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What factors explain spatial variation in the severity of COVID-19 across the United States? To answer this ques-
tion, we analyze the correlates of COVID-19 cases and deaths across US counties. We document four sets of facts.
First, effective density is an important and persistent determinant of COVID-19 severity. Second, counties with
more nursing home residents, lower income, higher poverty rates, and a greater presence of African Americans
and Hispanics are disproportionately impacted, and these effects show no sign of disappearing over time. Third,

the effect of certain characteristics, such as the distance to major international airports and the share of elderly
individuals, dies out over time. Fourth, Trump-leaning counties are less severely affected early on, but later suffer

from a large severity penalty.

“Look at us today (...) We are your future (...) New York is the canary
in the coal mine (...) New York is going first. What happens to New York
is going to wind up happening to California and Washington state and
Hlinois. It’s just a matter of time.”

—Andrew Cuomo, March 24, 2020

1. Introduction

While COVID-19 has reached even the remotest corners of the United
States, there remains tremendous heterogeneity in the severity of the
pandemic across US counties. As of November 30, 2020, a county at the
75th percentile of COVID-19 deaths per capita had triple the deaths of a
county at the 25th percentile. Similarly, a county at the 75th percentile
of COVID-19 cases per capita had twice as many cases as a county at
the 25th percentile. What is the source of this heterogeneity in cases
and deaths across US counties? Should policies be sensitive to such
spatial variation? There are, we think, two legitimate views on these
questions.

Under the first view, spatial variation in disease severity only re-
flects differences in timing, as epitomized by Andrew Cuomo’s state-
ment quoted above. As the disease spreads, ultimately every location in

the US will have similar infection rates, similar death rates, and similar
rates of hospitalization. If this is the case, policy need not be responsive
to local characteristics.

Under the second view, spatial variation in cases and deaths reflects
underlying fundamental differences across locations - population den-
sity, modes of transportation, housing arrangements, the age distribu-
tion of the population, its health conditions, etc. At any point in time,
locations will continue to differ according to these characteristics, and
these differences will persist. This provides a foundation for policies that
are sensitive to local specificities.

This paper aims to adjudicate between these two views, by examin-
ing a broad set of potential correlates of COVID-19 severity. We pay
particular attention to various dimensions of population density: we
consider the average density experienced by a random individual in
the square kilometer around her, as well as the role of public trans-
portation, living arrangements, and housing density. We also assess the
importance of a variety of indicators of socio-economic vulnerability:
the share of the elderly, the presence of minorities, the prevalence of
underlying health conditions, educational attainment, and measures of
poverty and inequality. Finally, local political orientation is likely to
affect both policies and the behavioral response to COVID-19, so we
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explore the association between Donald Trump’s county vote share in
the 2016 election and disease severity. A strength of our approach is
that we consider many potential correlates all at once.’

Our analysis examines the role of these factors at various points in
time, starting on March 15, 2020 and ending on November 30, 2020.
We examine variation in COVID-19 cases and deaths on a daily basis
using two approaches. The first approach looks at the cross-section of
US counties at a given date, providing snapshots of the correlates of
disease severity at particular moments in time. The second approach
looks at the cross-section putting all counties at the same stage in terms
of days since cases and deaths reached a certain threshold per capita.
This allows us to correct for differences in the timing of disease onset, to
better assess if spatial variation reflects the differential timing of disease
onset or fundamental differences between locations.

Our paper delivers four key takeaways. First, density is an impor-
tant and persistent determinant of COVID-19 severity. Identifying this
persistent effect requires going beyond simple density to measure the
effective density experienced by individuals in their daily lives — either
by taking a high-resolution view of population density or by consider-
ing the space people occupy at home or in public transit. Second, we
identify several vulnerable groups whose presence has a large and per-
sistent effect on how hard a location is hit by the pandemic. Counties
with more nursing home residents, lower income, higher poverty rates,
and a greater presence of African Americans and Hispanics are dispro-
portionately impacted, and these effects show no sign of disappearing.
Third, certain characteristics are important early on in the pandemic,
and die out over time. In the case of the distance to major international
airports, this reveals a sequencing pattern: the virus initially appeared
in locations that are well connected with the rest of the world, and then
spread to the rest of the country. In the case of age, this may reveal
a behavioral response: early on counties with a high proportion of el-
derly experienced more deaths, but later in the pandemic this pattern
reversed, as the at-risk population adjusted its behavior. Fourth, in the
early stages of the pandemic, Trump-leaning counties were less severely
affected, but later on, they experience a large and persistent severity
penalty. It is possible that Republican-voting counties acquired lax at-
titudes toward mask-wearing and lockdown measures when COVID-19
was less severe in their areas, leaving them unwilling to respond more
decisively when the pandemic caught up with them.

Where does this leave us in terms of the two views? On balance, the
evidence is consistent with the second view: there are fundamental dif-
ferences across locations that persistently explain the spatial variation
in disease severity. Counties with higher effective density or a bigger
proportion of vulnerable populations suffer disproportionately from
COVID-19 cases and deaths. Our results therefore suggest that policies
addressing the pandemic should be sensitive to these local specificities.
The allocation of scarce resources, such as protective equipment,
medical treatments, and vaccines, should prioritize areas where local
conditions are persistently associated with worse disease severity.

2. Specification and data

In this section, we relate our empirical specification to standard epi-
demiological models and provide a brief overview of the data.

