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Automated tracking of wound-healing progress using images from smartphones
can be useful and convenient for the patient to perform at home. To evaluate the
feasibility, 119 images were taken with an iPhone smartphone during the treatment
of a chronic wound at one patient's home. An image analysis algorithm was devel-
oped to quantitatively classify wound content as an index of wound healing. The
core of the algorithm involves transforming the colour image into hue-saturation-
value colour space, after which a threshold can be reliably applied to produce seg-
mentation using the Black-Yellow-Red wound model. Morphological transforms
are used to refine the classification. This method was found to be accurate and
robust with respect to lighting conditions for smartphone-captured photos. The
wound composition percentage showed a different trend from the wound area mea-
surements, suggesting its role as a complementary metric. Overall, smartphone
photography and automated image analysis is a promising cost-effective way of
monitoring patients. While the current setup limits our capability of measuring
wound area, future smartphones equipped with depth-sensing technology will
enable accurate volumetric evaluation in addition to composition analysis.
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1 | INTRODUCTION

Information on the wound-healing process is clinically
important. For example, it is recommended to monitor the
rate of wound healing in diabetic foot ulcers to determine
whether the treatment was optimal.1 With the recent rapid
development and wide adoption of smartphone digital pho-
tography technology, we explore the feasibility of tracking
wound changes with smartphones at home. Our vision is
that, eventually, this image collection process can be per-
formed by the patient him/herself. The benefit of using a por-
table camera for telemedicine has been discussed long before
the current generation of modern smartphones.2–4 In these
studies, the potential of cell phones in tracking wound-

healing progress was recognised. They especially
highlighted camera phones' capability of storing and trans-
mitting useful clinical data, that is, wound images. The sav-
ing on transportation and clinician time was reported to be
significant and well-received.

However, most of these studies were performed at a time
when camera phones took photos of much worse quality than
even today's most affordable smartphones. Moreover, the old
telemedicine setup still required clinicians to manually inter-
pret individual images. In comparison, today's smartphones
are powered by high-quality imaging systems, fast Internet
connections, and powerful processors capable of performing
simple image analysis to produce useful quantitative wound-
healing statistics. This may reduce the burden on clinicians
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to manually review the images if the images are taken in a
manner that allows automated wound area contouring and
segmentation. Our goal here is to develop and evaluate a
workflow to extract clinically relevant information from a
smartphone wound image, with the hope that, in the future,
patients can take these pictures themselves at home to save
hospital visits and clinician time. This means that, for image
acquisition, no additional device or calibration should be
required, and the analysis methods should be agnostic to the
capturing device and robust under different lighting condi-
tions. Then, the image will be processed by an algorithm to
report clinically useful information.

We recognised that two different types of output infor-
mation are potentially useful: wound dimension and wound
composition. Most wound image analysis research has been
focused on the photogrammetric measurement of physical
wound dimensions. This usually relies on placing a cali-
brated marker or grid next to the wound,5–9 from which the
pixel dimensions can be approximately correlated to physi-
cal dimensions. However, such a setup can become cumber-
some and confusing if one would like to ask the patient to
acquire the image him/herself. Moreover, each type of grid
or marking needs to be individually segmented and cali-
brated for image analysis, making the analysis ill-suited for a
non-supervised workflow. Alternatively, it is also possible to
directly obtain approximate physical dimensions from 2D
images if the intrinsic and extrinsic camera matrices are cali-
brated and assuming the wound is planar, a reasonable
assumption for small wounds. For instance, a calibrated, spe-
cially constructed camera system is described in Reference
10, and other commercial (usually expensive) devices are
also available. While this may be a feasible solution at a hos-
pital clinic or research facility, it does not fit our ultimate
goal of making the data collection process accessible for
everyone at home without special equipment. We would like
each image to be acquired freehand from different poses and
different cameras. Moreover, each camera has a distinct
intrinsic calibration, which can only be determined through a
non-trivial camera calibration process.

