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Abstract 

Background:  The development of atrial fibrillation (AF) following valvular heart disease (VHD) remains a common 
disease and is associated with substantial adverse complications. However, valid molecular diagnostic and therapeutic 
tools for post-VHD AF have not been fully established. This study was conducted to discover the molecular mecha-
nisms and immune microenvironment underlying AF following VHD.

Methods:  Gene expression profiles of the GSE41177 dataset were assessed to construct a protein–protein interaction 
network, and then, autophagy-related hub genes were identified. In addition, to determine the functions of immune 
cell infiltration in valvular AF, we used the CIBERSORT algorithm to estimate the composition of 22 immune cell types 
in valvular heart disease. Finally, correlation analysis was carried out to identify the relationship between differentially 
expressed autophagy-related genes (DEARGs) and significant immune cell subpopulations to reveal potential regula-
tory pathways.

Results:  A total of 153 DEARGs were identified in AF-VHD patients compared with controlled donors. Moreover, 
we screened the top ten hub nodes with the highest degrees through a network analysis. The ten hub nodes were 
considered hub genes related to AF genesis and progression. Then, we revealed six significant immune cell subpopu-
lations through the CIBERSORT algorithm. Finally, correlation analysis was performed, and six DEARGs (BECN1, GAPDH, 
ATG7, MAPK3, BCL2L1, and MYC) and three immune cell subpopulations (T cells CD4 memory resting, T cells follicular 
helper, and neutrophils) were identified as the most significant potential regulators.

Conclusion:  The DEARGs and immune cells identified in our study may be critical in AF development following VHD 
and provide potential predictive markers and therapeutic targets for determining a treatment strategy for AF patients.
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Introduction
Atrial fibrillation (AF), a surging global health care bur-
den, affects nearly 1–4% of the adult population in the 
USA, and this number is expected to exceed 13% for 
individuals older than 80 years of age [1]. Valvular heart 
disease (VHD) is also a common disease worldwide [2]. 
The common causes of VHD are degeneration and some 
modifiable risk factors (such as elevated blood pressure 
and lipid profiles) in higher income countries, whereas 
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rheumatic heart disease is a common cause in developing 
regions [3]. Importantly, AF patients with concomitant 
VHD are at higher risk of stroke and systemic embolism 
than those without VHD [4].

Autophagy is a self-digesting mechanism that main-
tains cellular homeostasis by eliminating unnecessary 
or dysfunctional cellular components [5, 6]. The Human 
Autophagy Database (HADb) is a web-based resource, 
that provides a comprehensive and up-to-date list of 
human genes and proteins involved in autophagy [7]. Pre-
vious studies have reported that autophagy is a potential 
novel mechanistic contributor to the pathological pro-
cesses of AF genesis [8, 9]. Nakano et al. showed that AF 
patients displayed a significant decrease in the expression 
level of mitochondrial ALDH2, which regulates cardiac 
autophagy [10]. These findings suggest that autophagy 
and AF may have underlying relationships. Addition-
ally, immune cell infiltration in the atrial myocardium 
is common in patients with either lone AF or valvular 
AF [11, 12]. A previous study observed that activated T 
lymphocytes (CD3+ and HLA-DR+) were significantly 
up-regulated in the peripheral blood of AF patients com-
pared with individuals with sinus rhythm (SR) (36% vs 
27%; P < 0.001) [13]. Moreover, this up-regulation was 
reversed when SR was maintained after cardioversion at 
follow-up [13]. These findings suggested that immune 
infiltration may play an essential role in AF develop-
ment. In addition, cross talk between components of 
autophagy and immunity has also been reported; regula-
tors of autophagy control regulators of inflammation, and 
vice-versa [14]. However, the communicative regulatory 
mechanisms of autophagy and immunity in the initiation 
and maintenance of AF remain unknown.

