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ABSTRACT
Background: Gut microbiota composition as influenced by long-
term diet may be associated with the risk of adult chronic diseases.
Thus, establishing the relation of long-term diet, particularly starting
from early life, with adult microbiota composition would be an
important research advance.
Objective: We aimed to investigate the association of long-term
intake of energy, carbohydrate, fiber, protein, and fat from infancy
to late adolescence with microbiota composition in adulthood.
Methods: Within the prospective DOrtmund Nutritional and Anthro-
pometric Longitudinally Designed (DONALD) Study, we sampled
stool 1 or 2 times within 1 y from 128 adults (median age: 29
y). Microbiota composition was profiled by 16S ribosomal RNA
sequencing. Annual dietary records from age 1 to 18 y were retrieved.
We estimated trajectories of energy, energy-adjusted carbohydrate,
fiber, protein, and fat intake with multilevel models, producing
predicted intake at age 1 y and rates of change in intake. A
multivariate, zero-inflated, logistic-normal model was used to model
the association between intake trajectories and the composition of
158 genera in single-sampled individuals. Associations found in this
model were confirmed in double-sampled individuals using a zero-
inflated Beta regression model.
Results: Adjusting for covariates and temporal differences in
microbiota composition, long-term carbohydrate intake was asso-
ciated with 3 genera. Specifically, carbohydrate intake at age 1 y
was negatively associated with Phascolarctobacterium [coefficient
= −4.31; false discovery rate (FDR)–adjusted P = 0.006] and
positively associated with Dialister (coefficient = 3.06; FDR-
adjusted P = 0.003), and the rate of change in carbohydrate intake
was positively associated with Desulfovibrio (coefficient = 13.16;
FDR-adjusted P = 0.00039). Energy and other macronutrients were
not associated with any genus.
Conclusions: This work links long-term carbohydrate intake to
microbiota composition. Considering the associations of high
carbohydrate intake and microbiota composition with some diseases,
these findings could inform the development of gut microbiota–
targeted dietary recommendations for disease prevention. Am J
Clin Nutr 2021;113:647–656.
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Introduction
Habitual or long-term diet crucially influences the devel-

opment of several chronic diseases in adults (1). Moreover,
the role of the gut microbiota in the development of some of
these chronic diseases is becoming increasingly evident (2).
The fact that gut microbiota modulates the impact of diet on
health (3) suggests that changes in gut microbiota composition
may be one of the mechanisms underlying the relation between
long-term diet and chronic diseases. Indeed, long-term diet exerts
a profound and sustained impact on the gut microbiota (3).
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It also induces the growth and proliferation of specific gut
bacteria in order to achieve a state of gut eubiosis (4). Thus,
it is necessary to continue to explore the link between long-
term diet and microbiota composition. The relation between
long-term diet and the highly interacting members of the gut
microbiota is exceptionally complex. Therefore, pinpointing the
nature of the relation of long-term diet with individual bacterial
abundances could provide additional and important insights. This
might reveal tractable interactions between diet and gut bacteria,
both in terms of bacteria-specific metabolism and identifying the
specific bacteria that might potentially respond best to tailored
dietary alterations.

Evidently, the nutrient composition of diets primarily drives
their relations with gut microbiota composition (5, 6). While food
and dietary pattern approaches acknowledge the synergistic effect
of nutrients and foods with a matrix, exploring singular nutrients,
especially in longitudinal studies, will enhance our understanding
of diet–microbiota relations (4). Indeed, a large and growing
body of epidemiological evidence has revealed the significant
impact of macronutrient intake on microbiota composition (5–
9). The 3 macronutrients—carbohydrates (including fibers),
proteins, and fat—may reach the gut microbiota after escaping
primary digestion due to intake exceeding the rate of digestion,
inherent structural complexities, and inability of human enzymes
to metabolize them (10). Since macronutrients differently
influence microbiota composition and different microbes have
different metabolic capabilities (11), additional information on
the independent associations of macronutrients with microbiota
composition is required.

While the relation of long-term macronutrient intake in adult-
hood with adult microbiota composition is well documented (12–
14), there is insufficient evidence on the impact of long-term diet,
particularly starting early in life on adult microbiota composition.
Such an investigation would be vital since the association of diet
with gut microbiota composition appears to be life-stage depen-
dent (5). Exploring long-term diet over the life stages requires
repeated dietary assessments. A variable measured repeatedly
over time can be comprehensively modeled as individual growth
trajectories, producing potentially interesting dimensions of
initial status or starting point and rates of change (15). Evaluating
the relation between individuals’ initial status and rates of change
over time in macronutrient intake and microbiota composition
would improve our understanding of the impact of macronutrient
intake on later microbiota composition. Although the core gut
microbiota appear to be temporally stable, large variation in
the less-abundant microbes, even in a short period, has been
reported (16). In adults, evidence of this temporal variation
ranges from moderate (17) to considerable (18). Unsurprisingly,
temporal variations in gut microbiota composition correlate with
dietary changes (19, 20). Aside from 1 study (14), previous
studies linking long-term macronutrient intake with microbiota
composition in adults have understandably been restricted to
gut microbiota composition profiling at a single time point
(12, 13). Repeated measurements of microbiota composition
will additionally control for intraindividual differences, thereby
strengthening long-term diet–gut microbiota associations.