On the other hand, wound composition (mixture of
slough, necrosis, granulation, epithelium, etc.) can be highly
variable during healing processes like granulation and ree-
pithelisation. Therefore, quantification and reporting of such
processes by calculating the percentage of each type of tis-
sue can provide useful information.11 To report wound com-
position, semantic segmentation of the wound must be
performed. Because physical dimensions are not required,
this can be performed on physically uncalibrated images.
One of the earliest attempts at this was performed by Arnq-
vist et al9 who used a semi-automatic approach on red-
green-blue (RGB) images, where an operator would manu-
ally determine the best among 16 classifiers for classifica-
tion. While the semi-automatic approach was a novel
method then, later research focused more on automatic

methods because of the development in fields of digital pho-
tography, machine learning, and computer vision. The
method developed by Mekkes et al11 is based on colour
coordinates on the RGB cube scale. They realised the impor-
tance of tissue colour inside the wound and proposed apply-
ing the Black-Yellow-Red wound colour model to the
analysis. They semi-automatically generated a mapping
matrix for each possible RGB combination for classification.
Hansen et al12 provided a related application for determining
the severity of wound after injury using colour information.

With increased computational power and higher bit
depth acquired in digital colour images, more modern
methods have been developed. More researchers started con-
sidering transforming the image colour space instead of
using the colour cube classifier approach. Hoppe et al13,14

was one of the first to use the hue-saturation-intensity (HSI)
colour model to quantify the overall colour into five different
grades of slough content. Their method involved calibration
of the camera colour intensity. Their treated images include
mostly red granulation and yellow slough. With recent
advancements in photography, especially much more robust
white balancing algorithms today, the calibration step is
likely no longer necessary. More recently, Mukherjee et al15

described a method where the saturation component of the
HSI colour space is considered using fuzzy divergence-
based thresholding and machine learning methods to classify
the percentage composition of different wound tissue. Such
machine learning-based methods can often provide better
results but are harder to implement on mobile devices where
software frameworks are not as developed, and computa-
tional power is limited. We would like to take an approach
similar to Mukherjee's but develop a method that is
(a) easily implementable on all of today's smartphone plat-
forms, (b) does not involve calibration, and (c) is robust
enough to work well under different lighting conditions. As
a secondary goal, we would like the algorithm to work well
on large chronic wounds (because of the population of
patient we see at our clinic; see example images in Figure 1)
as most literature mentioned above treats much smaller
wounds.

Key Messages

• a classification algorithm was developed to quantitatively ana-

lyse changes in wound content from images captured with a

standard smartphone

• the algorithm was used to track the healing progress of a

patient and was found to be accurate for wound characterisa-

tion purposes and robust with respect to varying lighting

conditions

• new 3D depth-sensing technology on smartphones is a prom-

ising next step to add volumetric analysis capability to the cur-

rent setup
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Recently, given the consent of a patient seen at the Wil-
liam Osler Health System (Toronto, Canada) Palliative Med-
icine unit, we collected colour photos to track the healing
progress of a chronic wound on the patient's leg. Photos
were taken at the patient's home using the rear camera on an
Apple iPhone 7 Plus smartphone. The camera has a
12-megapixel (4032 × 3024 pixels) sensor and f/1.8 aper-
ture. Over the interval of the study, we saw visually signifi-
cant healing of this wound. One aspect of the progress is the
shrinking physical dimension. Therefore physical dimen-
sions (ie, longest length and widest width) were recorded
with a ruler (because this information cannot be easily deter-
mined from an uncalibrated camera system as discussed
above). The composition of the wound over the treatment
period has been highly variable and is the focus of our analy-
sis that is described below.