In this study, a protein–protein interaction (PPI) net-
work of differentially expressed autophagy-related 
genes (DEARGs) was constructed, and hub genes were 
revealed. To determine the functions of DEARGs in 
valvular AF, we constructed a valvular AF-related TF/
mRNA/miRNA network by integrating all TF-DEARG 
and miRNA-DEARG interactions. In addition, we 
used the CIBERSORT algorithm to estimate fractions 
of the immune cell subpopulations in VHD samples 
[15]. Finally, we conducted co-expression analysis with 
DEARGs and immune cells to identify the underlying 
regulatory mechanisms in AF genesis.

Materials and methods
Supplementary methods are available in Additional file 1.

Differentially expressed mRNA microarray datasets 
and data processing
The human VHD gene expression profile GSE41177 
dataset [16] was downloaded from the Gene Expression 

Omnibus [17] database. The mRNA expression data in 
the GSE41177 dataset were obtained from 16 persis-
tent AF patients and 3 patients with normal SR under-
going valvular surgery. Gene expression values of |log2 
fold-change (FC)|> 1 and adjusted original P-values 
(adj. P-values) < 0.05 were used to identify differentially 
expressed mRNAs (DEmRNAs) in the AF samples.

Identification of differentially expressed autophagy‑related 
genes (DEARGs)
We extracted 232 human autophagy-related genes from 
the HADb. Then, we obtained the DEARGs by inter-
secting the 232 ARGs with DEmRNAs identified in the 
GSE41177 dataset.

GO and pathway enrichment analyses of the DEARGs
Gene Ontology (GO) and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathway enrichment analyses of 
the DEARGs were performed using Database for Anno-
tation, Visualization and Integrated Discovery (DAVID 
6.8) [18]. KEGG pathway enrichment analysis for these 
DEARGs was carried out to reveal the autophagy gene-
associated pathways.

Construction and analysis of the PPI network of DEARGs
The Search Tool for the Retrieval of Interacting Genes 
(STRING database, V11.0) was used to predict the inter-
actions of these DEARGs and create a PPI network [19]. 
Subsequently, after downloading STRING database 
results with a confidence score > 0.7, the biological net-
works and topological features were visualized and ana-
lyzed using Cytoscape software [20]. Then, hub genes 
were revealed using CytoHubba, a plugin of Cytoscape.

Prediction of miRNAs and transcription factors (TFs) 
that regulate DEARGs
In this study, TF-DEARG interactions were predicted 
by two different TF-target prediction algorithms in 
the Enrichr database [21]: TRANSFAC and JASPAR. 
Next, we used miRTarBase in the Enrichr database to 
retrieve miRNA-mRNA interactions. The integrated 
TF/mRNA/miRNA regulatory network was constructed 
using Cytoscape based on the identified TF-DEARG and 
miRNA-DEARG interactions.

CIBERSORT estimation
Cell Type Identification by Estimating Relative Subsets of 
RNA Transcripts (CIBERSORT) algorithm is a compre-
hensive analytical tool constructed by Newman et al. [15] 
to estimate the immune cell composition on the basis of 
gene expression profiles. In the present study, the frac-
tions of 22 immune cell subpopulations in the SR-VHD 
and AF-VHD samples were estimated by CIBERSORT. 
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Only cases with CIBERSORT output of P < 0.05 were 
included in further analysis. The Wilcoxon rank-sum test 
was performed to identify significant immune infiltration 
cell subpopulations between the SR-VHD and AF-VHD 
samples.

Correlation analysis of the ARGs and immune cells 
in valvular AF
Ultimately, the Pearson correlation analysis was imple-
mented to reveal the relationship between the DEARGs 
and immune cells. We analyzed the correlation of 
DEARG expression with significant immune cell subpop-
ulations in the VHD samples.