1 An emerging literature examines the determinants of local variation
in COVID-19 severity, also uncovering substantial spatial heterogeneity.
Knittel and Ozaltun (2020) exploit cross-county variation in the US, like us, but
only look at deaths and do not correct for differential timing in disease onset.
Leamer (2020) studies cross-county variation within California, finding a signif-
icant effect of population density. McLaren (2020) looks more specifically at the
relationship between COVID severity and racial composition, arguing that racial
differences are partly related to differential prevalence of public transit at the
county level in the US. Other papers study spatial variation for other countries,
such as Belgium (Verwimp, 2020), France (Ginsburgh et al., 2020) and England
and Wales (S4, 2020).
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2.1. Specification

A specification consistent with the SIRD model. Standard epidemiological
models, such as the SIRD model, posit laws of motion of the number of
susceptible, infectious, recovered and deceased people for a given popu-
lation and a given infectious disease. These laws of motion are governed
by a few key parameters: the rate of infection, the rate of recovery and
the rate of mortality. Together, these determine, for a given population,
the evolution of the number of cases and deaths over time.

To fix ideas, denote by C;, the cumulative number of cases and by
D;, the cumulative number of deaths from COVID-19 in county i at time
t. The rate of infection, g;, and the rate of death, §;, are likely to be,
to an extent, county-specific. For example, we would expect counties
with higher population density, where individuals are more likely to
run into each other, to have a higher rate of infection ;. Similarly, we
would expect counties with a larger share of elderly to experience higher
death rates §;. Differences in these parameter values across counties im-
ply differences in the paths of C;, and D;, across counties. For example,
a county with a higher g; will have higher cumulative cases and deaths
at any point time, compared to a similar county with a lower g;. This
is related to the well-known result that a higher expected number of
infections from an infected individual (i.e., a higher basic reproduction
number R,) generates in the limit more cumulative cases and more cu-
mulative deaths. Some of these insights are illustrated with simulations
in the recent work by Fernandez-Villaverde and Jones (2020).

The objective of this paper is to explore the importance of county-
specific factors that affect §; and §;. These parameters affect the dynamic
paths of cases and deaths, and hence their levels at every point in time.
We are interested in accounting for differences in levels of cumulative
cases and deaths in the cross-section of counties. Hence we run, for each
time period ¢, county-level regressions of cases or deaths on a set of
potential determinants of §; and §;:

k
C‘i:a0+2al-xij+£‘- (D)
Jj=1
and
k
D, :y0+2ij[l-+v,- 2)

Jj=1

where x;; are county-level regressors that potentially affect f; and §;, ¢;
and v, are county-level disturbance terms, and C; and D, are measures
of, respectively, the cumulative number of cases and deaths in county i.
We return to the precise definition of C; and D; in the next subsection.

These period-by-period regressions can capture any functional form
for the path of the number of cumulative cases and deaths over time. As
such, they are consistent with the functional forms generated by stan-
dard epidemiological models. Indeed, to allow for maximum flexibility
in the changing relation between county-level dterminants and disease
severity, we choose a parsimonious period-by-period cross-sectional re-
gression framework over a more structural empirical model that explic-
itly estimates the SIRD model.

The standard SIRD model assumes that individuals have equal prob-
abilities of interacting with each other. In that sense, it does not really
capture spatial features that make some individuals (or groups) more
or less likely to interact with others. Bisin and Moro (2020) introduce a
spatial SIR model with behavioral responses that explicitly incorporates
these spatial concerns. When people are no longer matched randomly
with the entire population, but are more likely to interact with people in
their vicinity, local herd immunity becomes a possibility. In this model,
spatial heterogeneity in disease severity can be magnified due to differ-
ences in modes of interaction and the spatial scale of interaction. This is
why our empirical analysis seeks to capture dimensions of density that
reflect the extend of local interactions, as experienced by people in their
daily lives.
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Sample based on daily cross-sections. We take two approaches to define
the sample used in the cross-county analysis. The first approach is to
carry out the analysis date by date. In this case, a time period ¢ refers
to a calendar date d, and we simply run regressions (1) and (2) on daily
cross-sections, from March 15, 2020 to November 30, 2020. Early in the
sample period, counties with zero cases and zero deaths are more preva-
lent. In order not to ignore the extensive margin, we use the inverse hy-
perbolic sine transformation (henceforth IHS - see Bellemare and Wich-
man, 2020), so:2

C; = log (C,- + \/CI.2+ 1>
D; = log (D,-+\/Di2+l>

When defining a time period as a calendar date, a potential issue is
that part of the cross-county variation in disease severity may be related
to timing factors. For example, if low-density counties are hit later by
COVID-19 than high-density counties, then their cumulative cases or
deaths will tend to be lower on any given date. To address this concern,
we control for certain factors that could affect the timing of the arrival
of COVID-19 to a particular county. For instance, we control for the
distance to an airport with direct international flights to high-severity
countries.

Sample accounting for the differential timing of onset. The second approach
more directly addresses differential timing of onset by considering each
county at the same time elapsed since onset. Here we refer to onset as
the day when a county reached a certain threshold, either in terms of
cumulative cases or deaths per capita. To formally define days elapsed
since onset, start by denoting, for each county i, an indicator variable
15 that takes a value of 1 if county i has reached at least 1 case per
100,000 population on day d. For each county i and day d, the number
of days since it reached that threshold is then:

d
c _ c
Sig = Zliu'

v=1

For the choice of each cross-county sample, we then set sﬁi to a fixed
number ¢.° That is, the first sample consists of all counties one day af-
ter reaching the threshold, the second sample consists of all counties
two days after reaching the threshold, and so on. Since each regression
compares counties that have all passed the same threshold of per capita
cases a fixed number of days before, this limits the effect of differential
timing of onset across locations.

