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Alzheimer’s disease (AD) is characterized by accumulation
of tau and amyloid-beta in the brain, and recent evidence
suggests a correlation between associated protein aggregates
and trace elements, such as copper, iron, and zinc. In AD, a
distorted brain redox homeostasis and complexation by
amyloid-beta and hyperphosphorylated tau may alter the iso-
topic composition of essential mineral elements. Therefore,
high-precision isotopic analysis may reveal changes in the ho-
meostasis of these elements. We used inductively coupled
plasma-mass spectrometry (ICP-MS)-based techniques to
determine the total Cu, Fe, and Zn contents in the brain, as well
as their isotopic compositions in both mouse brain and serum.
Results for male transgenic tau (Line 66, L66) and amyloid/
presenilin (5XxFAD) mice were compared with those for the
corresponding age- and sex-matched wild-type control mice
(WT). Our data show that L66 brains showed significantly
higher Fe levels than did those from the corresponding WT.
Significantly less Cu, but more Zn was found in 5XxFAD brains.
We observed significantly lighter isotopic compositions of Fe
(enrichment in the lighter isotopes) in the brain and serum of
L66 mice compared with WT. For 5xFAD mice, Zn exhibited a
trend toward a lighter isotopic composition in the brain and a
heavier isotopic composition in serum compared with WT.
Neither mouse model yielded differences in the isotopic
composition of Cu. Our findings indicate significant pathology-
specific alterations of Fe and Zn brain homeostasis in mouse
models of AD. The associated changes in isotopic composition
may serve as a marker for proteinopathies underlying AD and
other types of dementia.

This article contains supporting information.
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Alzheimer’s disease (AD) is the most common cause of
dementia, accounting for about two-thirds of the currently
reported 50 million dementia cases worldwide. By 2050, about
152 million people are likely to be diagnosed with dementia.
With a current cost of about a trillion US dollars a year (ex-
pected to double by 2030) and being a major cause of death,
dementia is a growing global health concern that places a
significant burden on societies and healthcare systems.
Therefore, there is an urgent need to develop interventions
and treatments to reverse or at least slow down the progres-
sion of AD (1-3). As early and specific diagnosis is essential for
effective therapeutics, current research efforts also focus on
the discovery of biomarkers (2, 3) enabling disease detection
during early stages (4).

The pathology of AD involves the misprocessing of the
amyloid precursor protein (APP), which results in the accu-
mulation and buildup of soluble and fibrillar amyloid-beta
(AB) and other metabolites (5). Additionally, hyper-
phosphorylated tau, a microtubule-associated protein, leads to
the formation of neurofibrillary tangles, composed of a trun-
cated 100-amino acid fragment of tau (6), which can autono-
mously catalyze the conversion of normal soluble tau into tau
fibrils and tau aggregates (7). Both tau and AP aggregation
contribute to AD pathology, but hypotheses differ as to which
of these is the primary causative factor (8). Nevertheless, both
are hallmarks of AD used for the ultimate postmortem
confirmation of AD (4).

Previous observations of hot spots of certain metals along-
side tau/Af accumulation suggested that spatial or even
mechanistic correlations exist between tau/Af and certain
trace elements. Essential trace elements such as copper (Cu),
iron (Fe), and zinc (Zn) have fundamental physiological roles
in, e.g, enzymatic reactions, oxygen transport, and cellular
signaling; their homeostasis is therefore crucial for proper
functioning of the brain (9—11). Furthermore, elevated Cu, Fe,
and Zn levels were found in AP plaques in AD brain tissues
(12-15), suggesting a direct or indirect involvement of trace
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Cu, Fe, & Zn isotopic profiles in brain & serum of AD mice

metals in AD pathogenesis. Recent systematic reviews indi-
cated weak associations between Cu, Fe, and Zn and AD, with
some studies reporting increased levels of these metals, while
others are reporting decreased levels in the media investigated
(predominantly blood and to a lesser extent cerebrospinal fluid
(CSF), nails, and hair) of AD patients (16, 17). However, more
mechanistic studies indicate several possible pathways relating
Cu, Fe, and Zn with AD pathology (18-20).