Results
Flowchart of the analysis process
Figure  1 summarizes the analysis process of this study. 
First, we calculated DEmRNAs with |logFC| > 1 and adj. 
P-value < 0.05 in the GSE41177 dataset. We selected 
153 DEARGs from HADb for further analysis. Second, 
we identified ten autophagy-related hub genes from the 
PPI network and constructed the autophagy-related TF/
mRNA/miRNA regulatory network. Third, we revealed 
six differential immune cell subpopulations that reached 
the threshold criterion, P-value < 0.05, in the CIBER-
SORT algorithm. Finally, we conducted co-expression 
analysis of the DEARGs and differential immune cell 

subpopulations. In conclusion, we identified six DEARGs 
(BECN1, GAPDH, ATG7, MAPK3, BCL2L1, and MYC) 
and three immune cells (T cells CD4 memory resting, T 
cells follicular helper, and neutrophils), which may play 
crucial roles in the molecular mechanisms and immune 
microenvironment underlying valvular AF.

Identification of DEARGs in valvular AF
We identified 12,156 mRNAs in 16 valvular AF samples 
and 3 SR tissues that exhibited significantly differential 
expression. Simultaneously, 232 autophagic genes were 
obtained from HADb. Then, the 232 autophagic genes 
were intersected with the 12,156 DEmRNAs identified 
in the GSE41177 dataset. The results showed that 153 
DEARGs were suitable for further analysis (|logFC| > 1 
and adj. P-value < 0.05; Fig.  2a). In addition, the gene 
expression of the 153 selected DEARGs is shown in heat-
maps in Fig. 2b.

GO and pathway enrichment analyses of the DEARGs
To evaluate the biological function of these 153 DEARGs, 
we performed GO and pathway enrichment analyses. The 
GO analysis results showed that DEARGs were signifi-
cantly enriched in the biological process (BP) category, 
including cell death, apoptosis, and autophagy (Fig.  3a). 
For the molecular function (MF) category, the DEARGs 
were enriched in autophagic vacuoles, cytosol, and cell 

Fig. 1  The flowchart of the analysis process
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fraction (Fig. 3b). In addition, the GO cellular component 
(CC) category analysis showed that the DEARGs were 
significantly enriched in protein dimerization activity, 
protein heterodimerization activity, and cysteine-type 
peptidase activity (Fig.  3c). From the KEGG pathway 
enrichment analysis results, we found that the DEARGs 
were enriched in pathways in cancer, regulation of 
autophagy, mTOR signaling pathway, NOD-like receptor 
signaling pathway, and Toll-like receptor signaling path-
way, mainly related to cancer and immunity (Fig. 3d).

PPI network construction and module selection
Next, we constructed a PPI network of these 153 
DEARGs to identify the key modules and hub genes in 

valvular AF (Fig.  4a). The five most significant modules 
were then revealed using the MCODE plugin with the 
preset cutoff criteria (Fig.  4b). Moreover, we screened 
the top ten hub nodes with the highest degrees in the 
PPI network. Ten hub nodes, BECN1, CASP3, GAPDH, 
TP53, ATG5, ATG7, MAPK3, BCL2L1, MYC, and 
MAP1LC3B, were considered hub genes related to AF 
genesis and progression (Table  1). Furthermore, we 
found that the expression levels of the ten hub genes were 
up-regulated in the AF-VHD group (P < 0.01) (Fig. 5).

Construction of a TF/mRNA/miRNA regulatory network 
in valvular AF
We then investigated the regulatory mechanism of the ten 
hub genes in valvular AF by constructing an autophagy-
related TF/mRNA/miRNA network. Using the miRNA-
DEARG and TF-DEARG interactions obtained from the 
Enrichr database, we found that the network consisted of 
two TFs, nine targeted mRNAs, and 35 miRNAs (Fig. 6). 
Specifically, most of the DEARGs were regulated by two 
TFs (MYC and TP53).

