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Key Points

• A split GFP minigene
accurately models en-
dogenous posttran-
scriptional processing
of hematopoietic tran-
scription factor
RUNX1.

• The RNA-binding pro-
teins HNRNPA1 and
KHDRBS1 antagonisti-
cally regulate RUNX1a
isoform generation
by alternative
polyadenylation.

The proper balance of hematopoietic stem cell (HSC) self-renewal and differentiation is

critical for normal hematopoiesis and is disrupted in hematologic malignancy. Among

regulators of HSC fate, transcription factors have a well-defined central role, and mutations

promote malignant transformation. More recently, studies have illuminated the importance

of posttranscriptional regulation by RNA-binding proteins (RBPs) in hematopoiesis and

leukemia development. However, the RBPs involved and the breadth of regulation are only

beginning to be elucidated. Furthermore, the intersection between posttranscriptional

regulation and hematopoietic transcription factor function is poorly understood. Here, we

studied the posttranscriptional regulation of RUNX1, a key hematopoietic transcription

factor. Alternative polyadenylation (APA) of RUNX1 produces functionally antagonistic

protein isoforms (RUNX1a vs RUNX1b/c) that mediate HSC self-renewal vs differentiation, an

RNA-processing event that is dysregulated in malignancy. Consequently, RBPs that regulate

this event directly contribute to healthy and aberrant hematopoiesis. We modeled RUNX1

APA using a split GFPminigene reporter and confirmed the sensitivity of our model to detect

changes in RNA processing. We used this reporter in a clustered regularly interspaced short

palindromic repeats (CRISPR) screen consisting of single guide RNAs exclusively targeting

RBPs and uncovered HNRNPA1 and KHDRBS1 as antagonistic regulators of RUNX1a isoform

generation. Overall, our study provides mechanistic insight into the posttranscriptional

regulation of a key hematopoietic transcription factor and identifies RBPs that may have

widespread and important functions in hematopoiesis.

Introduction

Hematopoiesis is dependent on the proper balance between hematopoietic stem cell (HSC) self-
renewal and differentiation. Perturbation in either direction is the basis of various hematologic
malignancies. Among molecular mechanisms governing HSC fate, there is growing interest in the role of
posttranscriptional regulation by RNA-binding proteins (RBPs), ignited by the identification of common
splice factor mutations in leukemia and myelodysplastic syndrome (MDS).1-4 In addition to splicing
factors, RBPs that regulate RNA methylation,5 editing,6 and translation7 have been described to impact
HSC self-renewal and differentiation. However, only a small subset of all RBPs have been implicated in
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Figure 1. A split GFP minigene model recapitulates RUNX1 isoform generation. (A) Genome browser tracks depicting sequencing reads in the RUNX1 gene obtained

from 39READS of sorted common myeloid progenitors (CMP). The full RUNX1 genomic structure is shown above and the red boxed region is expanded below. The locations

of the 4 major poly(A) sites are marked with red arrows. (B) Usage of the 4 major RUNX1 poly(A) sites, calculated from 39READS analysis of sorted CMPs. (C) Quantification

of RUNX1 poly(A) site #1 or #4 usage relative to a common synthetic poly(A) site via RNase protection assay. Data are mean 6 standard deviation (SD) of 3 independent

experiments. (D) Schematic diagram of the split GFP minigene constructs containing RUNX1 exon 7a (left panels) and RUNX1 exon 7b (right panels). Poly(A) sites are shown,

as well as possible messenger RNA products. (E) Percentage of GFP1 cells, as measured by flow cytometry of KG-1a cells nucleofected with the RUNX1 exon 7a or exon 7b

minigene construct. Data are mean 6 SD of 4 independent experiments. (F) RT-PCR analysis of RNA extracted from KG-1a cells nucleofected with the RUNX1 minigene

constructs, a GFP vector positive control, or mock-nucleofected negative control. Primer sets used for analysis are shown above the corresponding agarose gel image.

**P , .01, 2-tailed Student t test; ***P , .001, 1-way analysis of variance (ANOVA) with a post hoc Tukey’s test.
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Figure 2. Chimeric minigenes reveal locations of critical cis-acting elements regulating RUNX1 exon 7a and 7b inclusion. (A) Schematic diagram of the RUNX1

exon 7a chimeric split GFP minigene constructs. Changes to the intronic context are indicated by label and color: introns normally flanking exon 7a are blue and are labeled

“a’; introns normally flanking exon 7b are yellow and are labeled “b.” (B) Percentage of GFP1 cells, as measured by flow cytometry, in KG-1a cells nucleofected with the

indicated RUNX1 exon 7a chimeric minigene constructs. Data are mean 6 SD of 4 independent experiments. The data are not significantly different by 1-way analysis of

variance (ANOVA). (C) RT-PCR analysis of RNA extracted from KG-1a cells nucleofected with the RUNX1 exon 7a chimeric minigene constructs. Primer sets used for analysis

are shown above the corresponding agarose gel image. (D) Fluorescein isothiocyanate (FITC) MFI measured by flow cytometric analysis of KG-1a cells nucleofected with the

indicated RUNX1 exon 7a chimeric minigene constructs. FITC MFI is normalized to KG-1a cells nucleofected with the exon 7a wild-type (WT) minigene construct. Data are

mean 6 SD of 4 independent experiments. (E) RT-qPCR analysis of exon7a product mRNA normalized to GAPDH mRNA from KG-1a cells nucleofected with the respective

constructs. mRNA levels were normalized to that of the RUNX1 exon 7a WT control. Data are mean 6 SD of 3 independent experiments. (F) Schematic diagram of the
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hematopoietic regulation and leukemia development. As such, the
mechanistic impact and breadth of RBP involvement in hemato-
poiesis is only beginning to be understood.