The sufficiently large number of dietary assessments of the
participants of the DOrtmund Nutritional and Anthropometric
Longitudinally Designed (DONALD) Study across the life
course and tracking of these individuals into adulthood (21)

present an opportunity to explore long-term diet–gut microbiota
associations. To this end, we analyzed annual 3-d weighed
dietary records from infancy to late adolescence in the DONALD
study in order to capture long-term intake of energy and 4
major macronutrients—carbohydrate, fiber, protein, and fat—
as individual growth trajectories, and examine their prospective
associations with microbiota composition in adulthood, taking
into account covariates and temporal differences in microbiota
composition.

Methods

Study population

Commencing in 1985, the DONALD study is an ongoing, open
prospective cohort study of individuals living in the German town
of Dortmund and surrounding cities. The DONALD study uses a
convenient sampling scheme. Aside from the higher educational
attainment and higher socioeconomic status of DONALD study
participants’ parents, there are no major deviations from the
reference German population (21). The main aim of this study
is to evaluate the relations between dietary intake, metabolism,
and growth from infancy to adulthood. Participants’ examinations
included annually repeated anthropometric measurements and
3-d weighed dietary records. Early-life factors such as birth
weight and delivery mode (cesarean compared with vaginal
delivery) and socioeconomic status of study participants’ parents
were extracted from maternal delivery records and parental
interviews. The DONALD study was conducted in accordance
with the Declaration of Helsinki and was approved by the Ethics
Committee of the University of Bonn (approval number 098/06).
Written informed consent was obtained from the parents or legal
guardians of the participants in childhood and later on from the
participants themselves. Details of the recruitment and follow-up
in the DONALD study are presented elsewhere (21).

Study design

This current microbiota composition–focused study is nested
within the DONALD study. All study participants who were
adults, aged ≥18 y, were eligible. Three hundred stool-sampling
kits and questionnaires on history of gastrointestinal conditions
and intake of antibiotics and probiotics within 6 mo were
sent out by mail in 2 phases within 1 y. The participants
were randomly selected. For the individuals who provided stool
samples, archived self-reported dietary data and other covariates
were retrieved. The study population’s flow chart is shown in
Supplemental Figure 1.

Assessment of dietary intake

In the DONALD study, dietary intake was assessed annually
using 3-d weighed dietary records on 3 consecutive days.
Dietary records were coded and linked to the continuously
updated in-house food-composition database, LEBTAB, in order
to calculate the intake of energy and nutrients (21). Individual
means of daily energy (kcal/d) and carbohydrate, fiber, protein,
and fat (g/d) intakes were calculated. Since we planned to
model trajectories of intake and nonlinear trajectory modeling
typically requires >2 assessment points per individual (15, 22),
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an additional inclusion criterion in the current study was the
availability of ≥3 repeated dietary records between age 1 and
18 y.

Stool sampling, DNA extraction, and 16S ribosomal RNA
sequencing of stool samples

Stool sampling and DNA extraction.

Participants provided stool samples 1 or 2 times within 1
y. Samples were collected in participants’ homes into tubes
containing RNAlater (Qiagen). The stability of gut microbiota
composition for 7 d at room temperature in RNAlater is
documented (23). Within 24 h of collection, samples were sent
to the German Center for Neurodegenerative Diseases Biobank.
On arrival at the biobank, samples were homogenized, placed
into aliquots, and stored at −80◦C. Bacterial genomic DNA was
extracted from 0.25 g of stool sample using the repeat bead-
beating plus column protocol as described by Yu and Morrison
(24), in combination with the QIAamp Fast DNA Stool Mini Kit
and protocol (Qiagen) with slight modifications. Details of the
DNA extraction can be found in the Supplemental Methods. The
DNA samples were stored at −80◦C until 16S ribosomal RNA
(rRNA) sequencing.

16S rRNA sequencing of stool samples.

Following DNA extraction, the V3-V4 regions of the 16S
rRNA gene were amplified through 30 cycles of PCR reactions on
the template DNA using the primer pair 5′-TCGT CGGC AGCG
TCAG ATGT GTAT AAGA GACA GCCT ACGG GNGG
CWGC AG-3′ and 5′-GTCT CGTG GGCT CGGA GATG
TGTA TAAG AGAC AGGA CTAC HVGG GTAT CTAA TCC-
3′, according to the 16S Metagenomic Sequencing preparation
protocol for Illumina MiSeq and as previously described by
Fouhy et al. (25). Indexed products were visualized using
gel electrophoresis and cleaned with AMPure XP magnetic-
based beads prior to DNA quantification using the Qubit
(BioSciences), along with the Qubit High Sensitivity DNA
kit (Life Technologies). Samples were pooled at equimolar
concentrations, and high-throughput sequencing was completed
on the Illumina MiSeq platform in the Teagasc sequencing
facility using a 2 × 300-cycle kit, following standard Illumina
sequencing protocols.

