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What factors explain spatial variation in the severity of COVID-19 across the United States? To answer this ques- 

tion, we analyze the correlates of COVID-19 cases and deaths across US counties. We document four sets of facts. 

First, effective density is an important and persistent determinant of COVID-19 severity. Second, counties with 

more nursing home residents, lower income, higher poverty rates, and a greater presence of African Americans 

and Hispanics are disproportionately impacted, and these effects show no sign of disappearing over time. Third, 

the effect of certain characteristics, such as the distance to major international airports and the share of elderly 

individuals, dies out over time. Fourth, Trump-leaning counties are less severely affected early on, but later suffer 

from a large severity penalty. 
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“Look at us today (...) We are your future (...) New York is the canary

in the coal mine (...) New York is going first. What happens to New York

is going to wind up happening to California and Washington state and

Illinois. It’s just a matter of time. ”

—Andrew Cuomo, March 24, 2020

. Introduction 

While COVID-19 has reached even the remotest corners of the United

tates, there remains tremendous heterogeneity in the severity of the

andemic across US counties. As of November 30, 2020, a county at the

5th percentile of COVID-19 deaths per capita had triple the deaths of a

ounty at the 25th percentile. Similarly, a county at the 75th percentile

f COVID-19 cases per capita had twice as many cases as a county at

he 25th percentile. What is the source of this heterogeneity in cases

nd deaths across US counties? Should policies be sensitive to such

patial variation? There are, we think, two legitimate views on these

uestions. 

Under the first view, spatial variation in disease severity only re-

ects differences in timing, as epitomized by Andrew Cuomo’s state-

ent quoted above. As the disease spreads, ultimately every location in
☆ This is an updated version of the paper with the same title released on June 8, 

his paper. We thank Alberto Bisin, Jonathan Dingel, Ricardo Perez-Truglia, Edward 

conomics Association for useful comments. 
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he US will have similar infection rates, similar death rates, and similar

ates of hospitalization. If this is the case, policy need not be responsive

o local characteristics. 

Under the second view, spatial variation in cases and deaths reflects

nderlying fundamental differences across locations - population den-

ity, modes of transportation, housing arrangements, the age distribu-

ion of the population, its health conditions, etc. At any point in time,

ocations will continue to differ according to these characteristics, and

hese differences will persist. This provides a foundation for policies that

re sensitive to local specificities. 

This paper aims to adjudicate between these two views, by examin-

ng a broad set of potential correlates of COVID-19 severity. We pay

articular attention to various dimensions of population density: we

onsider the average density experienced by a random individual in

he square kilometer around her, as well as the role of public trans-

ortation, living arrangements, and housing density. We also assess the

mportance of a variety of indicators of socio-economic vulnerability:

he share of the elderly, the presence of minorities, the prevalence of

nderlying health conditions, educational attainment, and measures of

overty and inequality. Finally, local political orientation is likely to

ffect both policies and the behavioral response to COVID-19, so we
2020 as NBER Working Paper #27329. No RAs were harmed in the writing of 

Glaeser (the editor) and participants at the 2020 Virtual Meeting of the Urban 

g). 
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xplore the association between Donald Trump’s county vote share in

he 2016 election and disease severity. A strength of our approach is

hat we consider many potential correlates all at once. 1 

Our analysis examines the role of these factors at various points in

ime, starting on March 15, 2020 and ending on November 30, 2020.

e examine variation in COVID-19 cases and deaths on a daily basis

sing two approaches. The first approach looks at the cross-section of

S counties at a given date, providing snapshots of the correlates of

isease severity at particular moments in time. The second approach

ooks at the cross-section putting all counties at the same stage in terms

f days since cases and deaths reached a certain threshold per capita.

his allows us to correct for differences in the timing of disease onset, to

etter assess if spatial variation reflects the differential timing of disease

nset or fundamental differences between locations. 

Our paper delivers four key takeaways. First, density is an impor-

ant and persistent determinant of COVID-19 severity. Identifying this

ersistent effect requires going beyond simple density to measure the

ffective density experienced by individuals in their daily lives – either

y taking a high-resolution view of population density or by consider-

ng the space people occupy at home or in public transit. Second, we

dentify several vulnerable groups whose presence has a large and per-

istent effect on how hard a location is hit by the pandemic. Counties

ith more nursing home residents, lower income, higher poverty rates,

nd a greater presence of African Americans and Hispanics are dispro-

ortionately impacted, and these effects show no sign of disappearing.

hird, certain characteristics are important early on in the pandemic,

nd die out over time. In the case of the distance to major international

irports, this reveals a sequencing pattern: the virus initially appeared

n locations that are well connected with the rest of the world, and then

pread to the rest of the country. In the case of age, this may reveal

 behavioral response: early on counties with a high proportion of el-

erly experienced more deaths, but later in the pandemic this pattern

eversed, as the at-risk population adjusted its behavior. Fourth, in the

arly stages of the pandemic, Trump-leaning counties were less severely

ffected, but later on, they experience a large and persistent severity

enalty. It is possible that Republican-voting counties acquired lax at-

itudes toward mask-wearing and lockdown measures when COVID-19

as less severe in their areas, leaving them unwilling to respond more

ecisively when the pandemic caught up with them. 

Where does this leave us in terms of the two views? On balance, the

vidence is consistent with the second view: there are fundamental dif-

erences across locations that persistently explain the spatial variation

n disease severity. Counties with higher effective density or a bigger

roportion of vulnerable populations suffer disproportionately from

OVID-19 cases and deaths. Our results therefore suggest that policies

ddressing the pandemic should be sensitive to these local specificities.

he allocation of scarce resources, such as protective equipment,

edical treatments, and vaccines, should prioritize areas where local

onditions are persistently associated with worse disease severity. 