By contrast, transcription factors have well-defined roles in regulating
proper hematopoiesis, and mutations are common in hematologic
malignancies. Interestingly, posttranscriptional regulation of various
hematopoietic transcription factors (GATA1,8 IKZF1,9 RUNX1,10

SCL,11 and TEL/ETV612) produces functionally distinct isoforms,
highlighting the intersection between these 2 regulatory processes.
Consequently, elucidating the posttranscriptional mechanism of a key
hematopoietic transcription factor will illuminate additional RBPs with
a critical role in hematopoiesis.

RUNX1 is a hematopoietic transcription factor that plays a direct
role in regulating HSC fate through the antagonistic action of its 3
major protein isoforms.13-15 The long RUNX1b/c isoforms use
alternative promoters and differ by 27 amino acids at their N
terminus.13,16 They both contain the runt homology domain for DNA
binding and heterodimerization with CBFb and the downstream
transcriptional regulatory domain, which recruits essential cofac-
tors.17 RUNX1a is a C-terminally truncated RUNX1 isoform that
is generated by alternative polyadenylation (APA)13,18; it retains
the runt homology domain but lacks the transcriptional regulatory
domain.14 This structural difference confers enhanced DNA
binding14,19 and divergent effects on target gene transcription
compared with RUNX1b/c.14,20,21 RUNX1a overexpression
expands functional HSCs in vitro and in vivo,10,21-23 retards
hematopoietic differentiation,14,22 and enhances engraftment
of murine bone marrow cells following transplantation.10,21,22

Conversely, RUNX1b/c induce HSC quiescence,24 promote
differentiation,14,25 and abrogate engraftment of transplanted
murine bone marrow cells.10

In a healthy hematopoietic system, RUNX1b/c are the dominantly
expressed isoforms, whereas RUNX1a represents a minor fraction
of the isoform pool.10,13 RUNX1a is further restricted to immature
hematopoietic stem and progenitor cells (HSPCs),10 suggesting
that RUNX1 APA is dynamically regulated during differentiation.
Despite this restricted expression, short isoforms of RUNX1 are
conserved across species,26-28 playing an important role in healthy
HSC pool maintenance.29 Because RUNX1a mediates HSC
expansion, overexpression can be leukemogenic.20 Indeed,
RUNX1a is overexpressed in some patients with acute myeloid
leukemia (AML),14,20 acute lymphoblastic leukemia,20 or MDS.30

Importantly, overexpression is achieved by a change in the relative
ratio of RUNX1a/total RUNX1 transcript, linking posttranscriptional
mechanisms to aberrant transcription factor function.14,30

Collectively, these observations support the hypothesis that post-
transcriptional regulators of RUNX1 isoform generation contribute
to HSC biology and protect against leukemia development. So far,
the RBPs responsible for this regulation and the cis-acting elements
to which they bind are unknown. Here, we devised a fluorescent
minigene model that accurately recapitulates RUNX1 isoform

generation and used our construct that monitors RUNX1a
formation to perform an RBP clustered regularly interspaced
short palindromic repeats (CRISPR) screen. We learned that
RUNX1 proximal poly(A) site usage and, therefore, RUNX1a
formation, is repressed primarily as a result of splicing factor
RBPs, not core APA machinery. We identified HNRNPA1 as
a potent repressor of RUNX1a formation throughout hemato-
poiesis, with a putative binding site in alternative terminal exon
7a. Conversely, KHDRBS1 is an activator of RUNX1a production
in HSPCs, exhibiting declining expression throughout hematopoi-
etic differentiation. Overall, our study highlights the intersection
between posttranscriptional regulation and transcription factor
function, while uncovering RBPs that play essential and previously
underappreciated roles in normal and aberrant hematopoiesis.

Methods

Please see supplemental Methods for a complete description of all
methods.

Split GFP minigene cloning

The split GFP vector was kindly provided by Zefeng Wang
(University of North Carolina at Chapel Hill).31,32 RUNX1 exon 7a
and 7b reporters were made by amplifying genomic DNA from KG-
1a cells (exon 7a: 59-GTTTTCACGTGACCCAGCAC-39/59-GGG
ACCTAGCATCTCCCTGA-39; exon 7b: 59-CTTGGGAGAGAA
TTCGCCTTA-39/59-TGGAACCAGTCCTCCATGGA-39) and
inserting the resulting fragment into the reporter by HindIII/KpnI
digestion.