2 | METHODS

A total of 119 wound images were collected for a chronic
wound on the patient's leg during a 90-day treatment period.
Patient consent was obtained in compliance with the Decla-
ration of Helsinki. Wound boundaries were manually con-
toured on each image. The use of the manual approach is
because currently reliable non-supervised wound segmenta-
tion methods available5,6,16–18 are based on machine learning
approaches, such as using support vector machine and con-
volutional neural networks. These methods are well-
understood but can only be trained and implemented when
large wound image datasets are available. Therefore, wound
contouring algorithms were deemed to not be the focus of
the current study.

The wound area was extracted from the contour using a
polygon area mask defined by the contour points. This area
is defined as the region of interest (ROI). A colour space
transformation from the RGB space to the hue-saturation-
value (HSV) space was performed on the image. The HSV
space is commonly used to perform segmentation of differ-
ent objects5,13–15 because of its much higher contrast
between semantically different objects or tissues. The hue
space value is, by convention, represented by a non-
dimensional value from 0 to 360 and wraps around. The
values 0 and 360 represent the colour red, while green is at
120 and blue is at 240. The algorithm for conversion
between RGB colour space and HSV colour space is:

H¼ arccos
0:5 R−Gð Þ+ R−Bð Þð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R−Gð Þ2 + R−Gð Þ R−Bð Þ

q
0
B@

1
CA

V ¼ max R,G,Bð Þ

S¼ max R,G,Bð Þ−min R,G,Bð Þ
V

ð1Þ

Because most of our colour of interest in the Black-Yel-
low-Red model11 is centred around the red region, we took a
different period in the hue space: H 2 (−180, 180). As a
result, 0 and 120 still represent red and green, respectively,
but blue is shifted one negative period to
(240 − 360) = − 120. Most importantly, all pixels with red
colour would now be next to each other for histogram analy-
sis, allowing much more convenient binning and intuitive
visualisation. Finally, the range (−180, 180) is normalised to
(−0.5, 0.5) for interoperability between different software
platforms, which may define a different range for hue space
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FIGURE 1 An example of the image analysis pipeline of image, taken on day 59 of treatment. A, Image converted to hue-saturation-value (HSV) space,
with the hue space visualised with maximum saturation. The top black arrow points at the large red area, which corresponds to granulation tissue. The bottom
blue arrow points at a yellow patch, which is new grown epithelial tissue. B, The distribution of hue values inside the green contour is counted and plotted in
the histogram shown. C, Thresholds are applied on the histogram result followed by morphological transforms and visualisation operation to produce the
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(one of the most common alternatives being 0-255 to fit
within an 8-bit image depth). The entire operation can be
expressed mathematically as:

Hshifted Hð Þ¼
H
360

, 0≤H <180

H−360
360

, 180≤H <360

8><
>:

ð2Þ

Notably, this is a different shifting approach from the
one taken by Hoppe et al.13 Their approach, as described in
the Table 1 in their study, can be described as Hshifted =
(H − 210) mod 360. Their goal was also to solve the same
issue of a discontinuous red value. The advantage of Hoppe's
method is that all numbers are kept positive, thus making it
sometimes easier for software implementation, but the disad-
vantage is that the absolute location of the hue locations is
shifted (eg, red is no longer at 0 or 360).

All pixels in the hue channel inside the ROI were counted
on a histogram. The best thresholds were experimentally
determined to classify the pixels inside the wound as
“slough,” “epithelium,” and “no label.” Assuming each type
of area would be rather contiguous, morphological operations
were performed to improve the accuracy of classification.
First, an image erosion structuring element of appropriate size
was applied so that small misclassified regions would be
eliminated. Then, a dilation filter using the same structuring
element is applied to recover the correct size of classified
areas. For visualisation, a small dilation structuring element
was applied to each area, followed by a subtraction of the
area. This series of operation allows drawing out the outer
contour of the classified area. Areas of different classifica-
tions were delineated by different contour colours.