. Specification and data 

In this section, we relate our empirical specification to standard epi-

emiological models and provide a brief overview of the data. 
1 An emerging literature examines the determinants of local variation 

n COVID-19 severity, also uncovering substantial spatial heterogeneity. 

nittel and Ozaltun (2020) exploit cross-county variation in the US, like us, but 

nly look at deaths and do not correct for differential timing in disease onset. 

eamer (2020) studies cross-county variation within California, finding a signif- 

cant effect of population density. McLaren (2020) looks more specifically at the 

elationship between COVID severity and racial composition, arguing that racial 

ifferences are partly related to differential prevalence of public transit at the 

ounty level in the US. Other papers study spatial variation for other countries, 

uch as Belgium ( Verwimp, 2020 ), France ( Ginsburgh et al., 2020 ) and England 

nd Wales ( Sá, 2020 ). 
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.1. Specification 

 specification consistent with the SIRD model. Standard epidemiological

odels, such as the SIRD model, posit laws of motion of the number of

usceptible, infectious, recovered and deceased people for a given popu-

ation and a given infectious disease. These laws of motion are governed

y a few key parameters: the rate of infection, the rate of recovery and

he rate of mortality. Together, these determine, for a given population,

he evolution of the number of cases and deaths over time. 

To fix ideas, denote by 𝐶 𝑖𝑡 the cumulative number of cases and by

 𝑖𝑡 the cumulative number of deaths from COVID-19 in county 𝑖 at time

 . The rate of infection, 𝛽𝑖 , and the rate of death, 𝛿𝑖 , are likely to be,

o an extent, county-specific. For example, we would expect counties

ith higher population density, where individuals are more likely to

un into each other, to have a higher rate of infection 𝛽𝑖 . Similarly, we

ould expect counties with a larger share of elderly to experience higher

eath rates 𝛿𝑖 . Differences in these parameter values across counties im-

ly differences in the paths of 𝐶 𝑖𝑡 and 𝐷 𝑖𝑡 across counties. For example,

 county with a higher 𝛽𝑖 will have higher cumulative cases and deaths

t any point time, compared to a similar county with a lower 𝛽𝑖 . This

s related to the well-known result that a higher expected number of

nfections from an infected individual (i.e., a higher basic reproduction

umber 𝑅 0 ) generates in the limit more cumulative cases and more cu-

ulative deaths. Some of these insights are illustrated with simulations

n the recent work by Fernández-Villaverde and Jones (2020) . 

The objective of this paper is to explore the importance of county-

pecific factors that affect 𝛽𝑖 and 𝛿𝑖 . These parameters affect the dynamic

aths of cases and deaths, and hence their levels at every point in time.

e are interested in accounting for differences in levels of cumulative

ases and deaths in the cross-section of counties. Hence we run, for each

ime period 𝑡, county-level regressions of cases or deaths on a set of

otential determinants of 𝛽𝑖 and 𝛿𝑖 : 

̃
 𝑖 = 𝛼0 + 

𝑘 ∑
𝑗=1 

𝛼𝑗 𝑥 𝑖𝑗 + 𝜀 𝑖 (1)

nd 

̃
 𝑖 = 𝛾0 + 

𝑘 ∑
𝑗=1 

𝛾𝑗 𝑥 𝑖𝑗 + 𝜈𝑖 (2)

here 𝑥 𝑖𝑗 are county-level regressors that potentially affect 𝛽𝑖 and 𝛿𝑖 , 𝜀 𝑖 
nd 𝜈𝑖 are county-level disturbance terms, and 𝐶̃ 𝑖 and 𝐷̃ 𝑖 are measures

f, respectively, the cumulative number of cases and deaths in county 𝑖 .

e return to the precise definition of 𝐶̃ 𝑖 and 𝐷̃ 𝑖 in the next subsection. 

These period-by-period regressions can capture any functional form

or the path of the number of cumulative cases and deaths over time. As

uch, they are consistent with the functional forms generated by stan-

ard epidemiological models. Indeed, to allow for maximum flexibility

n the changing relation between county-level dterminants and disease

everity, we choose a parsimonious period-by-period cross-sectional re-

ression framework over a more structural empirical model that explic-

tly estimates the SIRD model. 

The standard SIRD model assumes that individuals have equal prob-

bilities of interacting with each other. In that sense, it does not really

apture spatial features that make some individuals (or groups) more

r less likely to interact with others. Bisin and Moro (2020) introduce a

patial SIR model with behavioral responses that explicitly incorporates

hese spatial concerns. When people are no longer matched randomly

ith the entire population, but are more likely to interact with people in

heir vicinity, local herd immunity becomes a possibility. In this model,

patial heterogeneity in disease severity can be magnified due to differ-

nces in modes of interaction and the spatial scale of interaction. This is

hy our empirical analysis seeks to capture dimensions of density that

eflect the extend of local interactions, as experienced by people in their

aily lives. 
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4 In the Online Appendix, we also consider a specification with state fixed- 

effects. In addition to controlling for time-invariant fixed state characteristics, 

we are also interested in the magnitude of these effects per se . We do not include 

state fixed effects our baseline estimations, as they absorb a lot of variation that 

we would prefer to explicitly capture. 
5 The National Vital Statistics System of the National Center for 

Health Statistics reports weekly excess deaths at the state level: 
ample based on daily cross-sections. We take two approaches to define

he sample used in the cross-county analysis. The first approach is to

arry out the analysis date by date. In this case, a time period 𝑡 refers

o a calendar date 𝑑, and we simply run regressions (1) and (2) on daily

ross-sections, from March 15, 2020 to November 30, 2020. Early in the

ample period, counties with zero cases and zero deaths are more preva-

ent. In order not to ignore the extensive margin, we use the inverse hy-

erbolic sine transformation (henceforth IHS – see Bellemare and Wich-

an, 2020 ), so: 2 

𝐶̃ 𝑖 = log 
( 

𝐶 𝑖 + 

√ 

𝐶 

2 
𝑖 
+ 1 

) 

̃
 𝑖 = log 

( 

𝐷 𝑖 + 

√ 

𝐷 

2 
𝑖 
+ 1 

) 

When defining a time period as a calendar date, a potential issue is

hat part of the cross-county variation in disease severity may be related

o timing factors. For example, if low-density counties are hit later by

OVID-19 than high-density counties, then their cumulative cases or

eaths will tend to be lower on any given date. To address this concern,

e control for certain factors that could affect the timing of the arrival

f COVID-19 to a particular county. For instance, we control for the

istance to an airport with direct international flights to high-severity

ountries. 

ample accounting for the differential timing of onset. The second approach

ore directly addresses differential timing of onset by considering each

ounty at the same time elapsed since onset. Here we refer to onset as

he day when a county reached a certain threshold, either in terms of

umulative cases or deaths per capita. To formally define days elapsed

ince onset, start by denoting, for each county 𝑖, an indicator variable

 

𝐶 
𝑖𝑑 

that takes a value of 1 if county 𝑖 has reached at least 1 case per

00,000 population on day 𝑑. For each county 𝑖 and day 𝑑, the number

f days since it reached that threshold is then: 

 

𝐶 
𝑖𝑑 

= 

𝑑 ∑
𝑣 =1 

𝐼 𝐶 
𝑖𝑣 
. 

or the choice of each cross-county sample, we then set 𝑠 𝐶 
𝑖𝑑 

to a fixed

umber 𝑡 . 3 That is, the first sample consists of all counties one day af-

er reaching the threshold, the second sample consists of all counties

wo days after reaching the threshold, and so on. Since each regression

ompares counties that have all passed the same threshold of per capita

ases a fixed number of days before, this limits the effect of differential

iming of onset across locations. 