Immune cell infiltration analysis
To reveal the potential mechanisms of the enriched 
immune pathways, we conducted an immune cell infiltra-
tion analysis with VHD tissues. The histogram map of the 
relative composition of the 22 immune cell types in the 
VHD showed that T cells CD8, T cells gamma delta, and 
macrophages M2 were the most abundant immune cell 
subpopulations (Fig. 7a). By principal component analy-
sis (PCA), the fractions of the immune cells from AF 
patient samples and SR controls demonstrated distinct 
intergroup bias and significant individual differences 
(Fig. 7b). Using the CIBERSORT algorithm, the results of 
the Wilcoxon rank-sum test suggested that the fractions 
of the T cells CD4 memory resting (P = 0.006) and T fol-
licular helper cells (P = 0.023) in the VHD with AF sam-
ples were relatively smaller than those in the VHD with 
SR samples, and the fractions of plasma cells (P = 0.047), 
monocytes (P = 0.021), dendritic cells resting (P = 0.038), 
and neutrophils (P = 0.002) were relatively larger in the 
VHD with AF samples (Fig.  7c). The six differentially 
infiltrated immune cells were then included in co-expres-
sion analysis.

Co‑expression analysis of the DEARGs and AF‑VHD related 
immune cells
The underlying communicative mechanisms of 
DEARGs and immune cells were explored by Pearson 
correlation analysis. First, we explored potential corre-
lations between 22 different immune cell types (Fig. 8a). 
The resulting heatmap showed that the percentages of 

Fig. 2  Hierarchical clustering analysis of differentially expressed 
autophagy-related genes (DEARGs). a Venn diagram of intersecting 
DEARGs. The dark area in the middle represents the ARGs that 
were identified through both analysis of differentially expressed 
mRNAs and the ARGs in the Human Autophagy Database (HADb). b 
Heatmaps of the DEARGs. The up-regulated DEARGs are marked in 
red, whereas the down-regulated DEARGs are marked in blue
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different subpopulations of infiltrating immune cells 
showed weak to moderate correlations. As shown in 
Fig.  8c, neutrophils and T cells CD4 memory resting 
(P = 5.19e−3, R =  − 0.614) showed a correlation.

Subsequently, the correlation between the DEARGs 
and immune cells was further analyzed. The results 
revealed that the expression levels of certain DEARGs, 
including BECN1, GAPDH, ATG7, MAPK3, BCL2L1, 
and MYC, had significant associations with the infiltra-
tion levels of T cells CD4 memory resting, T cells fol-
licular helper, and neutrophils in the AF-VHD samples 
(Table  2). The correlation between the DEARGs and 
significant immune cell subpopulations is illustrated in 
Fig. 8b, and BCL2L1 and T cells CD4 memory resting 
(P = 4.29e−4, R =  − 0.726) showed a good correlation 
(Fig. 8d). These findings strongly suggest that DEARGs, 

including BECN1, GAPDH, ATG7, MAPK3 BCL2L1, 
and MYC, play specific regulatory roles in immune 
infiltration cells, especially T cells CD4 memory rest-
ing, T cells follicular helper, and neutrophils.

Discussion
In the present study, we applied network analysis and 
the CIBERSROT algorithm to identify biologically sig-
nificant DEARGs and immune cells related to AF gen-
esis. We revealed the key correlated regulators of six 
DEARGs (BECN1, GAPDH, ATG7, MAPK3, BCL2L1, 
and MYC) and three immune cell subpopulations (T cells 
CD4 memory resting, T cells follicular helper, and neu-
trophils) that were unique to patients who developed AF 
after VHD.