Finally, the percentage of each type of pixel classifica-
tion inside the wound was calculated to be interpreted as the
percent of the area inside the wound being the labelled type
of tissue:

%granulation¼ number of “granulation” pixels
total number of pixels in wound

%epithelial¼ number of “epithelial” pixels
total number of pixels in wound

ð3Þ

The entire pipeline of the analysis was implemented in
the Python programming language using the OpenCV com-
puter vision library. A sample analysis procedure is illus-
trated in Figure 1. Compared with some of the similar
existing methods, our method is friendly for different pro-
gramming platforms and libraries (eg, no machine learning
library required), requiring only basic operations commonly
found in image manipulation libraries. Moreover, we do not
perform any physical or colour calibration procedure.

In addition to the image analysis data, an upper-bound
estimate of the wound area is provided by the measured wid-
est length and longest length for comparison:

wound area≈ longest length ×widest width ð4Þ

Statistical analysis was performed in Python (version 3.6.2,
Anaconda Software Distribution) and MATLAB (version 9.0
R2016a, The MathWorks, Inc.).

3 | RESULTS

The algorithm was run on all 119 images collected. Repre-
sentative images on days 15, 41, and 87 and their analyses
are shown in Figure 2. The wound was on the patient's right
leg. Multiple images were required to capture the full extent
of the large wound. Before treatment (on day 0), the entire
chronic wound area was covered by slough. As treatment
progressed, we saw significant granulation in the wound
area. Around day 30, all the original slough had been
replaced by granulation tissue, with signs of reepithelialisa-
tion. Afterwards, we observed a significant epithelisation
process. It was also during this period where significant
shrinking of the overall wound boundary was observed.
(Figure 3) Therefore, the wound-healing process can be dis-
tinguished into roughly two distinct phases: the first phase
consisting primarily of granulation before day 30 and the
second phase after day 30 when granulation process has sat-
urated inside the wound, and reepithelialisation starts.

To validate the effectiveness of using the HSV colour
space, we can observe the trend of hue histogram progres-
sion through the treatment process and correlate the trend
with our expectation from visual inspection. As illustrated
in Figure 2, the initial phase of granulation is characterised
by the narrowing of the histogram peak and the increase
in magnitude of the peak. The narrowing of the peak rep-
resents the decreasing amount of yellow slough, which has
a higher hue number than red granulation tissue, while the
increase of the peak corresponds to the increase in the
number of pixels classified as red granulation tissue. In the
second phase of healing, where granulation saturates and
epithelium starts to form, the histogram gradually shifts
into the yellow region with a decreased magnitude of peak.
This represents granulation tissue turning into epithelial tis-
sue. This overall trend of the hue distribution progression
is visualised in Figure 5, where all individual histograms
from the collected images on different dates are stacked on
the vertical axis, and the height of the histogram is repre-
sented by the colour intensity. When the segmentation was
visualised and checked on individual images manually, the
result appears accurate and is robust with respect to the
different lighting condition, which can be seen in the three
images chosen in Figure 2.

The trend of measured wound size is shown in Figure 3.
There is a strong linear decreasing trend (wound area vs days
into treatment, R2 = 0.903). In comparison, Figure 4 shows
rapid initial granulation and epithelium growth and satura-
tion of the growth after a few days and does not have a clear
linear trend. Therefore, it is clear that the two different
wound progression monitoring approaches quantifies two
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different aspects of the healing process. This suggests that,
despite wound area being the more commonly cited metric,
wound composition as calculated from our setup can provide

additional insight into the healing process. Such a segmenta-
tion algorithm is especially suited for the current patient case
because of the large, non-planar wound area (thus hard to
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FIGURE 2 Representative analysis performed on (A) day 15, (B) day 41, and (C) day 87. The three images presented are chosen to represent different stages
in the treatment process and varying image lighting conditions. The left column shows the images taken with each classified area contoured (red: granulation,
yellow: reepithelialised tissue). The right column shows the hue value histogram inside the wound area. Note the peak becomes significantly higher and
narrower from day 15 to 41 because of the much-increased percentage of granulation tissue, and the peak becomes slightly wider on day 87 because of the
growing amount of epithelial tissue. The general trend is also visualised in Figure 5
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accurately measure) and the highly heterogeneous and vari-
able wound composition (which makes the wound composi-
tion analysis an ideal way of tracking the progression).