Assessment of other covariates.

Demographic information such as sex, early-life data such
as birth weight and length, and delivery mode was obtained
from maternal delivery records, while breastfeeding duration
and maternal and socioeconomic variables such as maternal
education and occupation were collected by parental interviews.
For the current study, we considered maternal variables such as
maternal BMI from the first visit. Anthropometric measurements
were conducted annually at the study center and BMI trajectories
from age 4 to 18 y were computed, as previously reported (26).
Physical activity was assessed using standardized questionnaires
and the mean of physical activity [metabolic equivalent of task
hours (MET-h)/week] between age 4 and 18 y was computed.
Lifestyle factors from age 18 y, such as alcohol consumption and

smoking, as well as the history of gastrointestinal conditions and
intake of antibiotics and probiotics around stool sampling were
obtained by questionnaires.

Statistical analyses

Basic characteristics.

Basic characteristics of the study sample are presented as
medians with 25th and 75th percentiles or as counts (with
percentages) as appropriate. Comparisons of basic characteristics
between individuals who provided 1 stool sample (single-
sampled individuals) and 2 stool samples (double-sampled
individuals) were explored using the Mann–Whitney U and
the chi-square tests for continuous and categorical variables,
respectively. These analyses were conducted using SAS 9.4
(SAS®; SAS Institute).

Modeling of trajectories of intake of energy, carbohydrate,
fiber, protein, and fat.

Energy-adjusted macronutrient intakes were computed using
the residual method with the energy intake as the independent
variable and the absolute macronutrient intake as dependent
variables. To model actual macronutrient intake, the residuals
from the regression models were standardized to their age-
specific predicted macronutrient value at the mean energy intake
(27).

Energy and macronutrient intake trajectories were modeled
using multilevel models with level-1 (age) and level-2 (individ-
ual) random effects, such that each individual had his/her own
trajectories (random intercepts and slopes or rates of change over
time). All multilevel models were fitted with PROC MIXED in
SAS 9.4. The “between/within” method was used to compute
the denominator degrees of freedom for tests of fixed effects
and SE variance-covariance structure. To model initial intake,
we centered age at the minimum age of 1 y. For the trajectory
of intake for each variable—energy, carbohydrate, fiber, protein,
and fat—we considered 2 age models: linear and quadratic. We
examined the optimal age models by comparing model fits using
the corrected Akaike’s Information Criterion. For the optimal
age models, we included sex if P < 0.05. The current intercepts
were the predicted intake at age 1 y, and the linear and quadratic
slope(s) (rates of change) were the amount of increase/decrease in
intake for each unit of increase in age and age-squared, respec-
tively. These dietary trajectory variables, intake at age 1 y and
rates of change in intake, were used for the subsequent analyses.

16S rRNA sequencing data preprocessing.

The resulting 300-bp paired-end reads from the MiSeq analysis
were assembled using FLASH (fast length adjustment of short
reads to improve genome assemblies). QIIME (Quantitative
Insights into Microbial Ecology; version 1.8.0) was used for
quality filtering of paired-end reads, which is based on a quality
score of >25 and the removal of mismatching barcodes. Prior
to the analysis as part of the quality-control process, sequences
that produced <40,000 reads were manually removed. Open
reference operational taxonomic units were formed from the
sequences at 97% similarity. Finally, using the R package
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Phyloseq, operational taxonomic units were assigned to 341
genera and their relative abundances were estimated.

Multivariable linear regression.

For the regression analyses of the association of trajectories
of energy and macronutrient intake with gut bacterial taxa,
we considered 158 adequately abundant taxa using the criteria
of relative abundance ≥0.2% in at least 10% of the samples
by Wu et al. (12). Of these 158 taxa, Bacteroides, Blautia,
and Lachnoclostridium were present in all participants. These
158 genera and their variability are presented in Supplemental
Table 1. We adopted a 2-step statistical analysis in order to fit
models that are appropriate for the number of assessments of the
dependent variables (taxa) and to follow the recommendation of
the need for multiple statistical methods to identify associations
between diet and microbial abundances (28).

In the first step, we examined associations of intake at age 1
y and rates of change in intake with the relative abundance of
the 158 genera in the single-sampled individuals. We regressed
the relative abundance of the 158 genera simultaneously on these
dietary intake variables by using the multivariate zero-inflated
logistic-normal (MZILN) model (29). The MZILN handles
compositional structure and high dimensionality of microbiota
data. It is appropriate for modeling microbial taxa data as
dependent variables. Its ability to account for the complex
correlation among simultaneously modeled taxa is an advantage
over analyzing taxa one by one with multiple testing correction.
The model automatically takes the last taxon as the reference.
Thus, the last genus out of the 158 genera, Succiniclasticum,
was used as the first reference genus. To ensure valid results,
we randomly selected 2 new reference genera, Acinetobacter and
Prevotellaceae UCG-001, and reran our analysis. The dietary
variable–genus associations that were observed across 2 or 3
reference taxa were considered consistent and hence selected.
The average of the coefficients was reported. For this analysis,
model 1 represents associations of each intake trajectory (intake
at age 1 y and their rates of change) with each genus. Model 2 (full
multivariable-adjusted) comprises all dietary intake variables,
sex, an indicator variable for whether an individual has a sibling
in the study sample (reference category) or not, birth weight
and length, maternal BMI, maternal gestational weight, maternal
education and occupation, cesarean (compared with vaginal)
delivery, first-born (compared with other) birth order, smoking
household, alcohol consumption, smoking, physical activity,
BMI trajectory, and age at fecal sampling. All dietary variables
and continuous covariates were standardized by subtracting their
means and dividing them over their standard deviations, and all
categorical variables were dichotomized. In sensitivity analysis,
we fitted the same models excluding participants who reported
gastrointestinal disease or took antibiotics or probiotics within 6
mo and compared the results of these models.