Fig. 3  Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment. a–c Bar plot of significant GO terms 
showing DEARG enrichment in biological process (BP), molecular function (MF) and cellular component (CC) categories. d Bar plot of the significant 
KEGG pathways enriched with DEARGs. Notes In plots a–d, only the top 20 (most significant) terms in each cluster are shown



Page 6 of 11Liu et al. BMC Cardiovasc Disord          (2021) 21:132 

Fig. 4  Protein–protein interaction (PPI) network and the most significant modules. a The PPI network constructed using the STRING database for 
DEARGs. b The most significant modules obtained from the PPI network with preset criteria

Table 1  Top ten hub nodes with the highest degrees in the protein–protein interaction (PPI) network

Gene names Degree logFC AveExpr t P-Value adj. P-Val B

BECN1 86 1.09 7.55 7.48 3.04E−07 7.70E−07 6.58

CASP3 86 1.15 7.29 4.07 5.88E−04 7.35E−04  − 1.07

GAPDH 82 1.79 13.61 7.11 6.47E−07 1.48E−06 5.81

TP53 81 1.42 6.67 7.72 1.86E−07 5.06E−07 7.08

ATG5 72 1.20 7.93 4.86 9.16E−05 1.28E−04 0.79

ATG7 71 1.15 6.43 11.89 1.41E−10 2.09E−09 14.39

MAPK3 65 1.30 9.25 8.79 2.44E−08 9.49E−08 9.15

BCL2L1 65 1.46 6.90 10.00 2.87E−09 1.77E−08 11.32

MYC 64 2.95 9.50 5.42 2.56E−05 3.96E−05 2.07

MAP1LC3B 63 1.86 10.45 5.18 4.45E−05 6.57E−05 1.52

Fig. 5  The significant differences in the expression levels of 10 DEARGs between valvular heart disease (VHD) patients with atrial fibrillation (AF) 
and individuals with normal sinus rhythm (SR) are illustrated
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Through meta-analysis of associated genome-wide 
association studies, Ellinor et al. identified six AF sus-
ceptibility loci (PRRX1, CAV1, SYNE2, FBP1/2, HCN4, 
and SYNPO2L-MYOZ1) involved in cardiac electrical 
and structural remodeling [22]. In addition, perform-
ing a bioinformatics analysis, Zou et  al. found four 
co-expressed genes (ZNF566, PDZK1IP1, ZFHX3, and 
PITX2) significantly associated with AF-related stroke 
[23]. In this study, we identified six autophagy-related 
genes (BECN1, GAPDH [24], ATG7, MAPK3 [25], 
BCL2L1, and MYC [26, 27]) associated with AF genesis. 
Currently, numerous studies have revealed that cardio-
vascular diseases are associated with autophagic genes, 
both positively [28] and negatively [29]. For example, a 
recent study demonstrated that FAK-mediated phos-
phorylation of BECN1 negatively regulated cardiomyo-
cyte autophagy, thereby initiating hypertrophic cardiac 
growth [30]. Down-regulation of GAPDH reduced 
H9C2 cardiomyoblast death following acute hypoxia 

Fig. 6  View of the transcription factor (TF)/mRNA/miRNA regulatory 
network. TFs, mRNAs, and miRNAs are represented by v-shaped 
frames, ellipses, and diamonds, respectively

Fig. 7  The immune phenotype landscape in the VHD samples with AF and SR. a Bar plot showing the relative proportions of 22 immune cell 
populations in the VHD tissues. b Principal component analysis (PCA) performed on all VHD samples. The first two PCs, which accounted for the 
majority of the model variations between groups, are shown. c Violin plot comparing immune cell compositions in the VHD patients with AF and 
individuals with normal SR. (The AF-VHD group is depicted in red, and the control group is depicted in blue. P < 0.05 was considered statistically 
significant)
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Fig. 8  Co-expression patterns of the DEARGs and immune cell subpopulations. a Pearson correlation analysis of different infiltrating immune cell 
subpopulations and b the relationships between the DEARGs and infiltrating immune cells in the VHD tissues. c Scatterplots further delineate the 
exact association between neutrophils and T cells CD4 memory resting (P = 5.19e−3, R =  − 0.614) and d the relationship between BCL2L1 and T 
cells CD4 memory resting (P = 4.29e−4, R =  − 0.726)