4 | DISCUSSION

We have demonstrated the feasibility to track wound-healing
process using smartphone photography, where all images
were acquired at the patient's home without special prepara-
tion. The focus was to develop and evaluate an algorithm for
the quantification of different wound contents as an index to
track the healing progress.

Our approach of transforming the image into the HSV
colour space has been shown to be robust with respect to
varying lighting conditions and can be used to capture both
granulation and epithelial growth for this case study. Intui-
tively, our approach is similar to how humans distinguish dif-
ferent tissue types by colour. The robustness of the algorithm

comes from the fact that, theoretically, the hue value should
be minimally affected by the overall luminance of the image.
In practice, one needs to make sure that the ROI in the photo
is neither over-exposed or under-exposed. Fortunately, with
the advancement in smartphone technology, nowadays, the
image quality taken with an average smartphone is sufficient
for such analysis. In the future, we would also like to verify
the algorithm on subjects with different skin tones and tex-
tures. An adaptive thresholding method might be required for
such cases, such as the one described in Reference 19.

In addition, our current approach consisted of an erosion
and then dilation morphological transformation process that
is designed to eliminate small pixel areas that are misclassi-
fied. A common source of this misclassification is because
of varying lighting conditions, such as specular reflections.
The morphological transforms were found to be very effec-
tive at removing the effect of such artefacts on the overall
analysis.
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We note that the current study is limited because of the
limited one-patient-camera dataset available to us, and the
next step would be to validate the algorithm design on

multiple cases under different conditions. In addition, with a
large amount of tagged image data at different stages of the
wound collected, instead of correlating images to physical
dimensions, one can construct a classifier correlating images
to The National Pressure Ulcer Advisory Panel wound
stages or other potentially more meaningful clinical metrics.

A smartphone-based algorithmic approach to home
wound care has significant advantages over traditional tele-
medicine. With the current feasibility validation, we propose
building a centralised patient record service where chronic
wound patients can take daily images of the wound and
upload to the database. The wound analysis can be per-
formed on the smartphone itself to provide real-time feed-
back to the patient if desired. Meanwhile, the database is set
up to be associated with existing patient records, track moni-
tor wound-healing progress, and automatically alerts the
physician when intervention is necessary. Home care nurses
can also monitor patients remotely through the statistics and
image records instead of having to physically visit the
patient. Such a technology can potentially play an important
role in a more efficient long-term care system.

An important limitation of the current setup is that the
wound area needs to be manually measured using a ruler,
which can be cumbersome and inaccurate. This is because,
as discussed above, the wound area cannot be extracted from
a 2D image taken in an uncalibrated setup. Moreover, large
wound areas over a non-planar geometry, such as the current
case of large wound on leg, cannot be captured in one single
image. Transparent soft grids, such as the Visitrak film,7 for
tracing are likely the most accurate solution currently but
require skin contact and are a specialised equipment that the
patient needs to acquire.

A promising technology to solve this limitation is 3D
cameras. These cameras provide not only colour but also
physical distance information of the captured scene. This
allows the characterisation of both the colours and physical
dimension of the wound. With 3D reconstruction technol-
ogy, the wound can be of any arbitrary large size and 3D
geometry in space. Because the algorithm reconstructs the
wound fully in 3D, the measured physical dimensions can
be much more accurate than existing methods. Depth informa-
tion can also make wound contouring much easier, eliminating
the need for a complex wound area detection algorithm. The
3D camera technology has been demonstrated to be very use-
ful in wound contouring and wound size characterisation.20,21

Moreover, the technology can also accurately provide informa-
tion about the depth of wound (in addition to area), which was
previously impossible. Finally, such a technique does not
require contact with the wound bed.