CRISPR screening and analysis

A total of 13 million MDS-L dual fluorescent reporter cells was
infected with virus produced from the RBP single guide RNA
(sgRNA) library33 (#141438; Addgene) in duplicate at a multiplicity
of infection ;0.3 using the transduction protocol described in
supplemental Methods. Four million cells were collected following
72 hours of puromycin selection (day 0) and at the 3-week end
point (day 21). At this time, GFP low and high cells relative to
mCherry were sorted on a FACSAria II. Genomic DNA was
extracted from each cell population using a DNeasy Blood and
Tissue Kit (#69504; Qiagen). Integrated sgRNA sequences were
amplified using polymerase chain reaction (PCR) and Herculase II
Fusion DNA Polymerase (#600679; Agilent Technologies) with the
following primers:

forward (equimolar mixture of the following):

59-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCTA
GTGGAAAGGACGAAACACCG-39

59-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGCT
AGTGGAAAGGACGAAACACCG-39

59-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGTGC
CAGTGGAAAGGACGAAACACCG-39

Figure 2. (continued) RUNX1 exon 7b chimeric split GFP minigene constructs. Changes to the intronic context are indicated by label and color: introns normally flanking

exon 7a are blue and are labeled “a”; introns normally flanking exon 7b are yellow and are labeled “b.” (G) Percentage of GFP1 cells, as measured by flow cytometry, of KG-1a

cells nucleofected with the indicated RUNX1 exon 7b chimeric minigene constructs. Data are mean 6 SD of 4 independent experiments. (H) RT-PCR analysis of RNA

extracted from KG-1a cells nucleofected with the indicated RUNX1 exon 7b chimeric minigene constructs. The asterisk represents the presence of a cryptic splice site that

results in a higher molecular weight product. **P , .01, ***P , .001, 1-way ANOVA with post hoc Tukey’s test.
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59-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGAAG
TCCGTGGAAAGGACGAAACACCG-39;

reverse: 59-TGGAAAAGATAGCTGGATCCTGGCTGGGGA
GAGGG-39.

PCR products were purified using agarose gel electrophoresis and
then Nextera XT Indexes (#15032353; Illumina) were added to the
amplicons using NEB Taq DNA Polymerase (M0273L). Libraries
were pooled and sequenced on an Illumina HiSeq 4000. b scores
representing the cumulative sgRNA enrichment per gene in GFP
high and low populations were calculated using MAGeCK
maximum-likelihood estimation.34 Enrichment of individual sgRNAs
was determined by MAGeCK robust rank aggregation.34

Results

RUNX1 poly(A) site strength minimally contributes to

suppression of the RUNX1a isoform

RNA-processing events are regulated by core machinery and
unique RBPs that confer cellular context specificity. Therefore, we
first assessed the likelihood that RUNX1 APA is regulated solely by
core polyadenylation machinery. Previous studies regarding global
poly(A) site usage revealed that genes tend to terminate at distal
sites because proximal poly(A) sites generally contain weaker cis-
acting elements than do their distal counterparts and recruit core
machinery less efficiently.35,36 In these cases, usage of a weaker
site is mostly dependent upon the cellular concentration of core
polyadenylation machinery.37 Because RUNX1a isoform generation
is due to polyadenylation at a proximal poly(A) site, we examined
whether minimal endogenous RUNX1a formation can be attributed
to a weak poly(A) site. To this end, we profiled endogenous RUNX1
poly(A) site usage by performing 39READS38 of sorted common
myeloid progenitors (CMPs) (CD341/CD381/CD1231/CD45RA2

) from leukapheresis products obtained from 3 healthy donors
(supplemental Figure 1A). Among 4 previously annotated major
poly(A) sites,13 we observed that poly(A) site #1, which results in
RUNX1a formation, was the second most used site behind only
distal site #4 (Figure 1A-B; supplemental Figure 1B). Next, we
compared the sequences of core polyadenylation cis elements for
poly(A) sites #1 and #4 (supplemental Figure 2). Interestingly, both
poly(A) sites have the canonical AAUAAA poly(A) hexamer,
predictive of a strong poly(A) site.35,39,40 Both also have an
upstream UGUA motif that enhances core machinery recruitment41

and downstream G/U-rich elements containing UU dinucleotides
that enhance cleavage efficiency.42,43 Together, RUNX1 poly(A)
site #1 has strong, not weak, cis elements. Finally, we tested the
cleavage efficiency of both sites using a tandem poly(A) reporter
system and RNase protection assays44 (supplemental Figure 3A).
Although poly(A) site #4 had stronger cleavage than did poly(A) site
#1, cleavage at poly(A) site #1 occurred in 40% of transcripts when
present in tandem with a strong downstream synthetic poly(A) site
(Figure 1C; supplemental Figure 3B-C). Altogether, these data
support the conclusion that RUNX1a formation is not limited
primarily as a result of weak polyadenylation cis elements and poor
cleavage efficiency. Although core machinery may play a role, we

hypothesize that context-specific RBPs regulate isoform expression
of this crucial hematopoietic transcription factor.