Table 2  Correlation analysis between differentially expressed autophagy-related genes (DEARGs) and immune cell subpopulations

*P < 0.05; **P < 0.01; ***P < 0.001

Gene names Plasma cells T cells CD4 memory 
resting

T cells follicular helper Monocytes Dendritic cells 
resting

Neutrophils

R P R P R P R P R P R P

BECN1 0.3 0.21  − 0.066 **  − 0.67 ** 0.31 0.19 0.35 0.14 0.47 *

CASP3 0.41 0.08  − 0.57 *  − 0.35 0.14  − 0.04 0.87 0.19 0.44 0.48 *

GAPDH 0.24 0.31  − 0.57 *  − 0.8 *** 0.37 0.11 0.3 0.22 0.47 *

TP53 0.45 0.05  − 0.65 **  − 0.61 ** 0.35 0.14 0.18 0.47 0.3 0.21

ATG5 0.42 0.08  − 0.56 *  − 0.49 *  − 0.16 0.52 0.27 0.26 0.36 0.13

ATG7 0.37 0.12  − 0.78 ***  − 0.65 ** 0.43 0.07 0.18 0.46 0.49 *

MAPK3 0.31 0.19  − 0.67 **  − 0.69 ** 0.49 * 0.2 0.41 0.43 0.07

BCL2L1 0.33 0.17  − 0.73 ***  − 0.56 * 0.5 * 0.2 0.42 0.51 *

MYC 0.11 0.67  − 0.56 *  − 0.69 ** 0.43 0.07 0.26 0.28 0.6 **

MAP1LC3B 0.28 0.24  − 0.48 *  − 0.77 *** 0.22 0.37 0.22 0.36 0.43 0.07
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and reoxygenation injury [31]. A study by Yuan et  al. 
[32] showed that ATG7 expression was up-regulated in 
the atria of AF patients and rabbit models of rapid atrial 
pacing. In addition, lentivirus-mediated ATG7-knock-
down in rabbits was found to protect against atrial 
electrical remodeling in intracardiac experiments [32]. 
In an acute myocardial infarction rat model, miRNA-
15b was demonstrated to deteriorate cardiomyocyte 
apoptosis by post-transcriptionally down-regulating 
the expression of BCL-2 and MAPK3 [33]. High-dose 
administration of chlorpromazine led to an elevated 
expression level of BCL2L1 and various cardiovascular 
disorders, such as arrhythmia and myocardial fibrosis 
[34]. The up-regulation of c-MYC has been shown to be 
a central component in the Wnt/β-catenin/c-MYC axis 
mediated cardiac remodeling abnormalities in heart 
failure [35].

Currently, pharmacologic therapy of AF is based on 
anti-arrhythmic drugs, and the interventional treatment 
is mostly radiofrequency catheter ablation [36]. Other 
effective preventive medications are needed to curb the 
occurrence of AF, and some drugs have been reported 
to induce apoptotic effects in various diseases target-
ing these identified DEARGs. For instance, Wei et  al. 
described apogossypol derivatives that inhibit antiapop-
totic Bcl-2 family proteins [37]. Meanwhile, Germann 
et al. showed that ulixertinib, targeting the MAPK3 sign-
aling pathway, reduced the proliferation and enhanced 
the caspase activity of sensitive cancer cells [38].

To comprehensively investigate the biological function 
of the DEARGs in valvular AF, we performed functional 
enrichment analysis. The results showed that autophagy 
genes were significantly enriched in autophagic and 
inflammatory signaling pathways. These results were 
consistent with a previous study, which demonstrated 
that the DEGs identified between the AF-VHD and SR-
VHD groups were primarily associated with inflamma-
tory responses [23]. The function of TFs and miRNAs is 
to regulate gene expression, which is closely involved in 
the genesis and progression of valvular AF. In our study, 
the TF/mRNA/miRNA network analysis revealed that 
most hub genes were associated with two TFs (MYC 
and TP53), and 35 miRNAs mainly targeted 3 DEARGs 
(ATG7, BCL2L2 and MYC). We hypothesized that TFs 
and miRNAs might be critical for AF development by 
regulating hub gene expression. Additional studies are 
needed to explore the specific mechanism of TFs and 
miRNAs in valvular AF.