In the second step, associations with P values <0.05 in the
above full multivariable-adjusted model were validated in the
double-sampled individuals. For this analysis, we used a zero-
inflated Beta regression model with random effects (ZIBR) model
(30). Like the MZILN, the ZIBR also handles the compositional
and zero-inflated nature of the microbiota data. Importantly, the
ZIBR includes random effects that take the correlation of the
repeated sampling of microbiota in the same individual into

account. The model produces a joint test of association (P) for its
logistic and Beta components. The estimates of these components
were interpreted as effects of a dietary variable on the presence
of a genus and on the level of relative abundance given the
presence of the genus, respectively. For this analysis, we modeled
all dietary variables and all covariates that were found to be
different (P < 0.05) between single-sampled and double-sampled
individuals. Each genus was analyzed one by one. When we
tested the association of a dietary variable with >1 genus, we
corrected for multiple testing by selecting an associated genus at
a false discovery rate (FDR)–adjusted P < 0.05. For the whole
dataset, missing covariate values were multiply imputed to give
10 imputed datasets and covariate values for each individual
were computed as averages across imputations. All multivariable
regression analyses were performed in R (version 3.6.2).

Results

Description of study population

Table 1 presents the characteristics of the 128 individuals
in the current study. The median age of the participants at
the time of stool sampling was 29 y. Fifty-one individuals
provided 1 sample (single-sampled) and 77 individuals provided
2 samples (double-sampled) at an average of 280 d apart. There
was a median of 16 dietary records per individual. One-third
of the study sample completed all 18 annual dietary intake
records. More than half (60%) were females. Furthermore, the
birth weight was ∼3.5 kg. The majority of the mothers (90%)
were highly educated. They had ∼45 MET-h/wk of physical
activity. Approximately 8% followed the overweight trajectory.
In adulthood, most of the participants smoked and consumed
alcohol. Except for history of gastrointestinal conditions and use
of antibiotics or probiotics within 6 mo of sampling, we found no
differences in the median or proportion of other characteristics
between the single-sampled and double-sampled individuals.
The median energy intake and energy-adjusted carbohydrate,
fiber, protein, and fat intakes at age 1 year and 18 y were
769 and 2056 kcal/d, 100 and 281 g/d, 9 and 19 g/d, 25 and
73 g/d, and 31 and 79 g/d, respectively (Supplemental Table
2). As shown in Supplemental Figure 2A–E, intake generally
increased over time, with a few dietary variables appearing
to increase nonlinearly. Furthermore, interindividual variation
in intake appeared smaller at age 1 y as compared with age
18 y.

Modeling intake of energy and macronutrient trajectories

In the entire study sample (n = 128), energy and all
macronutrients except for fiber showed quadratic trajectories
with age—that is, the quadratic age models performed better
than the linear age models according to the corrected Akaike’s
Information Criterion. Since we observed P < 0.05 for sex in
the energy, carbohydrate, and fat models, it was included as a
covariate in these models. Thus, energy, carbohydrate, and fat
were fitted as sex-conditioned quadratic age models, protein as an
unconditional quadratic age model, and fiber as an unconditional
linear age model. Consequently, each of energy, carbohydrate,
protein, and fat had 3 dietary intake trajectory variables: intake
at age 1 y and linear and quadratic rates of change; and fiber
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TABLE 1 Basic characteristics of the study population1

n Values
Single-sampled

(n = 51)
Double-sampled

(n = 77) P

Dietary intake
Annual dietary records 128 16 (11, 18)2 16 (10, 18) 16 (12, 18) 0.79
Complete annual dietary records, n (%) 128 39 (30.47) 15 (29.41) 24 (31.17) 0.83

Demographic variables
Female, n (%) 128 82 (64.06) 28 (54.90) 54 (70.13) 0.09
Age, y 128 29.3 (23.7, 32.8) 29.85 (23.96, 32.99) 27.99 (23.43, 32.18) 0.32