Traditionally, the 3D camera technology has been lim-
ited by its resolution, portability, and cost. In recent years,
these issues have largely been solved with new products that
are of High-definition (HD, 1280×720) resolution, small
form factor, and can be purchased for around $200.22 In

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

Normalized shifted hue

0

10

20

30

40

50

60

70

80

90

D
a
y
s

Hue probablity distribution

FIGURE 5 Trend of wound healing from all images visualised as tissue
type distribution progression over the 90-day tracking period. Darker colour
represents higher probability density. The overall density is normalised to
1 for each analysed image. Then, the distribution for each day is averaged
between images. Values between days with observations are interpolated.
From bottom to top, first, we obverse a wide distribution with a peak on the
right side of 0 (which represents yellow pixels). As treatment starts, this
peak shifts left, and distribution becomes narrower and peaks much higher
at 0 (which represents red pixels). When the reepithelisation process starts,
the distribution and peak shift slightly right into yellow

0 10 20 30 40 50 60 70 80 90

Days

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
T

is
s
u
e
 t
y
p
e
 a

re
a
 /
 t
o
ta

l 
w

o
u
n
d
 c

o
n
to

u
r 

a
re

a

Granulation

Epithelium

FIGURE 4 Trend of wound healing as represented by the granulation and
epithelial tissue. Measured statistic across multiple images on the same day
is averaged. In the beginning, there was a rapid and steady trend of slough
being replaced by granulation tissue as evident on the plot as the rise in
granulation tissue percentage. Accounting for epithelial tissue started on
approximately day 30 when significant epithelium growth started. With an
initial rise of epithelium percentage around days 35 to 60, the level was
steady afterwards. This plot provides different and complementary
information to the wound size information in Figure 3. A limitation of the
quantification of epithelium tissue inside the wound is that it does not
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addition, stereo rear camera and depth camera setups have
started to appear on mainstream smartphones. This is partly
because of the recent surge of interest in smartphone-based
augmented reality and 3D facial recognition. For example,
the Apple iPhone X has a depth camera using structured illu-
mination technology for 3D facial recognition. Google Pro-
ject Tango is another experimental project of incorporating
depth-sensing technology into smartphones, which will
enable “3D modeling on the go.”23 Once adopted, we can
potentially have the unprecedented capability to accurately
measure both wound volume and wound composition with a
single photo shot from smartphones. Therefore, we would
like to suggest this as a future direction in wound characteri-
sation efforts.

ACKNOWLEDGEMENTS

The authors would like to thank members of the Guided
Therapeutics (GTx) Lab at University Health Network
(UHN) for their support. The authors received no specific
funding for this work.

CONFLICTS OF INTEREST

The authors have no conflict of interest to declare.

ORCID

Runjie B. Shi https://orcid.org/0000-0001-5690-2394

REFERENCES

1. Steed DL, Attinger C, Colaizzi T, et al. Guidelines for the treatment of dia-
betic ulcers. Wound Repair Regen. 2006;14(6):680-692. https://doi.org/10.
1111/j.1524-475X.2006.00176.x.

2. Hofmann-Wellenhof R, Salmhofer W, Binder B, Okcu A, Kerl H, Soyer HP.
Feasibility and acceptance of telemedicine for wound care in patients with
chronic leg ulcers. J Telemed Telecare. 2006;12(1_suppl):15-17. https://doi.
org/10.1258/135763306777978407.

3. Braun RP, Vecchietti JL, Thomas L, et al. Telemedical wound care using a
new generation of mobile telephones. Arch Dermatol. 2005;141(2):254-258.
https://doi.org/10.1001/archderm.141.2.254.

4. Terry M, Halstead LS, O'Hare P, et al. Feasibility study of home care wound
management using telemedicine. Adv Skin Wound Care. 2009;22(8):
358-364. https://doi.org/10.1097/01.ASW.0000358638.38161.6b.

5. Perez AA, Gonzaga A, Alves JM. Segmentation and analysis of leg ulcers
color images. Proceedings International Workshop on Medical Imaging and
Augmented Reality; Shatin, Hong Kong, China. 2001:262-266. https://doi.
org/10.1109/MIAR.2001.930300.