Similarly, we define the time elapsed since reaching the threshold
of 0.5 deaths per 100,000 population. For each county i and day d, the
number of days since it reached that threshold is sl.l; = Z‘Z:l 1P, where
I[‘; is an indicator variable taking a value of 1 if county i has reached
at least 0.5 deaths per 100,000 population on day d. Here as well, each
regression compares counties that have passed the deaths per capita
threshold a fixed number of days before.

When defining a time period as the time elapsed since reaching a
positive threshold in either cases or deaths, by construction there re-
mains no county with zero cases or deaths in the sample. In this case,
we simply define:

= log(C))

¢
D; = log(D;)

2 In the working paper version of this study, we also isolated only the inten-
sive margin, using the simple log of cases and deaths as dependent variables.
However, as the pandemic progressed, the number of counties with zero deaths
and zero cases has declined, so the difference between the specification in simple
logs and using the IHS tranform becomes minor as of November 30, 2020.

3 For instance, when fixing ¢ = 5, the sample consists of each county on the
specific calendar date d when it reached s¢, = 5.
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Summary of specifications. To summarize, we have four baseline specifi-
cations. There are two outcomes: cases and deaths. There are two ways
to construct the sample: by calendar date, using the IHS of cases or
deaths as dependent variables; or placing each county at the same time
since onset, using the log of cases and deaths as dependent variables.*

2.2. Data

We use daily data on COVID-19 reported cases and deaths collected
at the county level by the New York Times. Online Appendix Table
Al (Panel A) contains summary statistics for various metrics of cases
and deaths constructed from these data, revealing substantial variation
across counties. To our knowledge these are the best data available at
the county level, yet it is important to acknowledge several possible data
challenges. These are particularly acute for cases, and early in the pe-
riod, since reported cases depend on testing, and testing was initially far
from uniformly and widely prevalent. Data issues are not absent from
deaths data either, as reporting standards vary across jurisdictions and
deciding whether a death was caused by COVID-19 involves an element
of judgment. An alternative would be to use data based on excess mor-
tality, but these are not available at the county level on a daily basis.”

Regarding measurement error, we note the following. First, if errors
are random, they will raise the standard error of the regression without
creating bias. However, if both testing and the reporting of deaths are
systematically correlated with the included explanatory variables, we
will need to interpret the corresponding estimates carefully as reflect-
ing effects on both underlying severity and on reporting of cases and
deaths. Second, to the extent that testing capacity varies at the state
level, including state fixed effects may in part correct for systematic
measurement error due to uneven testing intensity. Third, testing may
also be more strongly targeted toward individuals showing symptoms,
resulting in artificially high case fatality rates (CFR=deaths/cases). How-
ever, this is less of a concern at more advanced stages of the pandemic.®
Fourth, as locations ramped up testing and fine tuned the reporting of
deaths, measurement error in cases and deaths have become less rele-
vant.

We also gathered a wide range of county-level indicators to be used
as independent variables. Variable definitions and sources are provided
in the Online Data Appendix, summary statistics are in Online Appendix
Table Al (Panel B) and these variables are displayed in map form in
Online Appendix Fig. Al.

3. Baseline results

Table 1 and Fig. 1 present the baseline results of this paper. Table 1
presents estimates for the four main specifications described in the pre-
vious subsection: columns (1) and (3) consider cases and deaths for the
cross-section of counties as of November 30, 2020, whereas columns

4 In the Online Appendix, we also consider a specification with state fixed-
effects. In addition to controlling for time-invariant fixed state characteristics,
we are also interested in the magnitude of these effects per se. We do not include
state fixed effects our baseline estimations, as they absorb a lot of variation that
we would prefer to explicitly capture.

5 The National Vital Statistics System of the National Center for
Health Statistics reports weekly excess deaths at the state level:
https://www.cdc.gov/nchs/nvss/vsrr/covid19/excess_deaths.htm. For
other examples of excess deaths estimates, see New York City Depart-
ment of Health and Mental Hygiene COVID-19 Response Team (2020) and
Banerjee et al. (2020).

® In the working paper version of this study, we reran our baseline regressions
removing from the sample observations with CFR > 0.1 - the upper tail of the
distribution of CFR, most likely to be severely affected by selection in testing.
However, by November 30, 2020, only 5 counties had such an abnormally high
CFR.


https://www.cdc.gov/nchs/nvss/vsrr/covid19/excess_deaths.htm
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Table 1
OLS Regressions for Cases and Deaths (Dependent variable listed in second row).

(€8] 2) 3) “@
Log Cases, IHS, Log Cases, 225 Log Deaths, IHS, Log Deaths, 215
Nov. 30 days post-onset Nov. 30 days post-onset

Log population 0.931 0.860 0.963 0.971
(0.011)*** (0.015)*** (0.018)*** (0.027)***
[0.892] [0.829] [0.832] [0.870]

Log effective local density 0.201 0.198 0.109 0.062
(0.015)*** (0.019)** (0.025)*** (0.036)*
[0.128] [0.135] [0.063] [0.040]

% people who commute by public transportation -0.012 -0.005 0.020 0.027
(0.004)*** (0.004) (0.006)*** (0.005)***
[-0.023] [-0.010] [0.036] [0.079]

Share of people aged 75 & above -5.595 -7.886 -1.503 -1.680
(0.541)** (0.695)** (0.885)* (1.158)
[-0.084] [-0.119] [-0.020] [-0.023]

% nursing home residents in pop. 0.317 0.360 0.477 0.775
(0.024)+** (0.035)"** (0.040)*** (0.077)**
[0.091] [0.100] [0.124] [0.158]