To date, both tau- and AP-based animal models are widely
used in AD research. Several tau transgenic mouse models
have been generated, most of them based on overexpression of
mutant tau (21, 22), though it is important to note that these
mutations are based on frontotemporal dementia (FTD) and
not AD. Lines include, for example, the P301L mouse, which
overexpresses the aforementioned mutation in the longest
human tau isoform (htau40). Expression of P301L htau4O re-
sults in early deposition of tau tangles, gliosis, axonal degen-
eration, and motor and behavioral deficits (23).

Line 66 (L66) mice express full-length human tau with the
P301S mutation under the control of the Thyl-regulatory
element (24). The P301S mutation has been previously asso-
ciated with tau aggregation (25-27). L66 mice overexpress the
longest human tau isoform (htau40) with 441 amino acid
residues, under the control of the mouse Thyl-promoter.
These mice show early onset high tau load in hippocampal and
cortical neurons (24) and robust inflammation in both fore-
brain and hippocampal system (28) reminiscent of the
behavioral variant of FT'D with tau pathology. The L66 murine
model has widely abundant tau pathology throughout the
brain, with particularly high tau aggregation in neurons of the
hippocampus and entorhinal cortex, eventually leading to
neuronal loss (24). Behaviorally, these mice are characterized
by abnormal gait pattern and dysfunction in motor coordi-
nation and motor learning as early as 4 to 5 weeks of age (24).

As for AP models, first attempts to generate AD-like pathology
in mice by overexpressing APP were only partly successful, as
mice tended to produce only low Ap-associated pathology and
often failed to show behavioral impairments (29, 30). Later, the
familial AD model (5xFAD) was created by combining five mu-
tations related to human APP and presenilin (an enzyme con-
verting APP to AP (23)), which are linked to autosomal dominant
forms of familial AD (FAD) (31). The 5xFAD mice are double
transgenic for APP and PSEN1 with a total of five AD-linked
mutations: the Swedish (K670N/M671L), Florida (I716V), and
London (V7171) mutations in the APP gene, as well as the M146L
and L286V mutations in the PSEN1 gene. These mutations lead
to accelerated AP plaque formation and deposition and even-
tually to neuronal loss and working memory impairments (32,
33). These mice are characterized by aggressive AP neuropa-
thology and early behavioral deficits.

Both Line 66 and the 5XFAD models have been extensively
characterized in terms of pathology and cognition (24, 32, 33)
and were used in the current study for brain and serum
analysis. We have used quadrupole-based and sector field
inductively coupled plasma-mass spectrometry (ICP-MS) for
quantification of the total element contents of Cu, Fe, and Zn
and multicollector sector field inductively coupled
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plasma—mass spectrometry (MC-ICP-MS) for measuring their
isotope ratios (expressed as delta () values) and demonstrated
the traceable and precise determination of the total element
contents and isotope ratios of Cu, Fe, and Zn.

Mutant tau expressing mice showed a lighter isotopic
composition of Fe (enriched in the lighter isotopes) in the
brain and to a lower extent in blood serum, as well as higher Fe
contents in the brain than matched wild-type (WT) mice. For
the 5xFAD mice compared with controls, a trend toward a
lighter Zn isotopic composition was observed in the brain
tissue and blood serum. The results of this study may provide a
step forward concerning the potential use of the Cu, Fe, and
Zn isotopic information for diagnostic purposes and/or to
achieve a more profound understanding of AD.

Results

Analytical methods applied in the different research facil-
ities involved were evaluated and thereafter implemented for
the traceable quantitative determination and for the accurate
and precise isotopic analysis of Cu, Fe, and Zn in the brain
tissue and blood serum of L66 and 5xFAD mice, as well as of
their respective controls. The measurements undertaken and
research facilities responsible are summarized in Table 1. Only
SI-traceable data (here mass fractions) or data being traceable
to the same internationally accepted source (accomplished via
the use of delta values against internationally accepted isotopic
reference materials) are metrologically comparable. The total
elemental content quantification was validated between BAM
and the University of Aberdeen; isotope ratio measurements
were validated between BAM and Ghent University.