Similarly, we define the time elapsed since reaching the threshold

f 0.5 deaths per 100,000 population. For each county 𝑖 and day 𝑑, the

umber of days since it reached that threshold is 𝑠 𝐷 
𝑖𝑑 

= 

∑𝑑 

𝑣 =1 𝐼 
𝐷 
𝑖𝑣 
, where

 

𝐷 
𝑖𝑑 

is an indicator variable taking a value of 1 if county 𝑖 has reached

t least 0.5 deaths per 100 , 000 population on day 𝑑. Here as well, each

egression compares counties that have passed the deaths per capita

hreshold a fixed number of days before. 

When defining a time period as the time elapsed since reaching a

ositive threshold in either cases or deaths, by construction there re-

ains no county with zero cases or deaths in the sample. In this case,

e simply define: 

𝐶̃ 𝑖 = log ( 𝐶 𝑖 ) 
̃
 = log ( 𝐷 ) 
𝑖 𝑖 

2 In the working paper version of this study, we also isolated only the inten- 

ive margin, using the simple log of cases and deaths as dependent variables. 

owever, as the pandemic progressed, the number of counties with zero deaths 

nd zero cases has declined, so the difference between the specification in simple 

ogs and using the IHS tranform becomes minor as of November 30, 2020. 
3 For instance, when fixing 𝑡 = 5 , the sample consists of each county on the 

pecific calendar date 𝑑 when it reached 𝑠 𝐶 
𝑖𝑑 
= 5 . 

h

o

m

B

r

d

H

𝐶

3 
ummary of specifications. To summarize, we have four baseline specifi-

ations. There are two outcomes: cases and deaths. There are two ways

o construct the sample: by calendar date, using the IHS of cases or

eaths as dependent variables; or placing each county at the same time

ince onset, using the log of cases and deaths as dependent variables. 4 

.2. Data 

We use daily data on COVID-19 reported cases and deaths collected

t the county level by the New York Times . Online Appendix Table

1 (Panel A) contains summary statistics for various metrics of cases

nd deaths constructed from these data, revealing substantial variation

cross counties. To our knowledge these are the best data available at

he county level, yet it is important to acknowledge several possible data

hallenges. These are particularly acute for cases, and early in the pe-

iod, since reported cases depend on testing, and testing was initially far

rom uniformly and widely prevalent. Data issues are not absent from

eaths data either, as reporting standards vary across jurisdictions and

eciding whether a death was caused by COVID-19 involves an element

f judgment. An alternative would be to use data based on excess mor-

ality, but these are not available at the county level on a daily basis. 5 

Regarding measurement error, we note the following. First, if errors

re random, they will raise the standard error of the regression without

reating bias. However, if both testing and the reporting of deaths are

ystematically correlated with the included explanatory variables, we

ill need to interpret the corresponding estimates carefully as reflect-

ng effects on both underlying severity and on reporting of cases and

eaths. Second, to the extent that testing capacity varies at the state

evel, including state fixed effects may in part correct for systematic

easurement error due to uneven testing intensity. Third, testing may

lso be more strongly targeted toward individuals showing symptoms,

esulting in artificially high case fatality rates ( CFR = deaths/cases ). How-

ver, this is less of a concern at more advanced stages of the pandemic. 6 

ourth, as locations ramped up testing and fine tuned the reporting of

eaths, measurement error in cases and deaths have become less rele-

ant. 

We also gathered a wide range of county-level indicators to be used

s independent variables. Variable definitions and sources are provided

n the Online Data Appendix, summary statistics are in Online Appendix

able A1 (Panel B) and these variables are displayed in map form in

nline Appendix Fig. A1. 

. Baseline results 

Table 1 and Fig. 1 present the baseline results of this paper. Table 1

resents estimates for the four main specifications described in the pre-

ious subsection: columns (1) and (3) consider cases and deaths for the

ross-section of counties as of November 30, 2020, whereas columns
ttps://www.cdc.gov/nchs/nvss/vsrr/covid19/excess_deaths.htm . For 

ther examples of excess deaths estimates, see New York City Depart- 

ent of Health and Mental Hygiene COVID-19 Response Team (2020) and 

anerjee et al. (2020) . 
6 In the working paper version of this study, we reran our baseline regressions 

emoving from the sample observations with 𝐶𝐹 𝑅 > 0 . 1 - the upper tail of the 

istribution of 𝐶𝐹 𝑅, most likely to be severely affected by selection in testing. 

owever, by November 30, 2020, only 5 counties had such an abnormally high 

𝐹 𝑅 . 

https://www.cdc.gov/nchs/nvss/vsrr/covid19/excess_deaths.htm
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Table 1 

OLS Regressions for Cases and Deaths (Dependent variable listed in second row). 