Log km to closest airport w/flights from top 5 COVID countries 0.038 0.0001 —-0.038 —-0.054
(0.010)*** (0.012) (0.017)** (0.016)**
[0.028] [0.000] [-0.025] [-0.053]

Log household median income -0.518 -0.727 -0.829 -0.983
(0.047)** (0.058)"** (0.078)** (0.096)"**
[-0.081] [-0.127] [-0.116] [-0.174]

Social Capital Index, 2014 0.053 -0.009 -0.038 -0.092
(0.010)*** (0.013) (0.017)** (0.024)"**
[0.043] [-0.007] [-0.028] [-0.058]

Constant 2.681 4916 1.898 2.955
(0.512)** (0.621)** (0.836)** (1.010)***

RrR? 0.88 0.81 0.74 0.73

R? (per capita specification) 0.17 0.17 0.11 0.20

N 3,138 2,756 3,138 1,445

* p<0.1; ** p<0.05; *** p < 0.01. Standard errors in parentheses and standardized betas in brackets.

- Onset day is defined as the day at which the number of cases reaches 1 per 100,000 (for cases) and 0.5 per 100,000 (for deaths).

- We report two R? values: one from the specification with log population on the right-hand side, and another from an alternative specification where we instead
subtract log population from the dependent variable as described in the first row. The latter allows an assessment of the joint importance of all regressors except

log population.

(2) and (4) report estimates for the synchronized sample of counties
225 days since onset (for cases) and 215 days since onset (for deaths).”
Fig. 1 displays the day-by-day evolution of the coefficients for each cor-
relate of disease severity, from March 15 to November 30, 2020.

We consider a set of eight baseline correlates. The first is log
population, which acts as a scaling variable. Its inclusion implies that
the seven other estimates can be interpreted as the determinants of
cases and deaths in per capita terms.® We now turn to these other
determinants.

3.1. The persistent role of density

Defining effective density. A first set of regressors relates to population
density, since living in closer proximity is likely to imply a higher in-
fection rate f. A simple measure of population density is the county’s

7 These choices are motivated by a trade-off: by choosing a small number of
days since onset, we would obtain a large cross-section of counties, less likely to
be selected, but we would consider counties very close to onset, where the effect
of fundamental determinants may not yet have emerged. Instead, by choosing
a larger number of days since onset we would limit the number of counties in
the sample in ways that are potentially selected, since only early onset counties
are likely to appear. Our choice reflects this trade-off, and leads to a relatively
large sample for both cases and deaths (respectively 2,756 and 1,445 counties).

8 An alternative would be to define the dependent variables as cases and
deaths per capita, but this would amount to constraining the coefficient on log
population to 1. We prefer the more flexible specification controlling for log
population on the right-hand side (in practice this choice matters little since
the coefficient estimate on log population is typically close to 1, suggesting the
absence of any significant scale effects).

population divided by its land area. However, this may not adequately
capture effective density, since some counties may have extensive land
areas, in spite of most people living in fairly dense areas (think for in-
stance of Clark County NV, where most of the population is tightly clus-
tered in and around Las Vegas). Theoretically, what matters should not
be average density over a whole county, but a measure that reflects the
frequency and closeness of interactions between people. We therefore
calculate the average density that a random individual of a county ex-
periences in the square kilometer around her. We refer to this variable as
a county’s “effective local density”. To further capture effective density,
we also consider the share of people who commute using public trans-
portation, a factor that has been argued to be an important spreader of
the virus (Harris, 2020). The correlation between local effective density
and the public transportation variable is 37.5%, so they capture different
dimensions of density.

Baseline results on density. Table 1 shows the importance of density as
a determinant of severity. For cases, log effective local density is sta-
tistically significant at the 1% level and positively associated with the
outcome. The magnitude of the effect on cases is large (the standardized
betas are respectively 12.8% or 13.5% in columns (1) and (2)). Density
also positively predicts deaths, but with a smaller standardized magni-
tude (respectively 6.3% and 4% in columns (3) and (4)). Turning to the
use of public transportation, we find a negative effect on cases (though
insignificant in column (2)), but a positive, large and highly significant
effect on deaths. Taken together, these results suggest that density con-
tinues to be an important predictor of disease severity, even in the later
stages of the pandemic.

Fig. 1 examines the evolution of these effects over calendar dates.
It displays coefficient estimates from the specifications of Egs. (1) and
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Fig. 1. (a) Effects on Log Cases (IHS), by Date. (b) Effects on Log Deaths (IHS), by Date.

(2), with 95% confidence intervals, estimated separately for each day
between March 15 and November 30, using a common sample of 3138
counties.” We find that the effect of local effective density rises over

9 Fig. A2 does the same for days since onset. To grasp how to read these
graphs, consider the public transit graph in Fig. A2A. It plots the coefficients on

time. In contrast, the effect of public transportation follows the oppo-

public transportation from 240 different regressions, one for each of the different
time lags since a county reached the threshold of 1 case per 100,000. Increasing
the number of days since onset decreases the sample size because fewer counties
meet the criterion for passing the threshold early on. We display this changing
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Table 2
A Further Investigation of the Effect of Density (Dependent variable listed in second row).