A split GFP minigene model recapitulates RUNX1
isoform generation

Next, we modeled RUNX1a formation by including more of its
genomic context, capturing regions that bind accessory RBPs and
regulate context-specific isoform generation. RUNX1 isoform
generation is mediated by a particular type of coding sequence
APA in which proximal poly(A) site usage is coupled with splicing of
an alternative terminal exon.45 For RUNX1a formation, exon 6 of the
RUNX1 gene splices exon 7a and terminates at poly(A) site #1
(Figure 1A). RUNX1b/c are formed by skipping exon 7a, splicing
exon 7b, and terminating at 1 of 3 poly(A) sites in exon 8.13

Therefore, we devised a minigene model that accounts for splicing
and polyadenylation of RUNX1 alternative terminal exon 7a. We
cloned exon 7a with ;500 bp of flanking intron between the 2
exons of a split GFP reporter31,32 (Figure 1D, left panel). Because
RUNX1a is globally suppressed in hematopoiesis, we expect that
exon 7a will be skipped and GFP will be detected in cells expressing
the transgene. We also generated an analogous construct
containing constitutive exon 7b, which is spliced instead of exon
7a to produce the major RUNX1b/c isoforms (Figure 1D, right
panel). Unlike the exon 7a minigene construct, we expect that exon
7b will be spliced between the 2 GFP exons, and GFP will not be
produced.

To select an appropriate cell line in which to test our reporters, we
profiled endogenous RUNX1 isoform levels in 8 leukemia cell lines
(supplemental Figure 4). We selected KG-1a cells, with high
relative RUNX1a expression, reasoning that we should be able to
detect exon 7a usage of our reporter, despite its global suppression
in blood cells. Upon nucleofection into KG-1a cells, the exon 7a
minigene produced a strong GFP signal, whereas the exon 7b
construct produced no detectable GFP (Figure 1E). We confirmed
that GFP fluorescence reflected the expected splice products by
performing reverse transcription PCR (RT-PCR) (Figure 1F, upper
panel). Additionally, we observed low levels of exon 7a spliced and
polyadenylated product from cells expressing the exon 7a minigene,
effectively modeling low RUNX1a isoform generation (Figure 1F,
lower panel). The opposite processing of these minigenes
recapitulates endogenous RUNX1 posttranscriptional regulation.
Consequently, these constructs are suitable for further study of cis-
acting elements and RBPs that differentiate these RNA-processing
events.

Chimeric minigenes reveal locations of critical

cis-acting elements regulating RUNX1 exon 7a and

7b inclusion

To assess whether the disparity in RUNX1 exon usage is generally
defined by exons or flanking intronic regions, we subcloned 2
series of chimeric minigene constructs. We first modified the split
GFP reporter that contained exon 7a by replacing the upstream
(bAa), downstream (aAb), or both (bAb) flanking introns with the
analogous introns that typically surround exon 7b (Figure 2A).

Figure 3. (continued) included in the secondary validation are labeled. Two sgRNAs targeting mCherry and 3 targeting EGFP were present in the sgRNA library and served

as the positive controls for enrichment in the sorted GFP high and low cell populations, respectively. These controls were most significantly enriched in their respective

populations and are labeled in the plot.
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Figure 4. HNRNPA1 represses RUNX1a isoform formation. (A) Western blot showing HNRNPA1 and actin (loading control) protein in K562 and MDS-L cells 6 days

following transduction with control shRNAs or shRNAs targeting HNRNPA1. (B) RT-qPCR analysis of RUNX1a mRNA normalized to total RUNX1 mRNA upon HNRNPA1 knock-

down in K562 and MDS-L cells. mRNA levels were normalized to the respective control for each cell line. Data are mean 6 SD of 4 independent experiments. *P , .05, **P , .01,
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Cells nucleofected with all 4 exon 7a minigene constructs still
producedGFP, as shown by flow cytometry (Figure 2B) and RT-PCR
(Figure 2C, upper panel). This observation suggests that major
suppressive cis elements are located within exon 7a. Interestingly, we
noticed consistent differences in the GFP mean fluorescent intensity
(MFI) of cells expressing each of the 4 constructs (Figure 2D). To test
whether these differences meaningfully predict changes in inclusion
of exon 7a, we performed quantitative RT-PCR (RT-qPCR) to
quantify the relative amount of polyadenylated exon 7a product
generated by each minigene construct (Figure 2E). Indeed, de-
creased GFP MFI (bAa) correlated with increased exon 7a inclusion,
whereas increased GFP MFI (aAb and bAb) correlated with exon 7a
exclusion. The former observation (bAa) indicates a minor suppres-
sive cis element in the upstream intron of exon 7a. The latter (aAb and
bAb) result from ablation of exon 7a polyadenylation by removal of the
G/U-rich downstream element (Figure 2C, lower panel). Overall, GFP
MFI precisely detected changes in exon 7a inclusion of the minigene
reporter.