(1) (2) (3) (4) 

Log Cases, IHS, 

Nov. 30 

Log Cases, 225 

days post-onset 

Log Deaths, IHS, 

Nov. 30 

Log Deaths, 215 

days post-onset 

Log population 0.931 0.860 0.963 0.971 

(0.011) ∗ ∗ ∗ (0.015) ∗ ∗ ∗ (0.018) ∗ ∗ ∗ (0.027) ∗ ∗ ∗ 

[0.892] [0.829] [0.832] [0.870] 

Log effective local density 0.201 0.198 0.109 0.062 

(0.015) ∗ ∗ ∗ (0.019) ∗ ∗ ∗ (0.025) ∗ ∗ ∗ (0.036) ∗ 

[0.128] [0.135] [0.063] [0.040] 

% people who commute by public transportation − 0.012 − 0.005 0.020 0.027 

(0.004) ∗ ∗ ∗ (0.004) (0.006) ∗ ∗ ∗ (0.005) ∗ ∗ ∗ 

[ − 0.023] [ − 0.010] [0.036] [0.079] 

Share of people aged 75 & above − 5.595 − 7.886 − 1.503 − 1.680 

(0.541) ∗ ∗ ∗ (0.695) ∗ ∗ ∗ (0.885) ∗ (1.158) 

[ − 0.084] [ − 0.119] [ − 0.020] [ − 0.023] 

% nursing home residents in pop. 0.317 0.360 0.477 0.775 

(0.024) ∗ ∗ ∗ (0.035) ∗ ∗ ∗ (0.040) ∗ ∗ ∗ (0.077) ∗ ∗ ∗ 

[0.091] [0.100] [0.124] [0.158] 

Log km to closest airport w/flights from top 5 COVID countries 0.038 0.0001 − 0.038 − 0.054 

(0.010) ∗ ∗ ∗ (0.012) (0.017) ∗ ∗ (0.016) ∗ ∗ ∗ 

[0.028] [0.000] [ − 0.025] [ − 0.053] 

Log household median income − 0.518 − 0.727 − 0.829 − 0.983 

(0.047) ∗ ∗ ∗ (0.058) ∗ ∗ ∗ (0.078) ∗ ∗ ∗ (0.096) ∗ ∗ ∗ 

[ − 0.081] [ − 0.127] [ − 0.116] [ − 0.174] 

Social Capital Index, 2014 0.053 − 0.009 − 0.038 − 0.092 

(0.010) ∗ ∗ ∗ (0.013) (0.017) ∗ ∗ (0.024) ∗ ∗ ∗ 

[0.043] [ − 0.007] [ − 0.028] [ − 0.058] 

Constant 2.681 4.916 1.898 2.955 

(0.512) ∗ ∗ ∗ (0.621) ∗ ∗ ∗ (0.836) ∗ ∗ (1.010) ∗ ∗ ∗ 

𝑅 2 0.88 0.81 0.74 0.73 

𝑅 2 (per capita specification) 0.17 0.17 0.11 0.20 

𝑁 3,138 2,756 3,138 1,445 

∗ 𝑝 < 0 . 1 ; ∗ ∗ 𝑝 < 0 . 05 ; ∗ ∗ ∗ 𝑝 < 0 . 01 . Standard errors in parentheses and standardized betas in brackets. 

- Onset day is defined as the day at which the number of cases reaches 1 per 100,000 (for cases) and 0.5 per 100,000 (for deaths). 

- We report two 𝑅 

2 values: one from the specification with log population on the right-hand side, and another from an alternative specification where we instead 

subtract log population from the dependent variable as described in the first row. The latter allows an assessment of the joint importance of all regressors except 

log population. 
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2) and (4) report estimates for the synchronized sample of counties

25 days since onset (for cases) and 215 days since onset (for deaths). 7 

ig. 1 displays the day-by-day evolution of the coefficients for each cor-

elate of disease severity, from March 15 to November 30, 2020. 

We consider a set of eight baseline correlates. The first is log

opulation, which acts as a scaling variable. Its inclusion implies that

he seven other estimates can be interpreted as the determinants of

ases and deaths in per capita terms. 8 We now turn to these other

eterminants. 

.1. The persistent role of density 

efining effective density. A first set of regressors relates to population

ensity, since living in closer proximity is likely to imply a higher in-

ection rate 𝛽. A simple measure of population density is the county’s
7 These choices are motivated by a trade-off: by choosing a small number of 

ays since onset, we would obtain a large cross-section of counties, less likely to 

e selected, but we would consider counties very close to onset, where the effect 

f fundamental determinants may not yet have emerged. Instead, by choosing 

 larger number of days since onset we would limit the number of counties in 

he sample in ways that are potentially selected, since only early onset counties 

re likely to appear. Our choice reflects this trade-off, and leads to a relatively 

arge sample for both cases and deaths (respectively 2,756 and 1,445 counties). 
8 An alternative would be to define the dependent variables as cases and 

eaths per capita, but this would amount to constraining the coefficient on log 

opulation to 1. We prefer the more flexible specification controlling for log 

opulation on the right-hand side (in practice this choice matters little since 

he coefficient estimate on log population is typically close to 1, suggesting the 

bsence of any significant scale effects). 
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4 
opulation divided by its land area. However, this may not adequately

apture effective density, since some counties may have extensive land

reas, in spite of most people living in fairly dense areas (think for in-

tance of Clark County NV, where most of the population is tightly clus-

ered in and around Las Vegas). Theoretically, what matters should not

e average density over a whole county, but a measure that reflects the

requency and closeness of interactions between people. We therefore

alculate the average density that a random individual of a county ex-

eriences in the square kilometer around her. We refer to this variable as

 county’s “effective local density ”. To further capture effective density,

e also consider the share of people who commute using public trans-

ortation, a factor that has been argued to be an important spreader of

he virus ( Harris, 2020 ). The correlation between local effective density

nd the public transportation variable is 37 . 5% , so they capture different

imensions of density. 

aseline results on density. Table 1 shows the importance of density as

 determinant of severity. For cases, log effective local density is sta-

istically significant at the 1% level and positively associated with the

utcome. The magnitude of the effect on cases is large (the standardized

etas are respectively 12 . 8% or 13 . 5% in columns (1) and (2)). Density

lso positively predicts deaths, but with a smaller standardized magni-

ude (respectively 6 . 3% and 4% in columns (3) and (4)). Turning to the

se of public transportation, we find a negative effect on cases (though

nsignificant in column (2)), but a positive, large and highly significant

ffect on deaths. Taken together, these results suggest that density con-

inues to be an important predictor of disease severity, even in the later

tages of the pandemic. 

Fig. 1 examines the evolution of these effects over calendar dates.

t displays coefficient estimates from the specifications of Eqs. (1) and
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Fig. 1. (a) Effects on Log Cases (IHS), by Date. (b) Effects on Log Deaths (IHS), by Date. 