@™ (2) 3) @
Log Cases, IHS, Log Cases, 225 Log Deaths, IHS, Log Deaths, 215
Nov. 30 days post-onset Nov. 30 days post-onset

Log effective local density 0.203 0.199 0.125 0.068
(0.017)"** (0.021)*** (0.027)*** (0.040)*
[0.129] [0.136] [0.072] [0.044]

% people who commute by public transportation -0.005 0.002 0.032 0.034
(0.004) (0.005) (0.007)*** (0.006)***
[-0.010] [0.005] [0.057] [0.101]

Log population density 0.009 0.025 0.034 0.090
(0.012) (0.015)* (0.019)* (0.027)***
[0.010] [0.028] [0.035] [0.091]

Large central metro county or large fringe metro county -0.011 0.049 0.228 0.234
(0.039) (0.045) (0.063)*** (0.073)**
[-0.003] [0.013] [0.046] [0.068]

Medium metro county or small metro county 0.010 0.058 0.130 0.104
(0.027) (0.032)* (0.044)** (0.054)*
[0.003] [0.018] [0.032] [0.033]

Housing units in multi-unit structures, percent, 2009-2013 —-0.004 —-0.004 —-0.009 —-0.007
(0.002)"* (0.002) (0.003)*** (0.004)*
[-0.022] [-0.025] [-0.047] [-0.049]

Persons per household, 2009-2013 0.465 0.719 0.863 1.154
(0.054)"** (0.070)**~ (0.088)"** (0.124)"
[0.073] [0.118] [0.122] [0.170]

R? 0.88 0.82 0.75 0.76

R? (per capita specification) 0.20 0.22 0.15 0.27

N 3138 2756 3138 1,445

F test (7 density variables) 39.18 35.68 27.77 26.38

p-value 0.000 0.000 0.000 0.000

* p<0.1; ** p<0.05; *** p<0.01. Standard errors in parentheses and standardized betas in brackets.

- All specifications contain an intercept and controls for log population, the share of people aged 75 and above, the percentage of nursing home residents in the
population, log kilometers to the closest airport with flights from top 5 COVID countries, log household median income and the social capital index for 2014.

- Onset day is defined as the day at which the number of cases reaches 1 per 100,000 (for cases) and 0.5 per 100,000 (for deaths).

- We report two R? values: one from the specification with log population on the right-hand side, and another from an alternative specification where we instead
subtract log population from the dependent variable as described in the first row. The latter allows an assessment of the joint importance of all regressors except

log population.

site pattern - it starts out strongly positive in the early weeks of the
pandemic, but converges toward zero later. A possible interpretation is
that behavioral adaptations to the disease led people to exercise more
caution over time when using public transportation, or that working
from home substituted for the use of public transit in later phases of the
pandemic, weakening the effect of this variable on disease severity.

Further measures of density. The results above suggest that a parsimonious
definition of density, captured by two variables, can explain a substan-
tial share of the spatial variation in COVID-19 severity. However, there
are many other possibly relevant dimensions of density. Table 2 con-
ducts a more in-depth analysis of these dimensions, by considering five
additional measures. These include two dummy variables for urban sta-
tus (respectively, large central or large fringe metro county, and medium
metro and small metro county, as defined by the National Center for
Health Statistics), two variables capturing the density of living arrange-
ments (the percentage of dwellings that are in multi-unit structures, and
the average number of persons per household), and the conventional
measure of density (the log of population per square mile).'?

sample size in the last panels of Figs. A2A and A2B. As can be seen, there are
over 3,100 counties in the sample of counties one day after passing the case
threshold, but there are only about 2,400 in the sample of counties 240 days
after onset.

10 The seven measures of density tend to be positively correlated among them-
selves, but the correlations are not as high as might be expected. They range
from —0.017 for public transit and the medium metro and small metro dummy
to 0.715 for multi-unit housing and log effective local density. Even the corre-
lation between log density and log effective local density is not that high, at

Among the additional measures of density, persons per household
tends to be significant for both cases and deaths. We also find that sim-
ple population density and residing in a metro area are not significantly
related to cases when other measures of density (especially log effective
local density) are controlled for, but these variables tend to predict
deaths (columns (3) and (4) of Table 2). Conditional on all density
measures, the share of housing units that are in multi-unit structures
has a negative effect on both cases and deaths, though this effect is
sometimes insignificant.

Summary. Density is a persistently important determinant of disease
severity across space. This should come as no surprise: as with any other
infectious disease, contact between susceptible and infected individuals
is a key determinant of the spread of the disease. However, the actual
degree of contact between people is not straightforward to measure. Our
findings highlight the importance of using measures of effective density
rather than a simple measure of population divided by land area. The
finding of a persistent impact of effective density contrasts with recent
narratives that suggest the death of density by highlighting the spread
of COVID-19 to rural areas.

3.2. Other correlates

Age and nursing homes. A second group of regressors relates to the age
structure of the population. Given the much higher mortality rate among
the elderly, in Table 1 we control for the share of the population aged

0.626. The variable that is least correlated with the others is average household
size.
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75 and above. We also include a county-level measure of nursery home
residents divided by population, as this group may be particularly sus-
ceptible (Barnett and Grabowski, 2020).

We find interesting results. Both cases and deaths are negatively as-
sociated with the percentage of people aged 75 and older. Fig. 1 reveals
that the effect of cases has been negative virtually from the onset of the
pandemic. This negative effect may reflect differences in lifestyles be-
tween counties with different age structures. For instance, places with a
large share of retired individuals may feature fewer places (bars, stadi-
ums) where the disease spreads rapidly. On the other hand, the effect of
the share of the elderly on deaths starts out being positive, and remains
so until the beginning of June. This initial period may reflect the higher
death rate from COVID-19 among the elderly. Later in the pandemic, as
more at-risk individuals adjust their behavior, the effect of the share of
the elderly switches and remains persistently negative.