We next generated a set of minigene constructs that contained
constitutive exon 7b. We replaced the upstream (aBb), downstream
(bBa), or both (aBa) flanking introns with the analogous introns that
typically flank exon 7a (Figure 2F). When nucleofected into cells, the
wild-type construct did not produce GFP, and replacing only the
downstream intron (bBa) had no effect onGFP production. However,
replacing the upstream intron (aBb) produced a slight increase in
GFP1 cells, and replacing both introns (aBa) produced a dramatic
increase in GFP1 cells (Figure 2G). RT-PCR analysis revealed
a striking reversal from complete inclusion of exon 7b in the wild-type
context to nearly complete exclusion when both introns were
replaced (Figure 2H). This observation indicates that the exon 7b
flanking introns may contain enhancer cis elements, the exon 7a
flanking introns may contain suppressive cis elements, or both
hypotheses may be true. Ultimately, the constitutive nature of exon 7b
is disrupted by modifying its intronic context, in contrast to exon 7a,
which was modestly affected by alterations to its flanking introns.

A CRISPR RBP screen uncovers putative regulators of

RUNX1a production

Motivated by the unique regulation of exon 7a, we next wanted
to identify specific RBPs that regulate exon 7a inclusion and,

therefore, RUNX1a formation. We performed a CRISPR/Cas9
screen using a library composed of sgRNAs exclusively targeting
RBPs.33 This library consists of 10 sgRNAs targeting each of 1078
RBPs, 628 positive control sgRNAs targeting essential genes,
1058 negative control nontargeting sgRNAs, and 12 sgRNAs
targeting fluorescent proteins. Because the exon 7a split GFP
minigene reporter was sensitive in detecting bidirectional changes
in exon inclusion (Figure 2D), we modified this reporter for
screening. To account for RBPs that may affect transcription,
messenger RNA (mRNA) stability, export, localization, and trans-
lation of the reporter independent of changes in inclusion of exon
7a, we added mCherry and a P2A peptide directly upstream of the
split GFP (Figure 3A). Using this bicistronic model, RBPs that
regulate reporter expression will influence both fluorescent proteins,
and the fluorescence ratio will remain unchanged. Conversely,
RBPs that regulate RUNX1 exon 7a processing will alter the ratio of
GFP/mCherry fluorescence. We selected MDS-L cells as a diploid
RUNX1a intermediate-expressing cell line (supplemental Figure 4A)
and generated a stable clonal line expressing the dual fluorescent
minigene reporter. As expected, these cells displayed a strong
correlation between mCherry and GFP fluorescence (Figure 3B).

We infected this reporter cell line with the lentiviral sgRNA library
and selected for transduced cells with puromycin (Figure 3C).
We collected a population of cells 3 days posttransduction to
confirm representation of the sgRNA library (day 0) (supplemen-
tal Figure 5A) and after 3 weeks (day 21) to allow adequate time for
editing of target RBP genomic sequences. At day 21, positive
control sgRNAs were significantly depleted from the pool
(approximately twofold) along with those targeting essential RBPs
(Figure 3D). We also sorted GFP low and GFP high cells relative to
mCherry (Figure 3B) to identify sgRNAs targeting putative RUNX1a
repressors and activators, respectively. We used MAGeCK34 to
calculate b scores describing the level of enrichment of multiple
sgRNAs targeting each RBP in these subpopulations. Altogether,
we identified 47 putative repressor RBPs and 55 activator RBPs
from the 1078 RBPs screened (P , .05) (Figure 3E). We focused
on RBPs with P , .01, which displayed a high proportion of
enriched sgRNAs per RBP (supplemental Figure 5B). Among the
10 most significant putative RBP repressors, 8 carry the “RNA
splicing” (GO:0008380) and/or “Regulation of mRNA splicing”

Figure 4. (continued) ***P , .001, 2-tailed Student t test. (C) RT-qPCR analysis of RUNX1b/c mRNA normalized to total RUNX1 mRNA upon HNRNPA1 knockdown in K562

and MDS-L cells. mRNA levels were normalized to the respective control for each cell line. Data are mean 6 SD of 4 independent experiments. *P , .05, **P , .01, ***P , .001,

2-tailed Student t test. (D) Western blot showing RUNX1a and tubulin (loading control) protein. The first 3 lanes contain protein from 293T cells transfected with empty vector,

vector containing untagged RUNX1a cDNA, or vector containing RUNX1b cDNA. Lane 2 is a positive control for RUNX1a protein (blue arrowhead). The last 2 lanes contain protein

from MDS-L cells 6 days following transduction with shControl lentivirus or shHNRNPA1 (2) lentivirus. Signal above the main RUNX1a band could be due to posttranslational

modifications of the RUNX1 protein or usage of distal promoter P1. (E) RT-qPCR analysis of HNRNPA1 mRNA normalized to total b-Actin mRNA upon HNRNPA1 knockdown in

primary CD341 HSPCs. mRNA levels were normalized to cells transduced with control shRNAs. Data are mean 6 SD of 3 independent experiments. ***P , .001, 2-tailed Student

t test. (F) RT-qPCR analysis of RUNX1a mRNA normalized to total RUNX1 mRNA upon HNRNPA1 knockdown in primary CD341 HSPCs. mRNA levels were normalized to cells

transduced with control shRNAs. Data are mean 6 SD of 3 independent experiments. **P , .01, 2-tailed Student t test. (G) Western blot showing HNRNPA1, RUNX1a, RUNX1b,

and actin (loading control) protein. The first 2 lanes contain protein from CD341 HSPCs 6 days following transduction with control shRNA lentivirus or shHNRNPA1 (2) lentivirus.