(  

b  

c  

g

t  
2) , with 95% confidence intervals, estimated separately for each day

etween March 15 and November 30, using a common sample of 3138

ounties. 9 We find that the effect of local effective density rises over
9 Fig. A2 does the same for days since onset. To grasp how to read these 

raphs, consider the public transit graph in Fig. A2A. It plots the coefficients on 

p

t

t

m

5 
ime. In contrast, the effect of public transportation follows the oppo-
ublic transportation from 240 different regressions, one for each of the different 

ime lags since a county reached the threshold of 1 case per 100,000. Increasing 

he number of days since onset decreases the sample size because fewer counties 

eet the criterion for passing the threshold early on. We display this changing 
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Table 2 

A Further Investigation of the Effect of Density (Dependent variable listed in second row). 

(1) (2) (3) (4) 

Log Cases, IHS, 

Nov. 30 

Log Cases, 225 

days post-onset 

Log Deaths, IHS, 

Nov. 30 

Log Deaths, 215 

days post-onset 

Log effective local density 0.203 0.199 0.125 0.068 

(0.017) ∗ ∗ ∗ (0.021) ∗ ∗ ∗ (0.027) ∗ ∗ ∗ (0.040) ∗ 

[0.129] [0.136] [0.072] [0.044] 

% people who commute by public transportation − 0.005 0.002 0.032 0.034 

(0.004) (0.005) (0.007) ∗ ∗ ∗ (0.006) ∗ ∗ ∗ 

[ − 0.010] [0.005] [0.057] [0.101] 

Log population density 0.009 0.025 0.034 0.090 

(0.012) (0.015) ∗ (0.019) ∗ (0.027) ∗ ∗ ∗ 

[0.010] [0.028] [0.035] [0.091] 

Large central metro county or large fringe metro county − 0.011 0.049 0.228 0.234 

(0.039) (0.045) (0.063) ∗ ∗ ∗ (0.073) ∗ ∗ ∗ 

[ − 0.003] [0.013] [0.046] [0.068] 

Medium metro county or small metro county 0.010 0.058 0.130 0.104 

(0.027) (0.032) ∗ (0.044) ∗ ∗ ∗ (0.054) ∗ 

[0.003] [0.018] [0.032] [0.033] 

Housing units in multi-unit structures, percent, 2009–2013 − 0.004 − 0.004 − 0.009 − 0.007 

(0.002) ∗ ∗ (0.002) (0.003) ∗ ∗ ∗ (0.004) ∗ 

[ − 0.022] [ − 0.025] [ − 0.047] [-0.049] 

Persons per household, 2009–2013 0.465 0.719 0.863 1.154 

(0.054) ∗ ∗ ∗ (0.070) ∗ ∗ ∗ (0.088) ∗ ∗ ∗ (0.124) ∗ ∗ ∗ 

[0.073] [0.118] [0.122] [0.170] 

𝑅 2 0.88 0.82 0.75 0.76 

𝑅 2 (per capita specification) 0.20 0.22 0.15 0.27 

𝑁 3138 2756 3138 1,445 

F test (7 density variables) 39.18 35.68 27.77 26.38 

p -value 0.000 0.000 0.000 0.000 

∗ 𝑝 < 0 . 1 ; ∗ ∗ 𝑝 < 0 . 05 ; ∗ ∗ ∗ 𝑝 < 0 . 01 . Standard errors in parentheses and standardized betas in brackets. 

- All specifications contain an intercept and controls for log population, the share of people aged 75 and above, the percentage of nursing home residents in the 

population, log kilometers to the closest airport with flights from top 5 COVID countries, log household median income and the social capital index for 2014. 

- Onset day is defined as the day at which the number of cases reaches 1 per 100,000 (for cases) and 0.5 per 100,000 (for deaths). 

- We report two 𝑅 

2 values: one from the specification with log population on the right-hand side, and another from an alternative specification where we instead 

subtract log population from the dependent variable as described in the first row. The latter allows an assessment of the joint importance of all regressors except 

log population. 
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ite pattern - it starts out strongly positive in the early weeks of the

andemic, but converges toward zero later. A possible interpretation is

hat behavioral adaptations to the disease led people to exercise more

aution over time when using public transportation, or that working

rom home substituted for the use of public transit in later phases of the

andemic, weakening the effect of this variable on disease severity. 

urther measures of density. The results above suggest that a parsimonious

efinition of density, captured by two variables, can explain a substan-

ial share of the spatial variation in COVID-19 severity. However, there

re many other possibly relevant dimensions of density. Table 2 con-

ucts a more in-depth analysis of these dimensions, by considering five

dditional measures. These include two dummy variables for urban sta-

us (respectively, large central or large fringe metro county, and medium

etro and small metro county, as defined by the National Center for

ealth Statistics), two variables capturing the density of living arrange-

ents (the percentage of dwellings that are in multi-unit structures, and

he average number of persons per household), and the conventional

easure of density (the log of population per square mile). 10 
ample size in the last panels of Figs. A2A and A2B. As can be seen, there are 

ver 3,100 counties in the sample of counties one day after passing the case 

hreshold, but there are only about 2,400 in the sample of counties 240 days 

fter onset. 
10 The seven measures of density tend to be positively correlated among them- 

elves, but the correlations are not as high as might be expected. They range 

rom −0 . 017 for public transit and the medium metro and small metro dummy 

o 0.715 for multi-unit housing and log effective local density. Even the corre- 

ation between log density and log effective local density is not that high, at 

o

3

A  

s  

t  

0

s

6 
Among the additional measures of density, persons per household

ends to be significant for both cases and deaths. We also find that sim-

le population density and residing in a metro area are not significantly

elated to cases when other measures of density (especially log effective

ocal density) are controlled for, but these variables tend to predict

eaths (columns (3) and (4) of Table 2 ). Conditional on all density

easures, the share of housing units that are in multi-unit structures

as a negative effect on both cases and deaths, though this effect is

ometimes insignificant. 

ummary. Density is a persistently important determinant of disease

everity across space. This should come as no surprise: as with any other

nfectious disease, contact between susceptible and infected individuals

s a key determinant of the spread of the disease. However, the actual

egree of contact between people is not straightforward to measure. Our

ndings highlight the importance of using measures of effective density

ather than a simple measure of population divided by land area. The

nding of a persistent impact of effective density contrasts with recent

arratives that suggest the death of density by highlighting the spread

f COVID-19 to rural areas. 