Early-life, socioeconomic, and maternal variables
Birth weight, g 115 3460 (3150, 3730) 3425 (3080, 3630) 3480 (3185, 3745) 0.35
Birth length, cm 115 52 (50, 53) 52 (50, 53) 52 (51, 53.5) 0.68
Cesarean delivery, n (%) 25 16 (64) 8 (61.54) 8 (66.67) 0.79
First-born child, n (%) 115 63 (58.26) 26 (55.32) 41 (60.29) 0.79
Siblings, n (%) 128 26 (20.31) 8 (15.69) 18 (23.38) 0.29
Breastfeeding duration, wk 115 26 (8, 41) 28 (8, 42) 26 (7, 41) 0.94
Maternal BMI, kg/m2 112 22.61 (20.4, 26.34) 22.26 (20.34, 26.34) 23.12 (20.5, 26.34) 0.92
Maternal gestational weight gain, kg 115 13 (10, 16) 13 (10, 16) 13 (10.5, 15) 0.67
Maternal education, high, n (%) 92 83 (90.21) 34 (91.89) 49 (89) 0.96
Maternal employment, employed, n (%) 92 26 (28.26) 8 (21.62) 18 (32.73) 0.42
Smoking household, n (%) 93 28 (30.11) 13 (36.12) 15 (26.31) 0.53
Overweight trajectory, n (%) 115 9 (7.83) 4 (8.51) 5 (7.35) 0.85
Physical activity, MET-h/wk 120 44.98 (28.94, 60.85) 53.14 (30.6, 71.69) 43.10 (28.73, 55.89) 0.14

Lifestyle factors in adulthood, n (%)
Current smokers 90 78 (86.67) 30 (81.08) 48 (90.57) 0.35
Current alcohol consumers 96 80 (83.33) 19 (92.31) 61 (77.19) 0.06
GIT condition 103 19 (18.45) 1 (3.85) 18 (23.38) 0.04
Antibiotics use 103 29 (28.16) 2 (7.69) 27 (35.06) <0.001
Probiotics intake 103 35 (33.98) 2 (7.69) 33 (42.86) <0.001

1n = 128. Age in double-sampled subsets represents the mean age of the 2 sampling occasions; P values were obtained by the Mann–Whitney U test and
chi-square tests for continuous and categorical variables, respectively; n of covariates are <128 due to missing data; missing covariate values were imputed in
the regression analysis. GIT, gastrointestinal; MET-h, metabolic equivalent of task hours.

2Median; 25th, 75th percentile in parentheses (all such values).

had 2 dietary intake variables: intake at age 1 y and linear rate
of change.

Multivariable linear regression

Figure 1 shows the coefficient estimates of associations
between each set of dietary intake trajectories and genus-
level relative abundance of 158 genera with P < 0.05 in the
single-sampled individuals (n = 51), accounting for inter-taxa
correlation. Energy intake at age 1 y was associated with 23
genera (negatively with 16 and positively with 7), its linear rate of
change was not associated with any genera, and its quadratic rate
of change was associated with 7 genera (negatively with 3 and
positively with 4). Carbohydrate intake at age 1 y was associated
with 11 genera (negatively with 7 and positively with 4), its linear
rate of change was associated with 8 genera (negatively with
5 and positively with 3), and its quadratic rate of change was
associated with 5 genera (negatively with 4 and positively with 1).
Fiber intake at age 1 y was associated with 13 genera (negatively
with 7 and positively with 6) and its rate of change was associated
with 12 genera (negatively with 8 and positively with 4). Protein
intake at age 1 y was associated with 5 genera (negatively with 1
and positively with 4). The linear rate of change in protein intake
was associated with 20 genera (negatively with 10 and positively
with 10), and the quadratic rate of change was associated with
6 genera (negatively with 4 and positively with 2). Finally, fat

intake at age 1 y was positively associated with 7 genera, its linear
rate of change was associated with 9 genera (negatively with 5
and positively with 4), and its quadratic rate of change was not
found to be associated with any genus.

Figure 2 shows the coefficient estimates for the associations
with P < 0.05 in the full multivariable-adjusted models, fol-
lowing adjustment for covariates. These include the association
of energy intake at age 1 y with 2 genera, negative with
Lachnospiraceae NC2004 group and positive with Prevotella
7, as well as the negative association of quadratic rate of
change in energy intake with NB1-n_uncultured organism.
Furthermore, carbohydrate intake at age 1 y was negatively
associated with Phascolarctobacterium and Thalassospira and
positively associated with Dialister. Further, the linear rate
of change in carbohydrate intake was negatively associated
with Gastranaerophilales_uncultured bacterium and Faecali-
talea and positively associated with Desulfovibrio. In addi-
tion, fiber intake at age 1 y was negatively associated with
Akkermansia, NB1-n_uncultured organism, and Megamonas
and the linear rate of change in fiber intake was positively
associated with Phascolarctobacterium and Bacteroidales S24–
7 group_uncultured bacterium. Furthermore, the linear rate of
change in protein intake was negatively associated with Ru-
minococcaceae UCG-014 and uncultured Mollicutes bacterium
and positively associated with Erysipelatoclostridium. Finally, fat
intake at age 1 y was positively associated with Bacteroidales
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FIGURE 1 Heatmap showing associations between each set of dietary intake trajectory variables and the relative abundance of bacterial genera at P < 0.05
in single-sampled individuals (n = 51). Associations for each set of dietary intake trajectory variables with the 158 taxa at P < 0.05. Values represent beta
coefficients. Coefficients were obtained by using a multivariate zero-inflated logistic-normal. Positive and negative associations are shown in shades of green
and red, respectively (the darker the color, the higher the absolute value of the coefficients).