The last 3 lanes contain protein from 293T cells transfected with empty vector, vector containing untagged RUNX1a cDNA, or vector containing RUNX1b cDNA. Quantification of

RUNX1a and RUNX1b protein was performed by densitometry and normalized to actin protein. Compared to HSPCs transduced with control shRNAs, HNRNPA1 knockdown cells

have 4.5 times more RUNX1a protein and 0.78 times RUNX1b protein. (H) Schematic diagram of the dual fluorescent RUNX1 exon 7a wild-type (WT) and HNRNPA1 site mutant

constructs. The underlined “AG” nucleotides in the WT construct were mutated to “CC.” (I) Cumulative distribution function plot showing the log2 ratio of GFP/mCherry in individual

KG-1a cells nucleofected with the exon 7a WT construct or HNRNPA1 site mutant construct. Data are from 1 representative experiment of 3 independent experiments. ***P ,

.001, Kolmogorov-Smirnov test. (J) RT-qPCR analysis of exon 7a product mRNA normalized to mCherry mRNA from KG-1a cells nucleofected with the respective HNRNPA1 site

mutant constructs. mRNA levels were normalized to that of the RUNX1 exon 7a WT control. Data are mean 6 SD of 3 independent experiments. *P , .05, 2-tailed Student t test.
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(GO:0043484) Gene Ontology annotation; none are annotated for
“mRNA 39-end processing” (GO:0031124) (supplemental Table 1).
This observation suggests potent splicing regulation of alternative
terminal exon 7a and supports our previous conclusion that APA
core machinery plays a minor role in repressing proximal poly(A) site
usage (Figure 1A-C).

HNRNPA1 is a potent repressor of RUNX1a formation

To validate putative RUNX1a repressors, we performed a secondary
screen using pooled small interfering RNAs (siRNAs) as a different
method of gene knockdown to confidently identify RBP regulators
of RUNX1 isoform generation. We knocked down the 8 splicing-
related RBPs and measured relative endogenous RUNX1a mRNA
to total RUNX1 transcript by RT-qPCR (supplemental Figure 6A).
From this secondary screen, we identified HNRNPA1 as a repressor
of RUNX1a isoform generation. Next, we knocked down HNRNPA1
using stably expressed short hairpin RNAs (shRNAs). In the K562
and MDS-L leukemia cell lines, HNRNPA1 knockdown (Figure 4A)
led to a significant increase in relative RUNX1a mRNA to total
RUNX1 mRNA (Figure 4B), with a concurrent decrease in
RUNX1b/c transcript (Figure 4C). In MDS-L cells, HNRNPA1
knockdown also led to the clear detection of RUNX1a protein,
which was difficult to detect in the parental cell line (Figure 4D). We
further validated this regulation in primary human CD341 HSPCs.
HNRNPA1 knockdown in HSPCs (Figure 4E) led to a significant
increase in relative RUNX1a mRNA (Figure 4F) and an obvious
increase in RUNX1a protein that coincided with a modest decrease
in RUNX1b protein (Figure 4G).

Because HNRNPA1 is abundantly expressed in hematopoietic
cells, we also generated HNRNPA1-knockout MDS-L cells via
CRISPR/Cas9. We validated 4 unique HNRNPA1-knockout clones
and 2 heterozygous clones by western blot (supplemental
Figure 7A) and sequencing of individual alleles (supplemental
Figure 7B). HNRNPA1 protein reduction conferred a dose-
dependent increase in relative RUNX1a mRNA (supplemental
Figure 7C) and RUNX1a protein (supplemental Figure 7D), further
implicating HNRNPA1 as a potent repressor of RUNX1a formation.

Mutation of a predicted HNRNPA1 binding site in

exon 7a enhances its splicing and polyadenylation

We next addressed whether HNRNPA1 likely represses RUNX1a
production through direct binding to exon 7a or its adjacent introns.
A consensus binding motif for HNRNPA1 was previously deduced
using SELEX,46 HITS-CLIP,47 and iCLIP48 techniques. Based on
our cis element studies, we hypothesized that suppressive elements
are located within exon 7a (Figure 2A-E). Indeed, we identified

a putative HNRNPA1 binding motif (UAGAGC) in the 39 region of
exon 7a. To disrupt HNRNPA1 binding, we mutated the essential
“AG” dinucleotide to cytosines (UAGAGC → UCCAGC) in the
dual fluorescent minigene49,50 (Figure 4H). We observed a signif-
icantly lower GFP/mCherry MFI ratio in cells expressing the mutated
construct compared with cells expressing the wild-type construct
(Figure 4I). In agreement with this shift, the construct containing the
mutated HNRNPA1 binding site also produced significantly more
exon 7a polyadenylated product (Figure 4J). We concluded that
HNRNPA1 likely binds to the consensus motif in RUNX1 exon 7a to
repress splicing and polyadenylation.