.2. Other correlates 

ge and nursing homes. A second group of regressors relates to the age

tructure of the population. Given the much higher mortality rate among

he elderly, in Table 1 we control for the share of the population aged
.626. The variable that is least correlated with the others is average household 

ize. 
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5 and above. We also include a county-level measure of nursery home

esidents divided by population, as this group may be particularly sus-

eptible ( Barnett and Grabowski, 2020 ). 

We find interesting results. Both cases and deaths are negatively as-

ociated with the percentage of people aged 75 and older. Fig. 1 reveals

hat the effect of cases has been negative virtually from the onset of the

andemic. This negative effect may reflect differences in lifestyles be-

ween counties with different age structures. For instance, places with a

arge share of retired individuals may feature fewer places (bars, stadi-

ms) where the disease spreads rapidly. On the other hand, the effect of

he share of the elderly on deaths starts out being positive, and remains

o until the beginning of June. This initial period may reflect the higher

eath rate from COVID-19 among the elderly. Later in the pandemic, as

ore at-risk individuals adjust their behavior, the effect of the share of

he elderly switches and remains persistently negative. 

When it comes to the share of the population in nursing homes, we

nd positive partial correlations for both cases and deaths, with large

agnitudes ranging from 9 . 1% to 15 . 8% . Figs. 1 and A2 reveal that these

ffects are persistent and even increasing over time. These findings are

onsistent with the idea that once a county is affected by the pandemic,

ts nursing homes can quickly become powder kegs, and account for

arge shares of county-wide deaths. 

roximity to international airports. The onset of the pandemic in specific

ocations in the US may have been related to connectivity with high-

everity countries ( Wells et al., 2020 ). We construct a measure of the

istance to any airport with direct flights to one of the top-5 countries

ith coronavirus cases on March 15, 2020 (China, South Korea, Iran,

taly and Spain). This variable bears an initially negative relationship

ith cases and deaths, but the magnitude of this relationship dimin-

shes over time ( Figs. 1 and (A2). The reason is straightforward: the

nitial condition (where the virus initially appears) loses potency as the

isease spreads spatially to locations with fundamentals conducive to

ts prevalence. 

edian income and social capital. Among the remaining correlates, we

onsider median household income, a standard metric to capture differ-

nces in economic well-being across counties. Figs. 1 and A2 reveal that

he effect of log median income is initially positive, but then turns neg-

tive - for both cases and deaths. One interpretation is that the initial

ositive effect could be related to the emergence of the disease in well-

onnected, high-income urban locations like New York. Later, counties

ith higher income were in a better position to mitigate the severity

f the pandemic – either through individual behavioral responses from

ealthier households, or through better policy capacity, and the effect

f median income turned negative. We will return to the issue of income,

overty and social vulnerability in Section 4 . 

Finally, our baseline specification includes a measure of social cap-

tal from Rupasingha et al. (2006) . Theoretically, this measure could

xert either a positive influence on disease severity, if social capital is

ssociated with more contact, or it could bear a negative effect, if social

apital improves the ability to mobilize communities against the disease.

e do not find a very consistent pattern: the effect started out close to

ero, turned negative around June 2020, and moved back toward zero

t later dates. 11 

odel fit. An assessment of model fit is hampered by the inclusion of

og population as a scaling variable on the right hand side of our spec-

fication, which explains a lot of the variation in cases and deaths. To

ddress this issue, Table 1 reports the 𝑅 

2 obtained from a regression

here log population is subtracted from the dependent variable, and no
11 For a further investigation of the ambiguous role of social capital as a deter- 

inant of social distancing, see Ding et al. (2020) , who find a negative effect of 

ommunity activities but a positive effect of voter turnout. Durante et al. (2020) , 

cross Italian provinces, find that mobility declined more in areas with higher 

ivic capital. 

g  
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t  
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7 
onger included as a regressor. We find that the remaining regressors

f Table 1 jointly account for 11% to 20% of the observed variation in

isease severity. 

.3. State fixed-effects 

Table A2 reports results with state fixed effects. The results are

roadly similar to those of Table 1 in terms of the signs and magni-

udes of the coefficients on the eight main regressors. Online Appendix

igs. A3 and A4 graphically display estimates on the state fixed effects,

rdered by size, for the specifications of columns (1) and (3) of Table A2.

hese plots reveal that, after controlling for the eight baseline correlates

f disease severity, some states have lower or higher cases or deaths as

f November 30, 2020. We find that counties in Hawaii, Vermont and

aine, for instance, have lower severity, while counties in North and

outh Dakota, the Midwest and the South tend to have higher severity.

hese differences could reveal idiosyncrasies that are hard to capture

sing additional regressors varying at the county level (for instance,

awaii is an island). They could also capture some omitted factors ex-

luded from our parsimonious specification, such as state-level policies.

. Socioeconomic status, race and human capital 

ace. Table 3 Panel A explores the possible role of race. It reports four

ifferent specifications: columns (1) and (3) report regressions for cases

nd deaths, based on a cross-section of counties as of November 30,

hereas columns (2) and (4) report regressions based on a cross-section

f counties 225 days after onset (for cases) and 215 days after onset (for

eaths). To the baseline regressors, we add measures of the racial com-

osition of a county by controlling for the shares of African Americans,

ispanics, American Indians and Asians, with the excluded category be-

ng the share of Whites and others. The shares of African Americans and

f Native Americans are positively and significantly associated with both

he number of cases and the number of deaths. The association with

he share of Hispanics is also positive, albeit significant in only three

f the four specifications. Finally the share of Asians displays a signif-

cant negative association with COVID-19 severity in all four columns.

n terms of magnitudes, the share of African Americans stands out with

arge standardized beta coefficients, especially for deaths ( 19 . 3% and

7 . 3% in columns (3) and (4)). Overall these results support concerns

hat the COVID-19 pandemic has a disproportionate effect on different

acial groups, even after controlling for a broad set of county-specific

ariables such as median income, density, etc. 

ducation. Table 3 Panel B analyzes whether the level of education may

e a source of heterogeneity in disease severity across counties. We take

he same four specifications as in the previous table with the same base-

ine regressors, and add two controls for the level of education: the share

f a county’s population that has a high school degree or more, and the

hare of a county’s population that has a bachelor’s degree or more (the

xcluded variable is the share of people with less than a high school

egree). We find a negative gradient of disease severity with respect to

ducational attainment: counties with large proportions of college grad-

ates fare best, followed by counties with a large share of individuals

ith a high school degree. Hence, we find evidence that more disadvan-

aged locations (measured by education) fare worse. 

nequality and Poverty. Table A3 reports results of an in-depth investi-

ation of the role of inequality and poverty. In the baseline regressions

e already included median household income. We add two measures

hat capture inequality and poverty: the Gini index within the bottom

9% and the poverty rate. We find that both poverty and inequality pos-

tively predict disease severity in columns (2)-(4) but not in the first

pecification, where most of the effect of local prosperity loads on log

edian income. The results are quantitatively meaningful: for example,
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Table 3 

An Investigation of Race and Education (Dependent variable listed in second row). 