Given that diet is the major source of metal exposure and
that mouse groups received different chows in the different
housing facilities, the animals’ chow was also analyzed for its
Cu, Fe, and Zn isotopic compositions. L66 mice and their
NMRI wild-type (NMRI-WT) controls (housed at Charité)
received the same chow (V1534-3) for the first 10 months, but
between 10 and 12 months (time of sacrifice) L66 received a
different chow with higher protein content (V1124-3) because
they developed a considerable tremor. Total contents of Cu,
Fe, and Zn in both types of chow were in line with the man-
ufacturers’ data. However, their 6°°Cu, 6°°Zn, 6°7Zn, and
8°®Zn values were significantly different from each other
(Table S1). Conversely, 5xFAD mice and their C57BL6/] wild-
type (BL6-WT) controls received the same chow during the
whole experimentation period; the total contents of Cu, Fe,
and Zn in this chow were in line with the manufacturers’ data.

Total Cu, Fe, and Zn levels in mouse brain

The total contents of Cu, Fe, and Zn in mouse brain (per wet
tissue weight) were determined by sector field and quadrupole-
based inductively coupled plasma—mass spectrometry (SF-
ICP-MS and Q-ICP-MS, respectively). Since the amount of
serum collected was insufficient for accurate quantification,
only isotopic analysis was conducted (see below).

Quantitative determination of the elements of interest in the
brain tissue indicated that L66 mice had higher contents of Fe
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Table 1

Mouse groups and cohort sizes (n) used to measure total Fe, Cu, and Zn contents in the brain tissue as well as their isotopic composition in

brain and serum samples

Housing facility Mouse line Tissue Metal n Analytical research facility
Charité - Berlin L66" Brain Total Fe 13 University of Aberdeen (n = 13)
Total Cu 26 BAM (n = 13) and University of Aberdeen (n = 13)
Total Zn 26 BAM (n = 13) and University of Aberdeen (n = 13)
IR Fe 13 Ghent University (n = 13)
IR Cu 26 BAM (n = 13), Ghent University (n = 13)
IR Zn 26 BAM (n = 13), Ghent University (n = 13)
Serum IR Fe 13 Ghent University (n = 13)
IR Cu 24 BAM (n = 11), Ghent University (n = 13)
IR Zn 24 BAM (n = 11), Ghent University (n = 13)
Charité - Berlin NMRI-WT* Brain Total Fe 5 University of Aberdeen (n = 5)
Total Cu 11 BAM (n = 6), University of Aberdeen (n = 5)
Total Zn 11 BAM (n = 6), University of Aberdeen (n = 5)
IR Fe 5 Ghent University (n = 5)
IR Cu 11 BAM (n = 6), Ghent University (n = 5)
IR Zn 11 BAM (n = 6), Ghent University (n = 5)
Serum IR Fe 5 Ghent University (n = 5)
IR Cu 9 BAM (n = 4), Ghent University (n = 5)
IR Zn 9 BAM (n = 4), Ghent University (n = 5)
University of Aberdeen 5xFAD® Brain Total Fe 8 University of Aberdeen (n = 8)
Total Cu 18 BAM (n = 10), University of Aberdeen (n = 8)
Total Zn 18 BAM (n = 10), University of Aberdeen (n = 8)
IR Fe 10 Ghent University (n = 10)
IR Cu 20 BAM (n = 10), Ghent University (n = 10)
IR Zn 20 BAM (n = 10), Ghent University (n = 10)
Serum IR Fe 9" Ghent University (n = 9)
IR Cu 14" BAM (n = 5), Ghent University (n = 9)
IR Zn 9° Ghent University (n = 9)
University of Aberdeen BL6-WT* Brain Total Fe 9 University of Aberdeen (n = 9)
Total Cu 19 BAM (n = 10), University of Aberdeen (n = 9)
Total Zn 19 BAM (n = 10), University of Aberdeen (n = 9)
IR Fe 10 Ghent University (n = 10)
IR Cu 20 BAM (n = 10), Ghent University (n = 10)
IR Zn 20 BAM (n = 10), Ghent University (n = 10)
Serum IR Fe 8" Ghent University (n = 8)
IR Cu 14° BAM (n = 6), Ghent University (n = 8)
IR Zn 8" Ghent University (n = 8)