6. Wang C, Yan X, Smith M, et al. A unified framework for automatic wound
segmentation and analysis with deep convolutional neural networks. 2015
37th Annu Int Conf IEEE Eng Med Biol Soc; Milan. 2015:2415-2418.
https://doi.org/10.1109/EMBC.2015.7318881.

7. Chang AC, Dearman B, Greenwood JE. A comparison of wound area mea-
surement techniques: visitrak versus photography. Eplasty. 2011;11:e18.
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3080766&tool=
pmcentrez&rendertype=abstract.

8. Moustris GP, Hiridis SC, Deliparaschos KM, Konstantinidis KM. Evolution
of autnomous and semi-autnomous robotic surgical systems: a review of the

literature. Int J Med Robot. 2011;7(April):375-392. https://doi.org/10.
1002/rcs.

9. Arnqvist J, Hellgren J, Vincent J. Semiautomatic classification of secondary
healing ulcers in multispectral images. [1988 Proceedings] 9th International
Conference on Pattern Recognition. IEEE Comput. Soc. Press; Rome, Italy.
459-461. https://doi.org/10.1109/ICPR.1988.28266.

10. Krouskop TA, Baker R, Wilson MS. A noncontact wound measurement sys-
tem. J Rehabil Res Dev. 2002;39(3):337-345. http://www.rehab.research.va.
gov/jour/02/39/3/krouskop.htm.

11. Mekkes JR, Westerhof W. Image processing in the study of wound healing.
Clin Dermatol. 1995;13(4):401-407. https://doi.org/10.1016/0738-081X(95)
00071-M.

12. Hansen GL, Sparrow EM, Kokate JY, Leland KJ, Iaizzo PA. Wound status
evaluation using color image processing. IEEE Trans Med Imaging. 1997;
16(1):78-86. https://doi.org/10.1109/42.552057.

13. Hoppe A, Wertheim D, Melhuish J, Morris H, Harding KG, Williams RJ.
Computer assisted assessment of wound appearance using digital imaging.
Annu Reports Res React Institute, Kyoto Univ. 2001;3:2595–2597. doi:
https://doi.org/10.1109/IEMBS.2001.1017312

14. Oduncu H, Hoppe A, Clark M, Williams RJ, Harding KG. Analysis of skin
wound images using digital color image processing: a preliminary communi-
cation. Int J Low Extrem Wounds. 2004;3(3):151-156. https://doi.org/10.
1177/1534734604268842.

15. Mukherjee R, Manohar DD, Das DK, Achar A, Mitra A, Chakraborty C.
Automated tissue classification framework for reproducible chronic wound
assessment. Biomed Res Int. 2014;2014:1-9. https://doi.org/10.
1155/2014/851582.

16. Kolesnik M, Fexa A. How robust is the SVM wound segmentation? Proc
7th Nord Signal Process Symp NORSIG 2006; 2007; Rejkjavik. (Section 4):
:50-53. https://doi.org/10.1109/NORSIG.2006.275274.

17. Lu H, Li B, Zhu J, et al. Wound intensity correction and segmentation with
convolutional neural networks. Concurr Comput Pract Exp. 2017;29(6):
1-10. https://doi.org/10.1002/cpe.3927.

18. Kolesnik M, Fexa A. Multi-dimensional color histograms for segmentation
of wounds in images. In: Kamel M, Campilho A, eds. Image Analysis and
Recognition. Berlin, Heidelberg: Springer Berlin Heidelberg; 2005:
1014-1022.

19. Yang G, Li H, Zhang L, Cao Y. Research on a skin color detection algo-
rithm based on self-adaptive skin color model. Int Conf Commun Intell Inf
Secur. Vol 2010; Nanning, Guangxi Province, China. 2010:266-270. https://
doi.org/10.1109/ICCIIS.2010.67.