When it comes to the share of the population in nursing homes, we
find positive partial correlations for both cases and deaths, with large
magnitudes ranging from 9.1% to 15.8%. Figs. 1 and A2 reveal that these
effects are persistent and even increasing over time. These findings are
consistent with the idea that once a county is affected by the pandemic,
its nursing homes can quickly become powder kegs, and account for
large shares of county-wide deaths.

Proximity to international airports. The onset of the pandemic in specific
locations in the US may have been related to connectivity with high-
severity countries (Wells et al., 2020). We construct a measure of the
distance to any airport with direct flights to one of the top-5 countries
with coronavirus cases on March 15, 2020 (China, South Korea, Iran,
Italy and Spain). This variable bears an initially negative relationship
with cases and deaths, but the magnitude of this relationship dimin-
ishes over time (Figs. 1 and (A2). The reason is straightforward: the
initial condition (where the virus initially appears) loses potency as the
disease spreads spatially to locations with fundamentals conducive to
its prevalence.

Median income and social capital. Among the remaining correlates, we
consider median household income, a standard metric to capture differ-
ences in economic well-being across counties. Figs. 1 and A2 reveal that
the effect of log median income is initially positive, but then turns neg-
ative - for both cases and deaths. One interpretation is that the initial
positive effect could be related to the emergence of the disease in well-
connected, high-income urban locations like New York. Later, counties
with higher income were in a better position to mitigate the severity
of the pandemic - either through individual behavioral responses from
wealthier households, or through better policy capacity, and the effect
of median income turned negative. We will return to the issue of income,
poverty and social vulnerability in Section 4.

Finally, our baseline specification includes a measure of social cap-
ital from Rupasingha et al. (2006). Theoretically, this measure could
exert either a positive influence on disease severity, if social capital is
associated with more contact, or it could bear a negative effect, if social
capital improves the ability to mobilize communities against the disease.
We do not find a very consistent pattern: the effect started out close to
zero, turned negative around June 2020, and moved back toward zero
at later dates.!

Model fit. An assessment of model fit is hampered by the inclusion of
log population as a scaling variable on the right hand side of our spec-
ification, which explains a lot of the variation in cases and deaths. To
address this issue, Table 1 reports the R> obtained from a regression
where log population is subtracted from the dependent variable, and no

11 For a further investigation of the ambiguous role of social capital as a deter-
minant of social distancing, see Ding et al. (2020), who find a negative effect of
community activities but a positive effect of voter turnout. Durante et al. (2020),
across Italian provinces, find that mobility declined more in areas with higher
civic capital.
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longer included as a regressor. We find that the remaining regressors
of Table 1 jointly account for 11% to 20% of the observed variation in
disease severity.

3.3. State fixed-effects

Table A2 reports results with state fixed effects. The results are
broadly similar to those of Table 1 in terms of the signs and magni-
tudes of the coefficients on the eight main regressors. Online Appendix
Figs. A3 and A4 graphically display estimates on the state fixed effects,
ordered by size, for the specifications of columns (1) and (3) of Table A2.
These plots reveal that, after controlling for the eight baseline correlates
of disease severity, some states have lower or higher cases or deaths as
of November 30, 2020. We find that counties in Hawaii, Vermont and
Maine, for instance, have lower severity, while counties in North and
South Dakota, the Midwest and the South tend to have higher severity.
These differences could reveal idiosyncrasies that are hard to capture
using additional regressors varying at the county level (for instance,
Hawalii is an island). They could also capture some omitted factors ex-
cluded from our parsimonious specification, such as state-level policies.

4. Socioeconomic status, race and human capital

Race. Table 3 Panel A explores the possible role of race. It reports four
different specifications: columns (1) and (3) report regressions for cases
and deaths, based on a cross-section of counties as of November 30,
whereas columns (2) and (4) report regressions based on a cross-section
of counties 225 days after onset (for cases) and 215 days after onset (for
deaths). To the baseline regressors, we add measures of the racial com-
position of a county by controlling for the shares of African Americans,
Hispanics, American Indians and Asians, with the excluded category be-
ing the share of Whites and others. The shares of African Americans and
of Native Americans are positively and significantly associated with both
the number of cases and the number of deaths. The association with
the share of Hispanics is also positive, albeit significant in only three
of the four specifications. Finally the share of Asians displays a signif-
icant negative association with COVID-19 severity in all four columns.
In terms of magnitudes, the share of African Americans stands out with
large standardized beta coefficients, especially for deaths (19.3% and
27.3% in columns (3) and (4)). Overall these results support concerns
that the COVID-19 pandemic has a disproportionate effect on different
racial groups, even after controlling for a broad set of county-specific
variables such as median income, density, etc.

Education. Table 3 Panel B analyzes whether the level of education may
be a source of heterogeneity in disease severity across counties. We take
the same four specifications as in the previous table with the same base-
line regressors, and add two controls for the level of education: the share
of a county’s population that has a high school degree or more, and the
share of a county’s population that has a bachelor’s degree or more (the
excluded variable is the share of people with less than a high school
degree). We find a negative gradient of disease severity with respect to
educational attainment: counties with large proportions of college grad-
uates fare best, followed by counties with a large share of individuals
with a high school degree. Hence, we find evidence that more disadvan-
taged locations (measured by education) fare worse.

