Skip to main content
. 2021 Mar 11;176:114832. doi: 10.1016/j.eswa.2021.114832
Metric Naive Bayes Logistic Regression Random Forest adaBoost Classification Tree Light GBM XGBoost

Acc 0.84 0.91 0.90 0.83 0.81 0.88 0.93
Sens 0.86 0.97 0.94 0.88 0.86 0.93 0.95
Spec 0.83 0.84 0.84 0.79 0.77 0.85 0.90
Prec 0.80 0.88 0.87 0.77 0.75 0.83 0.89
F1 0.83 0.92 0.91 0.82 0.80 0.88 0.92



MCC 0.68 0.82 0.79 0.67 0.62 0.77 0.85
AUC 0.84 0.91 0.89 0.83 0.81 0.89 0.93
AUPRC 0.84 0.91 0.88 0.85 0.82 0.90 0.94
TP 36.00 35.00 34.00 37.00 36.00 39.00 40.00
FP 6.00 1.00 2.00 5.00 6.00 3.00 2.00



FN 9.00 5.00 5.00 11.00 12.00 8.00 5.00
TN 43.00 26.00 26.00 41.00 40.00 44.00 47.00

*Note: The Logistic Regression and Random Forest model removes missing values from its final results and cannot be adequately compared with the other results.
†MCC: Matthew’s Correlation Coefficient AUC: Area Under the Curve AUPRC: Area Under the Precision Recall Curve TP: True Positive — FP: False Positive — FN: False Negative — TN: True Negative