival-related tran-
scripts that were used to construct a classifier based on the
expression of 201 genes that could identify 2 groups of patients.
High-risk patients identified by our model displayed an inferior OS
and LFS compared with low-risk cases. Our results demonstrated
that gene expression–based classification showed good agreement
with contemporary prognostic models; indeed, the high-risk
classification correlated with the presence of several detrimental
features, such as advanced age, decreased Hb levels (,10 g/dL)
and platelet count (,100 3 109/L), increased white blood cell
count (.25 3 109/L), circulating blasts $ 1% and 2%, and the
presence of constitutional symptoms and splenomegaly. Interest-
ingly, in a recent report by Penna et al,35 the absence of the same
detrimental features correlated with long survival (.20 years) in
patients with PMF; this condition was similar to that observed in
the low-risk group identified by gene expression signature. The
frequency of patients with $1 HMR mutation was increased in the
high-risk group, and the presence of these variants correlates with
MF diagnosis and a more aggressive disease with inferior OS.3

Moreover, our findings underscored the impact of JAK2V617F allele
burden on OS, because the high-risk group contained an increased
frequency of homozygous patients, whereas heterozygous ones
clustered within the low-risk group. These data are in agreement
with those of Grinfeld et al, who demonstrated that patients with
a JAK2V617F heterozygous disease have favorable outcomes.3

Our gene expression–based classifier was able to distinguish high-
risk patients from low-risk ones within intermediate-risk classes.
Indeed, in patients stratified according to DIPSS, belonging to the
high-risk group represented a risk factor for inferior survival in the
Intermediate-1 and Intermediate-2 categories. The high-risk group
was characterized by significantly inferior OS compared with the
low-risk group: 3.05 years and 3.42 years in the Intermediate-1 and
Intermediate-2 classes, respectively. Likewise, within the MIPSS70
Intermediate group, high-risk patients displayed a median OS of 2.68
years, which was significantly lower compared with the low-risk group.
Multivariable analysis demonstrated that gene expression–based
classification might represent a risk factor for inferior survival
independent from the DIPSS and MIPSS70 classifications, as well
as from factors included in thesemodels. Therefore, this suggests that
gene expression analysis might provide additional information other
than that included in contemporary prognostic models.

Overall, this study demonstrates the correlation between GEP and MF
clinical features and provides the proof of concept that gene expression
analysis should be considered to complement risk stratification in MF.

To date, treatment algorithms suggest observation accompanied by
palliative drug therapy for DIPSS Intermediate-1 patients, whereas
ASCT and enrollment in clinical trials must be considered for patients
belonging to Intermediate-2 and High-risk categories.6 Our results
demonstrated that high-risk patients with an expected median
survival, 5 years might also be identified within DIPSS Intermediate-
1 and Intermediate-2 classes. The same is true when we consider
Intermediate-risk patients based on MIPSS70 classification.

Overall, given the robustness of these analyses, we believe that
these data may still be helpful to the hematological community in
uncovering the possibility that GEPs might integrate contemporary
prognostic models. Further studies might be able to prospectively
validate these data in an independent cohort of MF cases, thus
improving the identification of patients with expected inferior
survival who can benefit from participation in clinical trials or ASCT.
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16. Bullinger L, Döhner K, Bair E, et al. Use of gene-expression profiling to identify prognostic subclasses in adult acute myeloid leukemia. N Engl J Med.
2004;350(16):1605-1616.

17. Pellagatti A, Benner A, Mills KI, et al. Identification of gene expression-based prognostic markers in the hematopoietic stem cells of patients with
myelodysplastic syndromes. J Clin Oncol. 2013;31(28):3557-3564.

18. Mills KI, Kohlmann A, Williams PM, et al. Microarray-based classifiers and prognosis models identify subgroups with distinct clinical outcomes and high
risk of AML transformation of myelodysplastic syndrome. Blood. 2009;114(5):1063-1072.

19. Shiozawa Y, Malcovati L, Gall̀ı A, et al. Gene expression and risk of leukemic transformation in myelodysplasia [published correction appears in Blood.
2018;132(8):869-875]. Blood. 2017;130(24):2642-2653.

20. Rotunno G, Pacilli A, Artusi V, et al. Epidemiology and clinical relevance of mutations in postpolycythemia vera and postessential thrombocythemia
myelofibrosis: a study on 359 patients of the AGIMM group. Am J Hematol. 2016;91(7):681-686.

21. Guglielmelli P, Rotunno G, Fanelli T, et al. Validation of the differential prognostic impact of type 1/type 1-like versus type 2/type 2-like CALR mutations in
myelofibrosis. Blood Cancer J. 2015;5(10):e360.

22. Norfo R, Zini R, Pennucci V, et al; Associazione Italiana per la Ricerca sul Cancro Gruppo Italiano Malattie Mieloproliferative Investigators.
miRNA-mRNA integrative analysis in primary myelofibrosis CD341 cells: role of miR-155/JARID2 axis in abnormal megakaryopoiesis. Blood. 2014;
124(13):e21-e32.

23. van ’t Veer LJ, Dai H, van de Vijver MJ, et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature. 2002;415(6871):530-536.

24. Guglielmelli P, Pacilli A, Rotunno G, et al; AGIMM Group. Presentation and outcome of patients with 2016 WHO diagnosis of prefibrotic and overt
primary myelofibrosis. Blood. 2017;129(24):3227-3236.

25. Mudireddy M, Shah S, Lasho T, et al. Prefibrotic versus overtly fibrotic primary myelofibrosis: clinical, cytogenetic, molecular and prognostic comparisons.
Br J Haematol. 2018;182(4):594-597.

26. Palandri F, Palumbo GA, Iurlo A, et al. Differences in presenting features, outcome and prognostic models in patients with primary myelofibrosis and
post-polycythemia vera and/or post-essential thrombocythemia myelofibrosis treated with ruxolitinib. New perspective of the MYSEC-PM in a large
multicenter study. Semin Hematol. 2018;55(4):248-255.

27. Gangat N, Tefferi A. Myelofibrosis biology and contemporary management. Br J Haematol. 2020;191(2):152-170.

28. Vannucchi AM, Lasho TL, Guglielmelli P, et al. Mutations and prognosis in primary myelofibrosis. Leukemia. 2013;27(9):1861-1869.

29. Tefferi A, Guglielmelli P, Pardanani A, Vannucchi AM. Myelofibrosis treatment algorithm 2018. Blood Cancer J. 2018;8(8):72.

30. Cervantes F, Dupriez B, Pereira A, et al. New prognostic scoring system for primary myelofibrosis based on a study of the International Working Group for
Myelofibrosis Research and Treatment. Blood. 2009;113(13):2895-2901.

31. Passamonti F, Cervantes F, Vannucchi AM, et al. A dynamic prognostic model to predict survival in primary myelofibrosis: a study by the IWG-MRT
(International Working Group for Myeloproliferative Neoplasms Research and Treatment). Blood. 2010;115(9):1703-1708.

32. Gangat N, Caramazza D, Vaidya R, et al. DIPSS plus: a refined Dynamic International Prognostic Scoring System for primary myelofibrosis that
incorporates prognostic information from karyotype, platelet count, and transfusion status. J Clin Oncol. 2011;29(4):392-397.

9 MARCH 2021 x VOLUME 5, NUMBER 5 GEP CLINICAL CORRELATES IN MF 1461
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