S24–7 group_uncultured bacterium. These associations were
not found to be altered either in direction or substantially
in magnitude after excluding 3 participants who reported
gastrointestinal disease and/or taking antibiotics or probiotics
within 6 mo of fecal sampling, suggesting that these results were
robust.

Table 2 presents the coefficients, P values, and FDR-adjusted
P values of the above 18 dietary intake–genera associations
that were validated in the double-sampled individuals (n = 77)
using the ZIBR model. This model included all dietary intake
variables and history of gastrointestinal disease and/or taking
antibiotics or probiotics within 6 mo since these were the only
covariates that were found to be different between the single-
and double-sampled subsets (P < 0.05). Overall, 3 genera—
Phascolarctobacterium, Dialister, and Desulfovibrio—were
associated with a dietary intake variable at an FDR-adjusted
P < 0.05. Given the presence of these bacteria, the relative
abundance of Phascolarctobacterium decreased (coefficient
= −4.31, FDR-adjusted P = 0.006) and Dialister increased
(coefficient = 3.06, FDR-adjusted P = 0.003) as the carbohydrate
intake at age 1 y increased. Additionally, the relative abundance
of Desulfovibrio increased (coefficient = 13.16, FDR-adjusted

P = 0.00039) as the linear rate of change in carbohydrate intake
increased.

Discussion
The aim of this investigation among 128 DONALD study

participants was to examine the relation of long-term intakes
of energy, carbohydrate, fiber, protein, and fat from infancy to
late adolescence with gut microbiota composition in adulthood.
We estimated energy and macronutrients intake from annual
3-d dietary records from age 1 to 18 y and modeled long-
term intake as intake trajectories (intake at age 1 y and rates
of change in intake representing the temporal sequence of
intake). The microbiota composition was profiled by 16S rRNA
sequencing and relative abundance was estimated. Independent
of several covariates and inter- and intraindividual differences
in microbiota composition, we observed that 1) carbohydrate
intake at age 1 y was negatively associated with the relative
abundance of Phascolarctobacterium and positively associated
with the relative abundance of Dialister and 2) the linear rate of
change in carbohydrate intake was positively associated with the
relative abundance of Desulfovibrio.
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FIGURE 2 Heatmap showing full multivariable-adjusted associations of all dietary intake trajectory variables and relative abundance of bacterial genera at
P < 0.05 in single-sampled individuals (n = 51). Associations at P < 0.05. Values represent B-coefficients. Coefficients were obtained by using a multivariate
zero-inflated logistic-normal. Positive and negative associations are shown in shades of green and red, respectively (the darker the color, the higher the absolute
value of the coefficients)

To our knowledge, no study has yet investigated the association
of long-term diet from infancy to late adolescence with adult
microbiota composition. The high quality of the longitudinal
dietary data from the DONALD study makes this unique inves-
tigation possible. Consistent with our findings is a prospective

study in 22 children, aged 4 to 8 y, that showed that a dietary
pattern highly loaded with carbohydrate-rich grains and starchy
foods was inversely associated with Phascolarctobacterium (31).
Considering that this study profiled microbiota in childhood (31),
it is possible that the relation that we observed in our study

TABLE 2 Association of long-term energy and macronutrient intake with relative abundance of bacterial genera in double-sampled individuals1

Logistic regression B-regression

Coefficient P Coefficient P Joint P FDR-adjusted P

Energy intake at age 1 y
Lachnospiraceae NC2004 group − 1.07 0.63 − 0.17 0.58 0.77 0.77
Prevotella 7 − 0.58 0.36 − 0.37 0.30 0.38 0.76

Quadratic rate of change in energy intake
NB1-n_uncultured organism − 0.52 0.62 − 2.05 0.05 0.13

Carbohydrate intake at age 1 y
Phascolarctobacterium 14.91 0.04 − 4.31 0.01 0.004 0.006
Thalassospira 2.24 0.70 -0.78 0.56 0.78 0.78
Dialister − 1534.76 0.001 3.06 0.09 0.001 0.003

Linear rate of change in carbohydrate intake
Gastranaerophilales_uncultured bacterium − 17.08 0.09 2.08 0.64 0.21 0.21
Faecalitalea − 0.95 0.95 8.43 0.11 0.08 0.12
Desulfovibrio 8.88 0.55 13.16 0.000028 0.00013 0.00039

Fiber intake at age 1 y
Akkermansia − 0.43 0.20 − 0.08 0.45 0.34 0.78
NB1-n_uncultured organism − 0.21 0.46 − 0.04 0.86 0.75 0.78
Megamonas 0.11 0.62 0.06 0.61 0.78 0.78

Linear rate of change in fiber intake
Phascolarctobacterium − 0.40 0.56 − 0.12 0.48 0.66 0.66
Bacteroidales S24–7 group_uncultured bacterium − 0.50 0.19 0.14 0.34 0.27 0.54