Inequality and Poverty. Table A3 reports results of an in-depth investi-
gation of the role of inequality and poverty. In the baseline regressions
we already included median household income. We add two measures
that capture inequality and poverty: the Gini index within the bottom
99% and the poverty rate. We find that both poverty and inequality pos-
itively predict disease severity in columns (2)-(4) but not in the first
specification, where most of the effect of local prosperity loads on log
median income. The results are quantitatively meaningful: for example,
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Table 3

An Investigation of Race and Education (Dependent variable listed in second row).
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@
Log Cases, IHS,
November 30

2)
Log Cases, 225
days since onset

(©)]
Log Deaths, IHS,
November 30

“@
Log Deaths, 215
days since onset

Panel A: Baseline specification plus race share variables

% Black or African American 0.003 0.010 0.023 0.024
(0.0071)**+ (0.001)*** (0.001)*** (0.001)***
[0.025] [0.109] [0.193] [0.273]

% Hispanic or Latino 0.001 0.007 0.014 0.016
(0.001) (0.001)*** (0.001)*** (0.002)***
[0.008] [0.061] [0.107] [0.136]

% American Indian and Alaska Native 0.007 0.010 0.013 0.018
(0.001)*** (0.002)*** (0.002)*** (0.004)***
[0.031] [0.045] [0.056] [0.057]

% Asian -0.030 -0.014 -0.039 -0.021
(0.004)"** (0.006)** (0.007)"** (0.008)***
[-0.053] [-0.027] [-0.062] [-0.048]

R? 0.88 0.82 0.77 0.79

R? (per capita specification) 0.19 0.22 0.22 0.36

N 3,138 2,756 3,138 1,445

Panel B: Baseline specification plus education variables

High school graduate or higher, percent of persons age 25+ —-0.006 -0.029 -0.041 —-0.065
(0.002)*** (0.003)*** (0.003)*** (0.005)***
[-0.026] [-0.140] [-0.165] [-0.288]

Bachelor’s degree or higher, percent of persons age 25+ -0.014 -0.007 -0.010 0.004
(0.002)*** (0.002)*** (0.003)*** (0.003)
[-0.081] [-0.045] [-0.050] [0.029]

RrR? 0.88 0.82 0.76 0.77

R? (per capita specification) 0.20 0.23 0.16 0.30

N 3,138 2,756 3,138 1,445

* p<0.1; ** p<0.05; *** p < 0.01. Standard errors in parentheses and standardized betas in brackets.
- Onset is defined as the day at which the number of cases reaches 1 per 100,000 (for cases) and 0.5 per 100,000 (for deaths).
- All specifications contain an intercept and controls for the baseline set of 8 variables in Table 1.

- We report two R? values: one from the specification with log population on the right-hand side, and another from an alternative specification where we instead
subtract log population from the dependent variable as described in the first row. The latter allows an assessment of the joint importance of all regressors except

log population.

the poverty rate shows standardized coefficients in the range of 10.6-
19.8% when considering its impact on deaths.!?

Health. Table A4 investigates whether underlying health conditions or
the quality of health care have an impact on outcomes. As measures
of underlying health issues, we take the share of the population that
smokes and the share of the population that is obese. As measures
of quality of health care, we take the risk-adjusted 30-day mortality
rates for heart attacks, heart failure and pneumonia. The share of
obese people is positively associated with COVID-19 severity, while
there is no statistically significant association with smoking. Turning to
risk-adjusted mortality rates, we find some evidence that risk-adjusted
mortality from pneumonia is positively correlated with deaths (on the
other hand, the signs of the correlations on risk-adjusted mortality from
heart failures often have the opposite signs from what is expected).
These results tend to be sensitive to the inclusion of more controls.
In sum, with the exception of obesity, we do not find much evidence
that health conditions or the quality of health care are first-order
determinants of cross-county variation in cases and deaths.

Summary. This section documented a general pattern that low educa-
tional attainment, a large share of African American and Hispanic mi-
norities, a high poverty rate, low median income - i.e. having a large
share of economically or socially disadvantaged individuals - is posi-
tively associated with COVID-19 severity.

12 Due to collinearity between median income and the poverty rate (p = —0.75),
in columns (3) and (4) of Table A3 we find that most of the effect of income loads
on the poverty rate.

5. Political patterns in the spread of COVID-19

Many commentators have observed that there exists a political
divide over attitudes toward the COVID-19 pandemic (see for instance
Pew Research Center, 2020). In turn, these disagreements may re-
flect underlying differences in disease severity across locations with
different political orientations. Weniger and Ou (2020) and Kolko
(2020a,b) observe that, in its early stages, the disease was more severe
in Democratic-leaning states and counties than in Republican-leaning
locations. Does severity indeed vary according to local political orienta-
tion? In this subsection, we try to better understand the political divide
in disease severity.

We start by examining the effect of the vote share obtained by Don-
ald Trump in the 2016 general election on cases and deaths. We do
so for two specifications and two time periods. The first specification
only controls for log population and the Trump vote share. The second
specification is a comprehensive specification controlling for all of the
putative determinants of disease severity discussed in the previous sec-
tions.'> We consider a cross-section early in the pandemic (June 29,
2020) and one later (November 30, 2020). The four columns of Table
AS5 report the four resulting sets of estimates - Panel A for cases and
Panel B for deaths.!*

13 We do not include the share of the obese and share of people smoking since
their inclusion would result in a loss of many observations.

14 Table A6 displays the corresponding estimates defining the samples by a
fixed number of days since onset, leading to results very similar to those of
Table A5.
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Fig. 2. The Political Divide in COVID-19 Severity.

We uncover interesting patterns. First, in the early stages of the pan-
demic, the short specification shows a negative association between
Trump vote share and disease severity: Trump counties were not as
severely affected as Democratic-leaning counties (column (1)). The stan-
dardized beta on Trump vote share is large: 10.7% for cases and 14.5%
for cases.