Additional regulators contribute to the proper

balance of RUNX1 isoforms

HNRNPA1 is abundantly expressed throughout hematopoiesis,
playing a pivotal role in repressing RUNX1a isoform production.
However, its absence does not confer dominance of the RUNX1a
isoform over RUNX1b/c. There must be additional RBPs that
contribute to this repression and others that activate exon 7a
inclusion, maintaining the low levels of RUNX1a necessary for HSC
pool maintenance.

In our CRISPR screen interrogating RBPs, we also sorted GFP high
cells that contained sgRNAs targeting putative RUNX1a activators
(Figure 3B-C). To validate endogenous RUNX1a activators, we
again performed a secondary siRNA screen of RBPs with
documented roles in splicing (supplemental Figure 6B; supplemen-
tal Table 1). From this secondary screen, we identified HNRNPC
and KHDRBS1 as putative activators of RUNX1a formation (Figure
5A-B; supplemental Figure 6B). Of these 2 RBPs, overexpression
of KHDRBS1 in K562 cells led to a significant increase in relative
RUNX1a mRNA to total RUNX1 mRNA (Figure 5C-D). Next, we
validated this regulation in primary HSPCs. Indeed, knockdown of
KHDRBS1 (Figure 5E) led to a significant decrease in relative
RUNX1a mRNA (Figure 5F). Finally, we examined the effect of
KHDRBS1 overexpression combined with HNRNPA1 knockdown
and observed further increased RUNX1a transcript production
(Figure 5G-H). These results highlight the combinatorial role of
multiple RBPs in maintaining isoform pools of critical transcription
factors, such as RUNX1.

Discussion

Because transcription factors have well-defined roles in healthy
hematopoiesis and leukemogenesis, studying the posttranscrip-
tional processing of a critical hematopoietic transcription factor is
a suitable strategy for identifying functionally important RBPs in
hematology. Here, we studied APA of RUNX1, a posttranscriptional

Figure 5. (continued) in K562 cells following transduction with retrovirus expressing KHDRBS1 cDNA. Actin protein is the loading control. (D) RT-qPCR analysis of RUNX1a

mRNA normalized to total RUNX1 in K562 cells following transduction with retrovirus expressing KHDRBS1 cDNA. mRNA levels were normalized to cells transduced with an

empty vector. Data are mean 6 SD of 4 independent experiments. *P , .05, 2-tailed Student t test. (E) RT-qPCR analysis of KHDRBS1 mRNA normalized to b-Actin mRNA

upon shRNA knockdown of KHDRBS1 in primary CD341 HSPCs. mRNA levels were normalized to cells transduced with control shRNAs. Data are mean 6 SD of 3 (shRNA

1) or 4 (shRNA 2) independent experiments. ***P , .001, 2-tailed Student t test. (F) RT-qPCR analysis of RUNX1a mRNA normalized to total RUNX1 mRNA upon shRNA

knockdown of KHDRBS1 in primary CD341 HSPCs. mRNA levels were normalized to cells transduced with control shRNAs. Data are mean 6 SD of 3 (shRNA 1) or 4

(shRNA 2) independent experiments. ***P , .001, 2-tailed Student t test. (G) Western blot showing HNRNPA1, KHDRBS1, and actin (loading control) proteins in K562 cells

with the indicated combinations of shRNA-mediated HNRNPA1 knockdown and KHDRBS1 cDNA retroviral overexpression. (H) RT-qPCR analysis of RUNX1a mRNA

normalized to total RUNX1 in K562 cells with the indicated combinations of shRNA-mediated HNRNPA1 knockdown and KHDRBS1 cDNA retroviral overexpression. mRNA

levels were normalized to cells transduced with control shRNAs and empty vector. Data are mean 6 standard error of the mean of 5 independent experiments. *P , .05,

paired 2-tailed Student t test. (I) Diagram depicting the antagonistic regulation of RUNX1 APA by HNRNPA1 and KHDRBS1. ns, not significant.

9 MARCH 2021 x VOLUME 5, NUMBER 5 RNA-BINDING PROTEIN REGULATION OF RUNX1 ISOFORMS 1319



event that produces antagonistic isoforms mediating HSC dynam-
ics and is dysregulated in malignancy. By studying this event, we
uncovered 2 RBPs, HNRNPA1 and KHDRBS1, with previously
unappreciated roles in proper and aberrant hematopoiesis.
Additionally, our dual fluorescent model and screening approach
can be adapted to probe RBP regulation of other critical
posttranscriptional events. Finally, our study represents one of few
reports on the role of APA in normal hematopoiesis and assigns
a role for splicing regulators to alternative terminal exon APA.

To study RBP-RNA interactions that impact RUNX1 isoform
generation, we modeled RUNX1 posttranscriptional processing
using a split GFP minigene.31,32 This fluorescent reporter re-
capitulated the endogenous disparity in the expression of RUNX1a
(alternative terminal exon 7a) and RUNX1b/c (constitutive exon 7b)
in hematopoiesis10 and was sensitive enough to detect small
changes in exon inclusion. When converted to a dual fluorescent
bicistronic reporter and paired with a CRISPR sgRNA library
targeting RBPs,33 we identified key posttranscriptional regula-
tors of RUNX1 function. Certainly, our strategy can be readily
adapted to probe regulation of RNA-processing events beyond
this current study.