(1) (2) (3) (4) 

Log Cases, IHS, 

November 30 

Log Cases, 225 

days since onset 

Log Deaths, IHS, 

November 30 

Log Deaths, 215 

days since onset 

Panel A: Baseline specification plus race share variables 

% Black or African American 0.003 0.010 0.023 0.024 

(0.001) ∗ ∗ ∗ (0.001) ∗ ∗ ∗ (0.001) ∗ ∗ ∗ (0.001) ∗ ∗ ∗ 

[0.025] [0.109] [0.193] [0.273] 

% Hispanic or Latino 0.001 0.007 0.014 0.016 

(0.001) (0.001) ∗ ∗ ∗ (0.001) ∗ ∗ ∗ (0.002) ∗ ∗ ∗ 

[0.008] [0.061] [0.107] [0.136] 

% American Indian and Alaska Native 0.007 0.010 0.013 0.018 

(0.001) ∗ ∗ ∗ (0.002) ∗ ∗ ∗ (0.002) ∗ ∗ ∗ (0.004) ∗ ∗ ∗ 

[0.031] [0.045] [0.056] [0.057] 

% Asian − 0.030 − 0.014 − 0.039 − 0.021 

(0.004) ∗ ∗ ∗ (0.006) ∗ ∗ (0.007) ∗ ∗ ∗ (0.008) ∗ ∗ ∗ 

[ − 0.053] [ − 0.027] [ − 0.062] [ − 0.048] 

𝑅 2 0.88 0.82 0.77 0.79 

𝑅 2 (per capita specification) 0.19 0.22 0.22 0.36 

𝑁 3,138 2,756 3,138 1,445 

Panel B: Baseline specification plus education variables 

High school graduate or higher, percent of persons age 25 + − 0.006 − 0.029 − 0.041 − 0.065 

(0.002) ∗ ∗ ∗ (0.003) ∗ ∗ ∗ (0.003) ∗ ∗ ∗ (0.005) ∗ ∗ ∗ 

[ − 0.026] [ − 0.140] [ − 0.165] [ − 0.288] 

Bachelor’s degree or higher, percent of persons age 25 + − 0.014 − 0.007 − 0.010 0.004 

(0.002) ∗ ∗ ∗ (0.002) ∗ ∗ ∗ (0.003) ∗ ∗ ∗ (0.003) 

[ − 0.081] [ − 0.045] [ − 0.050] [0.029] 

𝑅 2 0.88 0.82 0.76 0.77 

𝑅 2 (per capita specification) 0.20 0.23 0.16 0.30 

𝑁 3,138 2,756 3,138 1,445 

∗ 𝑝 < 0 . 1 ; ∗ ∗ 𝑝 < 0 . 05 ; ∗ ∗ ∗ 𝑝 < 0 . 01 . Standard errors in parentheses and standardized betas in brackets. 

- Onset is defined as the day at which the number of cases reaches 1 per 100,000 (for cases) and 0.5 per 100,000 (for deaths). 

- All specifications contain an intercept and controls for the baseline set of 8 variables in Table 1 . 

- We report two R 2 values: one from the specification with log population on the right-hand side, and another from an alternative specification where we instead 

subtract log population from the dependent variable as described in the first row. The latter allows an assessment of the joint importance of all regressors except 

log population. 
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A  

Panel B for deaths. 
he poverty rate shows standardized coefficients in the range of 10.6–

9.8% when considering its impact on deaths. 12 

ealth. Table A4 investigates whether underlying health conditions or

he quality of health care have an impact on outcomes. As measures

f underlying health issues, we take the share of the population that

mokes and the share of the population that is obese. As measures

f quality of health care, we take the risk-adjusted 30-day mortality

ates for heart attacks, heart failure and pneumonia. The share of

bese people is positively associated with COVID-19 severity, while

here is no statistically significant association with smoking. Turning to

isk-adjusted mortality rates, we find some evidence that risk-adjusted

ortality from pneumonia is positively correlated with deaths (on the

ther hand, the signs of the correlations on risk-adjusted mortality from

eart failures often have the opposite signs from what is expected).

hese results tend to be sensitive to the inclusion of more controls.

n sum, with the exception of obesity, we do not find much evidence

hat health conditions or the quality of health care are first-order

eterminants of cross-county variation in cases and deaths. 

ummary. This section documented a general pattern that low educa-

ional attainment, a large share of African American and Hispanic mi-

orities, a high poverty rate, low median income - i.e. having a large

hare of economically or socially disadvantaged individuals – is posi-

ively associated with COVID-19 severity. 
12 Due to collinearity between median income and the poverty rate ( 𝜌 = −0 . 75 ), 
n columns (3) and (4) of Table A3 we find that most of the effect of income loads 

n the poverty rate. 

t

fi

T

8 
. Political patterns in the spread of COVID-19 

Many commentators have observed that there exists a political

ivide over attitudes toward the COVID-19 pandemic (see for instance

ew Research Center, 2020 ). In turn, these disagreements may re-

ect underlying differences in disease severity across locations with

ifferent political orientations. Weniger and Ou (2020) and Kolko

2020a,b) observe that, in its early stages, the disease was more severe

n Democratic-leaning states and counties than in Republican-leaning

ocations. Does severity indeed vary according to local political orienta-

ion? In this subsection, we try to better understand the political divide

n disease severity. 

