Skip to main content
. 2020 Nov 23;296:100038. doi: 10.1074/jbc.RA120.016019

Table 2.

Spin-Hamiltonian parameters used to model the EPR spectra shown in Fig. 2C

Samples EPR active signal Species % g1 g2 g3 gave
As-isolated CntA 2.0105 1.9157 1.7574 1.8945
As-isolated CntB No EPR active signal detected
CntB+NADH [2Fe-2S]+1 specA (reduced ferredoxin domain) 93 2.0314 1.9372 1.8988 1.9558
Flavin radical specB (Flavin radical) 7 2.0015 2.0015 2.0015 2.0015
CntA+CntB+NADH [2Fe-2S]+1 in CntB specA (reduced ferredoxin domain) 61 2.0313 1.9376 1.8979 1.9556
Flavin radical specB 2 2.0010 2.0034 2.0039 2.0028
[2Fe-2S]+1 in CntA specC (reduced Rieske center) 37 2.0079 1.9153 1.7542 1.8924
CntA+CntB+NADH+Carnitine an organic radical specB 34 2.0000 2.0035 2.0037 2.0024
[2Fe-2S]+1 in CntAa specC 66 2.0071 1.9077 1.7986 1.9045
E205A+CntB+NADH+Carnitine [2Fe-2S]+1 in CntB specA1 40 2.0338 1.9397 1.8868 1.9534
[2Fe-2S]+1 in CntB specA2 20 2.0449 1.9493 1.9037 1.9660
Flavin radicalb specB 8 2.0012 2.0040 2.0040 2.0031
[2Fe-2S]+1 in CntAa specC 32 2.0070 1.9077 1.7896 1.9014
a

This EPR active signal may also contain overlapping EPR signals derived from the catalytic mononuclear iron center; plausible EPR active intermediates are ferric-(hydro)peroxy or a high-valent iron(V)-oxo species.

b

This may represent an overlay of both a flavin and an unidentified organic radical.