Second, when adding controls for the local determinants of disease
severity, the negative relationship between Trump vote share and dis-
ease severity disappears (for cases) or flips signs (for deaths) — as seen in
column (3). Thus, factors like population density, demographic compo-
sition, etc. entirely account for the apparent Trump advantage in disease
severity even early on in the pandemic.

Third, in more recent times, we see a severity penalty for Trump-
leaning counties in both the short and the comprehensive speci-
fications. This shows that as the pandemic has spread, the initial
advantage derived from local specificities (population density, demo-
graphics) disappeared, and a meaningful disadvantage appeared: the
standardized beta on Trump vote share in the comprehensive specifica-
tion is now 15.2% (for cases) and 18.5% (for deaths).!®

Fig. 2 illustrates these three patterns graphically over time. For each
day between March 15 and November 30, we run regressions of log
cases and log deaths using either the short or the comprehensive speci-
fication in Table A5, excluding the Trump vote share. Fig. 2 then plots
how the average residuals evolve over time for three groups of coun-

15 Comparing these standardized effects to those of the eight baseline regres-
sors in Table 1 reveals that the Trump effects are amongst the largest, even
larger than the effect of log median income or log effective local density.

ties: red, blue and purple.'® For the residuals from the short specifica-
tion (left panels), we see a large initial political divide between blue and
red counties, for both cases and deaths. For cases, this divide starts to
narrow almost from the beginning, and persists until about mid-October
2020. For deaths, the political divide in severity starts to narrow sub-
stantially in mid-July and all but disappears by the end of November.
A similar picture emerges when looking at residuals from the compre-
hensive specification (right panels), but the political divide disappears
much earlier, by May. It then reverses itself strongly, to the point that
there is now a large and persistent penalty to being a red county (purple
counties stand in between the red and blue counties, but closer to the
latter).

How can we interpret these partisan patterns in disease severity?
Early on in the pandemic, Republican-leaning areas were less hard hit
by COVID-19. This may have led to the early development of politically
patterned policy and behavioral preferences, resulting in lax attitudes
toward mask-wearing, social distancing and lock-down measures.!” Un-

16 Red counties are defined as those with a 2016 Trump vote share greater
than 55%, blue counties are those with a Trump vote share smaller than 45%,
and purple counties represent the balance.

17 Evidence of a partisan divide in terms of changes in mobility brought
about by the pandemic is provided in Chen et al. (2020). They state: “Likely
Trump voters reduce movement by 9% following a local stay-at-home or-
der, compared to a 21% reduction among their Clinton-voting neighbors (...)”.
Allcott et al. (2020) document differences in social distancing behavior and
beliefs about the future severity of the pandemic between Republicans and
Democrats. Bursztyn et al. (2020) show the importance of the media in cement-
ing these politically-patterned beliefs and behaviors.
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der this view, as the pandemic spread to Trump-leaning counties, their
preferences and attitudes had already been formed, preventing them
from responding more decisively to worsening local conditions. Ulti-
mately, this resulted in greater disease severity in Trump-leaning areas
of the country.'®

6. Conclusion

Many observers have argued that COVID-19 would eventually spread
to all corners of the United States. This view is epitomized by this pa-
per’s opening quote by Andrew Cuomo. There remains, however, con-
siderable spatial variation in the severity of the disease across space.
Does this variation merely reflect the legacy of initial conditions and
differential timing of the disease onset, or does it instead reflect funda-
mental underlying differences between locations? In this paper, we seek
to shed light on this question by exploring a wide range of correlates of
COVID-19 severity across US counties. We show that spatial variation is
significantly and persistently associated with a wide range of observable
county characteristics.

We find a persistent role for population density as a correlate of cases
and deaths. We argue that it is important to measure the effective den-
sity experienced by people in their daily lives. We do so by considering
the density people encounter in their living arrangements and in local
transit. We also develop a measure of the average density an individ-
ual faces in a square kilometer around her. Besides density, other fac-
tors persistently affect COVID-19 severity across counties: having more
nursing home residents, greater poverty rates, or a larger presence of
African Americans or Hispanics. Time will tell whether this persistence
will persist.

While many determinants show persistent effects through time, oth-
ers display changing patterns. Proximity to major international airports
is an important predictor early on, because these are the locations where
the virus first appeared. Over time, it spread to the rest of the country, so
the effect of initial conditions vanished. Having a greater proportion of
elderly individuals was associated with more deaths in the early stages
of the pandemic, but as this at-risk population adjusted its behavior, this
pattern reversed. Counties with a high Trump vote share in the general
election of 2016 fared better early on, but later experienced more cumu-
lative deaths and cases per capita. Partisan preferences about policy and
behavioral responses to the pandemic may have formed in early stages,
leading Trump counties to respond less forcefully when they got hit by
COVID-19 at later stages of the pandemic.

Overall, our results suggests that spatial heterogeneity in COVID-
19 is not just about timing: many local characteristics, such as den-
sity, have large and persistent effects on disease severity. Policymakers
should therefore be sensitive to the specificities of different locations
when designing responses to the spread of COVID-19. Even when local
characteristics do not exhibit persistent effects, they often display sys-
tematic time paths. If so, these time patterns are also informative for
policymakers interested in spatially allocating resources over the life-
cycle of the pandemic.

Credit author statement

Both authors contributed equally to the paper.

18 This does not seem to have led to a penalty in the 2020 general election:
if anything, the Trump vote share improved in counties with higher rates of
COVID-19 deaths (Lake and Nie, 2020).
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