We start by examining the effect of the vote share obtained by Don-

ld Trump in the 2016 general election on cases and deaths. We do

o for two specifications and two time periods. The first specification

nly controls for log population and the Trump vote share. The second

pecification is a comprehensive specification controlling for all of the

utative determinants of disease severity discussed in the previous sec-

ions. 13 We consider a cross-section early in the pandemic (June 29,

020) and one later (November 30, 2020). The four columns of Table

5 report the four resulting sets of estimates - Panel A for cases and
14 
13 We do not include the share of the obese and share of people smoking since 

heir inclusion would result in a loss of many observations. 
14 Table A6 displays the corresponding estimates defining the samples by a 

xed number of days since onset, leading to results very similar to those of 

able A5. 
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Fig. 2. The Political Divide in COVID-19 Severity. 
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16 Red counties are defined as those with a 2016 Trump vote share greater 

than 55% , blue counties are those with a Trump vote share smaller than 45% , 

and purple counties represent the balance. 
17 Evidence of a partisan divide in terms of changes in mobility brought 

about by the pandemic is provided in Chen et al. (2020) . They state: “Likely 
We uncover interesting patterns. First, in the early stages of the pan-

emic, the short specification shows a negative association between

rump vote share and disease severity: Trump counties were not as

everely affected as Democratic-leaning counties (column (1)). The stan-

ardized beta on Trump vote share is large: 10 . 7% for cases and 14 . 5%
or cases. 

Second, when adding controls for the local determinants of disease

everity, the negative relationship between Trump vote share and dis-

ase severity disappears (for cases) or flips signs (for deaths) – as seen in

olumn (3). Thus, factors like population density, demographic compo-

ition, etc. entirely account for the apparent Trump advantage in disease

everity even early on in the pandemic. 

Third, in more recent times, we see a severity penalty for Trump-

eaning counties in both the short and the comprehensive speci-

cations. This shows that as the pandemic has spread, the initial

dvantage derived from local specificities (population density, demo-

raphics) disappeared, and a meaningful disadvantage appeared: the

tandardized beta on Trump vote share in the comprehensive specifica-

ion is now 15 . 2% (for cases) and 18 . 5% (for deaths). 15 

Fig. 2 illustrates these three patterns graphically over time. For each

ay between March 15 and November 30, we run regressions of log

ases and log deaths using either the short or the comprehensive speci-

cation in Table A5, excluding the Trump vote share. Fig. 2 then plots

ow the average residuals evolve over time for three groups of coun-
15 Comparing these standardized effects to those of the eight baseline regres- 

ors in Table 1 reveals that the Trump effects are amongst the largest, even 

arger than the effect of log median income or log effective local density. 

T

d

A

b

D

i

9 
ies: red, blue and purple. 16 For the residuals from the short specifica-

ion (left panels), we see a large initial political divide between blue and

ed counties, for both cases and deaths. For cases, this divide starts to

arrow almost from the beginning, and persists until about mid-October

020. For deaths, the political divide in severity starts to narrow sub-

tantially in mid-July and all but disappears by the end of November.

 similar picture emerges when looking at residuals from the compre-

ensive specification (right panels), but the political divide disappears

uch earlier, by May. It then reverses itself strongly, to the point that

here is now a large and persistent penalty to being a red county (purple

ounties stand in between the red and blue counties, but closer to the

atter). 

How can we interpret these partisan patterns in disease severity?

arly on in the pandemic, Republican-leaning areas were less hard hit

y COVID-19. This may have led to the early development of politically

atterned policy and behavioral preferences, resulting in lax attitudes

oward mask-wearing, social distancing and lock-down measures. 17 Un-
rump voters reduce movement by 9% following a local stay-at-home or- 

er, compared to a 21% reduction among their Clinton-voting neighbors (...) ”. 

llcott et al. (2020) document differences in social distancing behavior and 

eliefs about the future severity of the pandemic between Republicans and 

emocrats. Bursztyn et al. (2020) show the importance of the media in cement- 

ng these politically-patterned beliefs and behaviors. 
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er this view, as the pandemic spread to Trump-leaning counties, their

references and attitudes had already been formed, preventing them

rom responding more decisively to worsening local conditions. Ulti-

ately, this resulted in greater disease severity in Trump-leaning areas

f the country. 18 

. Conclusion 

Many observers have argued that COVID-19 would eventually spread

o all corners of the United States. This view is epitomized by this pa-

er’s opening quote by Andrew Cuomo. There remains, however, con-

iderable spatial variation in the severity of the disease across space.

oes this variation merely reflect the legacy of initial conditions and

ifferential timing of the disease onset, or does it instead reflect funda-

ental underlying differences between locations? In this paper, we seek

o shed light on this question by exploring a wide range of correlates of

OVID-19 severity across US counties. We show that spatial variation is

ignificantly and persistently associated with a wide range of observable

ounty characteristics. 

We find a persistent role for population density as a correlate of cases

nd deaths. We argue that it is important to measure the effective den-

ity experienced by people in their daily lives. We do so by considering

he density people encounter in their living arrangements and in local

ransit. We also develop a measure of the average density an individ-

al faces in a square kilometer around her. Besides density, other fac-

ors persistently affect COVID-19 severity across counties: having more

ursing home residents, greater poverty rates, or a larger presence of

frican Americans or Hispanics. Time will tell whether this persistence

ill persist. 

While many determinants show persistent effects through time, oth-

rs display changing patterns. Proximity to major international airports

s an important predictor early on, because these are the locations where

he virus first appeared. Over time, it spread to the rest of the country, so

he effect of initial conditions vanished. Having a greater proportion of

lderly individuals was associated with more deaths in the early stages

f the pandemic, but as this at-risk population adjusted its behavior, this

attern reversed. Counties with a high Trump vote share in the general

lection of 2016 fared better early on, but later experienced more cumu-

ative deaths and cases per capita. Partisan preferences about policy and

ehavioral responses to the pandemic may have formed in early stages,

eading Trump counties to respond less forcefully when they got hit by

OVID-19 at later stages of the pandemic. 

Overall, our results suggests that spatial heterogeneity in COVID-

9 is not just about timing: many local characteristics, such as den-

ity, have large and persistent effects on disease severity. Policymakers

hould therefore be sensitive to the specificities of different locations

hen designing responses to the spread of COVID-19. Even when local

haracteristics do not exhibit persistent effects, they often display sys-

ematic time paths. If so, these time patterns are also informative for

olicymakers interested in spatially allocating resources over the life-

ycle of the pandemic. 
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18 This does not seem to have led to a penalty in the 2020 general election: 

f anything, the Trump vote share improved in counties with higher rates of 

OVID-19 deaths ( Lake and Nie, 2020 ). 
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