Among the screened RBPs, we identified HNRNPA1 as a potent
repressor of RUNX1a formation with a presumptive binding site in
the 39 untranslated region of alternative terminal exon 7a (Figure 5I).
Considering the global suppression of RUNX1a in hematopoiesis,
the discovery of HNRNPA1 as a major player in exon 7a repression
is not surprising. HNRNPA1 has a broadly documented repressive
role on exon usage and is one of the most abundantly expressed
nuclear proteins.51 Indeed, HNRNPA1 is highly expressed through-
out hematopoiesis, maintaining a RUNX1 isoform pool that favors
RUNX1b/c (supplemental Figure 8A).52 Expression remains high in
HSPCs and, therefore, cannot fully explain RUNX1a upregulation in
these cells. Expression is also lower in differentiated myeloid cells,53

suggesting the presence of additional repressors.

HNRNPA1 is overexpressed in AML53 (supplemental Figure 8B)
and BCR-ABL1 chronic myeloid leukemia patients,54 where it
contributes to leukemic phenotypes.55 Consequently, decreased
HNRNPA1 expression is not a pervasive mechanism for RUNX1a
upregulation in leukemia. An intriguing alternative possibility is
that posttranslational modification of HNRNPA1, independent of
changes in expression, can impact target gene splicing.56 So far,
we cannot exclude the importance of HNRNPA1 posttranslational
modifications on the regulation of RUNX1 isoform generation.

We also identified the RUNX1a activator KHDRBS1 (Figure 5I),
belonging to the signal transduction and activation of RNA
metabolism (STAR) family of RBPs, which link signal transduction
to posttranscriptional regulation.57 KHDRBS1 and HNRNPA1 play
cooperative and antagonistic roles in RNA-processing events.58-60

Our data support an antagonistic interaction on RUNX1 isoform
generation.

Importantly, KHDRBS1 expression during healthy hematopoiesis
and in leukemia supports a role for this RBP in fine-tuning the
RUNX1 isoform ratio. KHDRBS1 is most highly expressed in
HSPCs, with decreased expression upon differentiation (supple-
mental Figure 8C). Therefore, KHDRBS1 expression activates
RUNX1a formation in HSPCs and might positively regulate HSC
self-renewal. Consistent with this hypothesis, KHDRBS1 promotes

neural progenitor cell self-renewal and knockdown induces
differentiation, a system analogous to HSC regulation.61 Further-
more, KHDRBS1 plays an oncogenic role in various cancer
types,62,63 including leukemia. KHDRBS1 expression is essential
for MLL fusion–mediated leukemic transformation,64 and it is
overexpressed in T-cell acute lymphoblastic leukemia65 and
AML66 (supplemental Figure 8D). In these studies, the oncogenic
role of KHDRBS1 is attributed to protein-protein interactions, not its
RNA-binding ability. However, the posttranscriptional impact of
KHDRBS1 in other cancer types is well documented.62,63 Our data
demonstrate, for the first time, that KHDRBS1 regulates APA of
a key hematopoietic transcription factor, thus making this RBP an
attractive candidate for normal HSC regulation and dysregulation in
leukemia.

Finally, our study highlights the importance of APA in hematopoi-
esis, a field of posttranscriptional regulation relatively understudied
in hematology. Global APA trends across species and cellular
contexts reveal a shift from proximal to distal poly(A) site usage
during differentiation67-70 and the opposite trend during oncogenic
transformation.71-73 In these respects, RUNX1 APA fits global
trends: proximal poly(A) site #1 usage (RUNX1a) is highest in
immature HSCs and decreases upon differentiation,10 and proximal
poly(A) site #1 usage is elevated in hematologic malignancy.14,20,30

However, a closer analysis reveals unconventional APA regulation.
Although proximal poly(A) sites tend to contain inherently weak
polyadenylation cis elements,35,36 this is not the case for RUNX1.
We saw that proximal poly(A) site #1 has higher endogenous usage
than 2 of 3 distal sites, canonical cis-acting elements, and relatively
strong cleavage. These observations support an evolutionarily
conserved role for short RUNX1 isoforms in healthy
hematopoiesis.26,27,29 Additionally, we implicated splicing RBPs,
not APA machinery, in the regulation of alternative terminal exon
polyadenylation. KHDRBS1 has recently been reported to regulate
this unique APA category.61,74,75 Considering its expression in
normal hematopoiesis and upregulation in leukemia, our finding
warrants further study of the interaction between KHDRBS1 and
APA in these contexts.

In summary, we uncovered RBPs involved in posttranscriptional
regulation of RUNX1, a mechanism with implications for normal
hematopoiesis and malignancy. Because of their newly assigned
role in regulating RUNX1a formation, further studies on the
global function of HNRNPA1 and KHDRBS1 in hematology are
necessary.
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