Linear rate of change in protein intake
Erysipelatoclostridium 0.89 0.91 − 0.76 0.56 0.03 0.10
Ruminococcaceae UCG-014 − 24.81 1.00 0.58 0.70 0.93 1.00
Uncultured Mollicutes bacterium − 3.25 0.38 − 0.56 0.71 1.00 1.00

Fat intake at age 1 y
Bacteroidales S24 group_uncultured bacterium 0.71 0.87 − 2.38 0.15 0.35

1n = 77. Coefficients were obtained by using zero-inflated Beta regression model with random-effects model. A few coefficients of the logistic model
may be biased due to the small proportion of individuals without these genera. FDR, false discovery rate.
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commenced early on in life. Additionally, cross-sectional studies
in 43 children, aged 7 to 9 y (32), and 561 adults, aged 30–70 y
(33), observed that carbohydrate intake was positively associated
with Dialister. These findings and ours suggest that the impact
on Dialister may be a consistent feature of carbohydrate intake
regardless of age. Moreover, our result for Desulfovibrio is in
line with studies in adults showing the positive association of
long-term intake of carbohydrates and simple sugars with an
enterotype that includes Desulfovibrio (12) and an association
between carbohydrate intake and Desulfovibrio (14).

A possible explanation for the association of carbohydrate
intake at age 1 y with the abundance of Phascolarctobacterium
and Dialister in adulthood is that high carbohydrate intake in
infancy influences the assembly, maturation, and maintenance of
gut microbiota composition via alteration of local and systemic
tissue structure and functions such as the innate and adaptive
immune system (34). This critical timing of high intake may
set the foundation for the abundance of these bacteria over the
life course. This is supported by the fact that the postweaning
diet is decisive for gut microbiota development, succession, and
consolidation that persist into adulthood (35). In addition, there
is evidence of early-life nutritional programming of adult health
status through variation in the quantity of nutrient intake during
the first year of life (36). Our study thus suggests that the gut
microbiota composition may be one of the adult health parame-
ters that is programmed by early-life nutrition, specifically car-
bohydrate intake. Remarkably, Phascolarctobacterium (family:
Acidaminococcaceae; class: Negativicutes; phylum: Firmicutes)
and Dialister (family: Veillonellaceae; class: Negativicutes;
phylum: Firmicutes) utilize carbohydrate-derived succinate as a
carbon source to generate propionate (37). Furthermore, Phas-
colarctobacterium, Dialister, and other bacteria exhibit lottery-
like mutual exclusion, such that 1 bacterium occupies the entirety
of the community’s abundance quota and the other members
are excluded (38). Hence, the intake of a high-carbohydrate
substrate might have resulted in a substantial increase in the
abundance of Dialister, depleting the succinate nutrient pool, and
subsequently inhibiting the growth of Phascolarctobacterium.
This may suggest a complete reliance of Phascolarctobacterium
on succinate and a low ability to shift to using other carbohydrate
substrates. Additionally, it is possible that the metabolism
of carbohydrate by Dialister creates a metabolic environment
that directly eradicates Phascolarctobacterium. Interestingly,
contrasting associations of Phascolarctobacterium and Dialister
with some conditions such as successful weight loss (39) and
insulin sensitivity (40) have been reported. This suggests that
the current findings of Phascolarctobacterium and Dialister
with carbohydrate intake are unlikely to be spurious. Moderate
carbohydrate intake at this age in infancy could influence the
relative abundance of these bacteria in adulthood. Desulfovibrio
(family: Desulfovibrionaceae; class: Deltaproteobacteria; phy-
lum: Proteobacteria), on the other hand, is the most abundant
sulfate-reducing bacterium in humans (41). Importantly, the
ability of Desulfovibrio to utilize many carbohydrate substrates
such as fructose and glucose is also documented (42). Thus, an
explanation for our finding of the positive association of the linear
rate of change in carbohydrate intake with Desulfovibrio is that
the persistently high carbohydrate intake afforded Desulfovibrio
a continuous supply of substrates and subsequent increase in
abundance.

Our data only show 3 temporally stable, Phascolarctobac-
terium, Dialister, and Desulfovibrio associations with long-term
carbohydrate intake. These 3 bacterial genera may be promising
biomarkers of carbohydrate intake. Our results are in agreement
with the notion that carbohydrates, among all macronutrients, are
the preferred energy source for the gut microbiota. High carbo-
hydrate intake driving the depletion of Phascolarctobacterium
and the increase in Dialister and Desulfovibrio suggests that
carbohydrate intake, in particular, drives changes in microbiota
composition, as reported in a recent review (43). This finding
is also in support of a large study that showed that the intake
of carbohydrate is the largest dietary predictor of gut bacterial
diversity (44). The association of carbohydrate intake with these
3 genera may have been influenced by the variation of the
composition of these genera in the study sample. However, since
many genera with higher variance, which includes the core gut
microbiota, were not associated with either carbohydrate intake
or other dietary intake variables, it appears that our findings are
unlikely to be influenced by variation in the composition of the
bacteria. In addition, the fact that we did not find associations
of diet with any of our core gut microbiota (Bacteroides,
Blautia, and Lachnoclostridium) after covariate adjustment is
in line with a study showing that the core microbiota are
resilient to temporary extrinsic factors that include diet (45).
In addition, because Bacteroides and Blautia are among the
core genera reported in a multicenter large-scale study (46) and
observed in our study suggests that microbiota composition in
the current study is well estimated. Some associations reported
by others (12–14) that could not be confirmed by this study
perhaps indicate the versatility of long-term diet–microbiota
associations.