IR, isotope ratio.

Details for mouse housing facilities, as well as for facilities conducting MS measurements are indicated. All animals were males.

“ IR analysis of mouse chow was conducted at Ghent University.
¥ Reduced mouse number included in the analyses due to failed sampling.

than NMRI-WT (p < 0.05, see Fig. 1 and Table S2A). Also for
Cu and Zn, a higher content was observed in the brain tissue of
L66 mice, though the increase was not statistically significant
(p = 0.071 and p = 0.455, respectively). Post-hoc analysis (the
chow was analyzed along with the mice brain and serum) of
the metal contents in the diet of the animals did not suggest
that differences in the metal contents of the diets were at the
origin of these observations. Element quantification of 5xFAD
brains (Fig. 1 and Table S2B) indicated significantly lower
levels of Cu (p < 0.05), but a higher content of Zn in brain
tissue of 5xFAD mice compared with BL6-WT (p < 0.01).

Isotopic signatures of Cu, Fe, and Zn in mouse brain and
blood serum

The isotopic compositions of Cu, Fe, and Zn in the brain
tissue and blood serum were compared at group levels and the
results obtained, expressed as J-values, are presented in
Figures 2, 3 and 4 (detailed data in Tables S3 and S4). Addi-
tionally, for all samples analyzed, the individual §-values are
provided in the Supplementary Data file.

For the brain of L66 compared with that of the NMRI-WT
mice, the 6°°Fe and 6°"Fe values (p < 0.001) indicated a signifi-
cantly lighter Fe isotopic composition (enrichment in the lighter
>*Fe isotope), and this shift was partially confirmed for serum
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levels (p= 0.02 and 0.082 for 6°°Fe and §°Fe, respectively) —
Figure 3 (Tables S3A and S4B for brain and serum, respectively).
The absolute shift between the L66 and NRMI was found to be
A%°Fe = —0.16%0 and 4°"Fe = —0.24%o for brain. For serum, the
values were as follows: 4°°Fe = —0.30%o0 and 4°”Fe = —0.30%o. No
significant differences in the Cu or Zn isotopic composition in
the brain or blood serum were observed between the L66 and
NRMI-WT groups (Figs. 2 and 4).

For the 5xFAD and BL6-WT groups (Fig. 3 and Tables S3 and
S4), no significant differences were established in terms of the
Cu or Fe isotopic composition between mice, for neither the
brain nor serum. Interestingly, the isotopic composition of Zn
showed the trend of becoming lighter in the brain of 5xFAD
mice (compared with BL6-WT), while opposite effects were
seen for the respective isotopic compositions in the serum. The
8°Zn and 8°*Zn values (p = 0.049 and p = 0.034, respectively
versus p = 0.081 for §°°Zn) may indicate a lighter isotopic
composition in the brain, while for serum, the §*’Zn values (p =
0.009) show an opposite tendency toward a heavier isotopic
composition (depletion in the light ®*Zn isotope). However, for
8°Zn and 6°®Zn, p values were found to be 0.061 and 0.071,
respectively. The absolute shift of isotopic composition for
5xFAD versus BL6-WT mice was as follows (brain/serum):
4%7Zn =-0.13/+0.09, 4Zn = -0.26/+0.17, 4°*Zn ~0.43/+0.12%o.