20. Gaur A, Sunkara R, Noel A, Raj J, Celik T. Efficient wound measurements
using RGB and depth images. Int J Biomed Eng Technol. 2015;18(4):
333-358. https://doi.org/10.1504/IJBET.2015.071009.

21. Plassmann P, Jones BF, Ring EFJ. A structured light system for measuring
wounds. Photogramm Rec. 1995;15(86):197-204. https://doi.org/10.
1111/0031-868X.00025.

22. Carfagni M, Furferi R, Governi L, Servi M, Uccheddu F, Volpe Y. On the
performance of the intel SR300 depth camera: metrological and critical char-
acterization. IEEE Sens J. 2017;17(14):4508-4519. https://doi.org/10.1109/
JSEN.2017.2703829.

23. Schops T, Sattler T, Hane C, Pollefeys M. 3D modeling on the go: interac-
tive 3D reconstruction of large-scale scenes on mobile devices. Proc – 2015
Int Conf 3D Vision, 3DV 2015; Lyon. 2015:291-299. https://doi.org/10.
1109/3DV.2015.40.

How to cite this article: Shi RB, Qiu J, Maida V.
Towards algorithm-enabled home wound monitoring
with smartphone photography: A hue-saturation-value
colour space thresholding technique for wound con-
tent tracking. Int Wound J. 2019;16:211–218. https://
doi.org/10.1111/iwj.13011

218 SHI ET AL.

https://orcid.org/0000-0001-5690-2394
https://orcid.org/0000-0001-5690-2394
https://doi.org/10.1111/j.1524-475X.2006.00176.x
https://doi.org/10.1111/j.1524-475X.2006.00176.x
https://doi.org/10.1258/135763306777978407
https://doi.org/10.1258/135763306777978407
https://doi.org/10.1001/archderm.141.2.254
https://doi.org/10.1097/01.ASW.0000358638.38161.6b
https://doi.org/10.1109/MIAR.2001.930300
https://doi.org/10.1109/MIAR.2001.930300
https://doi.org/10.1109/EMBC.2015.7318881
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3080766andtool=pmcentrezandrendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3080766andtool=pmcentrezandrendertype=abstract
https://doi.org/10.1002/rcs
https://doi.org/10.1002/rcs
https://doi.org/10.1109/ICPR.1988.28266
http://www.rehab.research.va.gov/jour/02/39/3/krouskop.htm
http://www.rehab.research.va.gov/jour/02/39/3/krouskop.htm
https://doi.org/10.1016/0738-081X(95)00071-M
https://doi.org/10.1016/0738-081X(95)00071-M
https://doi.org/10.1109/42.552057
https://doi.org/10.1109/IEMBS.2001.1017312
https://doi.org/10.1177/1534734604268842
https://doi.org/10.1177/1534734604268842
https://doi.org/10.1155/2014/851582
https://doi.org/10.1155/2014/851582
https://doi.org/10.1109/NORSIG.2006.275274
https://doi.org/10.1002/cpe.3927
https://doi.org/10.1109/ICCIIS.2010.67
https://doi.org/10.1109/ICCIIS.2010.67
https://doi.org/10.1504/IJBET.2015.071009
https://doi.org/10.1111/0031-868X.00025
https://doi.org/10.1111/0031-868X.00025
https://doi.org/10.1109/JSEN.2017.2703829
https://doi.org/10.1109/JSEN.2017.2703829
https://doi.org/10.1109/3DV.2015.40
https://doi.org/10.1109/3DV.2015.40
https://doi.org/10.1111/iwj.13011
https://doi.org/10.1111/iwj.13011

	 Towards algorithm-enabled home wound monitoring with smartphone photography: A hue-saturation-value colour space threshold...
	1  INTRODUCTION
	2  METHODS
	3  RESULTS
	4  DISCUSSION
	  ACKNOWLEDGEMENTS
	  CONFLICTS OF INTEREST
	  REFERENCES