Previous studies have reported that autophagy and 
immune infiltration are closely linked to the development 
and progression of AF [9, 39, 40]. However, no systematic 
investigation or research has been conducted to elucidate 
the communicative functions of autophagy and immune 

infiltration in VHD patients who develop AF. Thus, we 
comprehensively analyzed the potential mechanisms 
of DEARGs and immune infiltration cells in AF-VHD, 
which has rarely been the foci of prior studies.

We also found that three immune cell subpopulations 
(T cells CD4 memory resting, T follicular helper cells, 
and neutrophils) were related to AF genesis in VHD 
patients. Previous studies reported that neutrophils 
constitute the majority of the inflammatory cells in AF 
patients undergoing pericardiotomy, atriotomy, or cath-
eter ablation [41, 42]. Moreover, an elevated neutrophil–
lymphocyte ratio in postoperative AF patients was highly 
consistent with the correlation results in our study. The 
level of neutrophils was inversely correlated with that of 
CD4 T cells. In addition, CD4 T cells (T cells CD4 mem-
ory resting and T follicular helper cells) have different 
roles during chronic inflammation, and their activation 
might be mediated through interactions with Toll-like 
receptor 2 (TLR2) and TLR4 [40, 43]. However, little is 
known about the specific mechanism of CD4 T cells in 
the pathogenesis of AF. To confirm our conclusions, 
experimental mechanistic research should be carried out 
both in vitro and in vivo in future studies.

The role of autophagy can be seen in a range of cell 
types involved in immunity, such as lymphocytes, den-
dritic cells (DCs) and myeloid cells, which contribute to 
inflammatory responses in diverse pathophysiological 
processes [14]. BECN1 knockdown in mesenchymal stem 
cells lead to autophagy suppression, inducing inhibitory 
effects on T lymphocyte infiltration [44]. In mice and 
humans, an immunomodulatory drug, dimethyl fuma-
rate, inactivates the catalytic cysteine of GAPDH, which 
activates myeloid and lymphoid cells [45]. IL-17A was 
reported to positively impact microglial autophagy and 
inflammation by promoting the essential autophagy 
gene ATG7 [46]. Compared to the DCs of MAPK3(+/+) 
mice, the DCs of MAPK3 (−/−) mice possessed a superior 
capacity to activate and prime naïve T cells into a func-
tional phenotype [47]. Autophagy also plays an essential 
role in maintaining Treg cells. Inhibition of c-MYC fol-
lowing autophagy deficiency causes Treg cell apoptosis 
and lineage instability [48]. In summary, we inferred that 
DEARGs might have significant roles in the occurrence of 
AF by regulating innate and adaptive immunity through 
these immune cells. More research directly investigating 
molecular mechanisms is required to validate the com-
munication between those DEARGs and immune cells.

Conclusions
We constructed an autophagy-related TF/mRNA/miRNA 
network and performed immune infiltration analysis to 
propose novel regulatory mechanisms for valvular AF 
occurrence. The DEARGs (BECN1, GAPDH, ATG7, 
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MAPK3, BCL2L1, and MYC) and immune cells (T cells 
CD4 memory resting, T cells follicular helper, and neutro-
phils) identified in our study may be critical in AF genesis 
and provide potential predictive and therapeutic strategies 
for AF patients. The present study not only increases the 
understanding of the regulatory mechanism of DEARGs 
and immune cells in valvular AF but also provides candi-
dates for potential diagnostic biomarkers or therapeutic 
targets in VHD patients developing AF.
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