J. Biol. Chem. (2021) 296 100292 3
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Figure 1. Cu (A), Fe (B), and Zn (C) contents (in mg per kg of wet tissue) in the brain tissue of L66 and 5xFAD mice relative to matched WT-controls.
Values are presented as dot scatter plots showing the median with error bars indicating the 95% ClI. Total element contents were measured by ICP-MS.
Statistical analysis was conducted using ANCOVA (A and C) and t-tests (B). All animals were males; the age of the animals was 11 to 12 months and 5
to 6 months for L66/NMRI-WT and 5xFAD/BL6-WT, respectively. Detailed data are presented in Table S2. The numbers of animals analyzed at the different

research facilities are indicated in Table 1.

Next, we systematically compared Cu, Fe, and Zn isotopic
compositions of the brain and serum (Fig. 5).

For NMRI-WT controls, we observed a positive correlation
between the brain and serum data for the three isotope ratios
5% Cu, 6°°Fe, and 6°¢Zn (Pearson’s R > 0.35). In L66, 5% Cu
brain and serum values are likewise positively correlated
(Pearson’s R*> > 0.45), but the overall 6°°Cu value in L66 is
lower than that in their WT controls (Fig. 54). In L66, and
contrary to NMRI controls, the 6°°Fe values in the brain and
serum, respectively, did not correlate (Fig. 5C, Pearson’s R? =
0.04), while a similar positive correlation was seen for §°°Zn
(Fig. 5E, Pearson’s R* > 0.4). It should be noted though that
only for §°Cu in L66 mice and 6°°Zn in both L66 and NMRI-
WT animals, statistical significance of the correlation was
reached at p < 0.05.

For both 5xFAD and BL6-WT mice (Fig. 5), we observed a
positive and similar correlation, though weak, between the
brain and serum 8°°Cu values (Fig. 5B, Pearson’s R? between
0.2 and 0.3). In BL6-WT mice, the 6°°Fe values correlated
fairly between the brain and serum (Fig. 5D, Pearson’s
R? > 0.2). However, in 5xFAD mice, this positive correlation
for 6°°Fe is stronger (Fig. 5D, Pearson’s R*> > 0.5, p < 0.05),

A
L66- X7 2L
A A
NMRI-WT- q—.—.}—q A
A A
5xFAD- {' Hﬂ. O
BL6-WT-{ $ t—ﬁdﬁ.“.
' I ' 1
0.5 1.0
665CU, %o

and in general this element is isotopically lighter in 5xFAD
than in BL6 controls (compare the slopes of 2.50 versus 0.75
for 5xFAD and BL6-WT mice, respectively, Fig. 5B). Brain and
serum 8°°Zn values (Fig. 5F) correlated positively in 5XFAD
mice (Pearson’s R* > 0.4), but not in BL6-WT mice (Pearson’s
R® < 0.0001). In this case, only the correlation of §°°Fe in
5xFAD mice reached statistical significance at p < 0.05.

Discussion

High-precision isotopic analysis is an emerging approach for
studying biochemical metal-related processes (34). For the
lighter of any two isotopes, physicochemical processes proceed
slightly faster (kinetic mass-dependent fractionation), while in
chemical reactions, the heavier of any two isotopes has a slight
preference for the strongest bonds (thermodynamic mass-
dependent fractionation) at equilibrium (35). Biochemical
processes may be accompanied by isotope fractionation,
resulting in potential differences in the isotopic composition of
a given metal between compartments. As biochemical pro-
cesses are affected during disease processes, the isotopic
composition of a metal in a given body compartment (e.g., body