Given that the associations of carbohydrate intake with
Phascolarctobacterium, Dialister, and Desulfovibrio were inde-
pendent of fiber intake and we did not observe an association
of fiber intake with these genera, it seems plausible that
the association of carbohydrate intake with these bacteria is
specific to simple carbohydrates and starch. These results by no
means imply that the intake of fiber or its subtypes does not
influence microbiota composition; our analyses only indicated
that long-term fiber intake was not associated with microbiota
composition in adult participants in the current study. High
simple carbohydrate and starch intakes are associated with
unfavorable metabolic profiles, inflammatory bowel diseases,
obesity, type 2 diabetes, cardiovascular disease, and cancer
(43). Although it is common that a gut bacterium associated
with health in one setting could be associated with disease in
another context, Phascolarctobacterium seems to be generally
health promoting while Dialister and Desulfovibrio are more
commonly associated with disease conditions. Specifically, a
high abundance of Phascolarctobacterium was associated with
gastrointestinal health (47), high insulin sensitivity (39), and
a reduction in systemic inflammation (48). Further, a high
abundance of Dialister was associated with impaired glucose
tolerance (49), low insulin sensitivity (40), type 2 diabetes (50),
and gastric cancer (51). Desulfovibrio abundance was increased
in individuals with inflammatory bowel diseases (52, 53) and
type 2 diabetes (50, 54). Therefore, how the abundance of
these bacteria might influence the association between high
carbohydrate intake and the aforementioned conditions warrants
further research. Maternal BMI and participants’ smoking status
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were related to most bacteria taxa in our multivariate analysis.
This is in line with the association of maternal obesity status and
the offspring’s microbiota composition (55) and the association
between smoking and microbiota composition (56). Dietary
guidelines and recommendations that limit the amount of foods
high in sugar and added-sugar consumption and that encourage
a balanced diet as well as age-appropriate guidance exist in most
countries. Therefore, it is imperative that parents and guardians
help and encourage their children, starting from infancy, to adhere
to these recommendations.

Some important strengths of this study are its prospective
design, the large number (an average of 16) of repeated dietary
assessments, the double sampling of microbiota composition in
most of the study sample, and the deployment of 2 comple-
mentary statistical methods. These strengths helped us reach
reasonable conclusions. In addition, to our knowledge, this is the
first study to report on the relation of long-term carbohydrate
intake from infancy to late adolescence with adult microbiota
composition. Furthermore, we included a number of potential
confounders, which was not considered in previous studies.
We also controlled for inter-taxa correlations and adjusted for
multiple testing. Nevertheless, our study comes with some
potential limitations. First, it is an observational study, so no
causality can be inferred. Second, our sample size, despite being
larger (12, 14) and comparable (13) to previous studies exploring
long-term diet–microbiota relations, is remarkably smaller than
the 1070–1730 individuals recommended for evaluating the
determinants of gut microbiota composition (46). Therefore, this
study might have missed some associations. Like every self-
reported dietary assessment, misreporting is likely to exist in
this study, particularly with parental proxies. Nonetheless, there
have been successful applications of these self-reported dietary
data to address many research questions. Further, our food-
composition table may have influenced the estimation of intake
of energy and macronutrients. Indeed, a re-evaluation of our
findings with accurate biomarkers of intake would be desirable
in the future. Moreover, this study involves a taxonomy-based
microbiota profiling of the 16S rRNA gene and the drawbacks
of taxonomy-based classification are well acknowledged. Our
taxonomic resolution up to genus level precludes inferences
to the species level. Associations of intake with species-level
compositions and functions will be addressed in follow-up work.
Participant factors such as genetics, early-life health conditions,
and other covariates across the life course could be important
unmeasured confounders. Finally, our study sample is relatively
homogeneous with respect to ethnicity, socioeconomic status,
and geographical location; thus, it is not certain to what extent
our results can be generalized beyond this group of individuals.
Larger and more heterogeneous studies are required to validate
our findings. Although the sample for this microbiota-based
study within the DONALD study was randomly selected, the
participation rate of <50% suggests that we cannot rule out
bias due to nonparticipation. Additionally, other studies should
explore the underlying mechanisms and functional relevance of
our findings.

The current study provides novel evidence regarding the
association of long-term carbohydrate intake from infancy to
late adolescence with the composition of Phascolarctobacterium,
Dialister, and Desulfovibrio in adulthood. This study gives
helpful insights and fosters further research into the relation

between long-term dietary intake at young ages and microbiota
composition later in life. Considering the associations of high
carbohydrate intake and these bacteria with some diseases,
our findings could help inform gut microbiota–targeted dietary
recommendations that would be of critical importance for health
and disease prevention.
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