B
L66

NMRI-WT-

sxraD-{= il
BL6-WT- T-}q .
o
1 L] 1 v 1 L
45 40 05
565CLI, %o

Figure 2. Isotopic signatures of copper (6%°Cu) in the brain (A) and blood serum (B) of L66 versus NMRI-WT and 5xFAD versus BL6-WT mice. Values
are presented as dot scatter plots showing the median with error bars indicating the 95% Cl. Isotope ratios were measured by MC-ICP-MS. Statistical analysis
was conducted using ANCOVA. Detailed data are presented in Tables S3 and S4. All animals were males; the age of the animals was 11 to 12 months and 5
to 6 months for L66/NMRI-WT and 5xFAD/BL6-WT, respectively. The numbers of animals analyzed at the different research facilities are indicated in Table 1.
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Figure 3. Isotopic signatures of iron (6°°Fe—A and B; 6°’Fe—C and D) in the brain (A and C) and blood serum (B and D) of L66 versus NMRI-WT and
5xFAD versus BL6-WT mice. Values are presented as dot scatter plots showing the median with error bars indicating the 95% Cl. Isotope ratios were
measured by MC-ICP-MS. Statistical analysis was conducted using a Mann-Whitney rank test. Detailed data are presented in Tables S3 and S4. All animals
were males; the age of the animals was 11 to 12 months and 5 to 6 months for L66/NMRI-WT and 5xFAD/BL6-WT, respectively. The numbers of animals

analyzed at the different research facilities are indicated in Table 1.

fluid) may also be different in patients versus controls. Current
analytical techniques, such as MC-ICP-MS, offer the precision
required to reveal and quantify such isotope fractionation (36).
High-precision isotopic analysis is being explored as a diag-
nostic tool for diseases that can otherwise only be established at
a later stage and/or via more invasive techniques, or for
obtaining a more profound insight into biochemical processes
involving the element of interest (37, 38). So far, the isotopic
composition of Cu was proven to be useful in the context of
liver disease (39) and cancer (40, 41), that of Fe as a robust
marker of individual Fe status, also in cases in which the
currently used markers are no longer reliable (42, 43), and that
of Zn in cancer (41, 44, 45). High-precision isotopic analysis has
also been successfully applied in animal experiments to
contribute to further insight into the factors governing the
differences in isotopic composition (46-48).

Men and women with AD are known to exhibit different
cognitive and psychiatric symptoms; women show a faster
cognitive decline in AD and milder cognitive impairment (49).
Such sex-dependent pattern is also reproduced in some in vivo
models of AD (49, 50). This seems to correspond also to
sex-based differences in the brain metal homeostasis (51). For
instance, Maynard et al (52) demonstrated significantly
decreased Fe, Cu, and Zn levels in the brain of APP-
overexpressing female mice, compared with males; but these

SASBMB

sex-related differences were independent of APP/Ap expres-
sion. Thus, to prevent such sex-related ambiguity, only male
animals were investigated in the current study, which may be
considered as a limitation since sex-based differences could
not have been revealed.

In the current study, we observed 6°°Fe and §°’Fe values
that significantly differed when comparing results for the
brains of tau (L66) and NMRI-WT mice. The results indicate
that the brain tissue of mice under tau-pathology is enriched in
the lighter Fe and Zn isotopes. Also in L66 serum, Fe was
found to be isotopically lighter compared with the WT. These
findings may indicate that Fe isotopic signatures in serum may
show potential as a biomarker for tau-associated AD. Since the
isotopic pattern of the elements in serum can be affected by
the food intake, the animals’ chow was also analyzed
(Table S1). As L66 mice exhibit acute neurological phenotype
after the 10th month of life, they were supplemented with a
protein-enriched chow for animal welfare reasons.

Notably, until the 10th month of life, both L66 and NMRI-
mice were fed the same chow. Post-hoc analysis demonstrated
no difference in the isotopic composition of Fe (p > 0.05)
between the initial and the 10 to 12th month diet for L66 mice,
which was implemented due to animal welfare reasons.
However, for Cu and Zn, a significant difference in isotopic
compositions (p < 0.01) was observed (Table S1). In principle,
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Figure 4. Isotopic signatures of zinc (6°Zn—A and B; §°Zn—C and D; §°3Zn—E and F) in the brain (A, C, and E) and blood serum (B, D, and F) of
L66 versus NMRI-WT and 5xFAD versus BL6-WT mice. Values are presented as dot scatter plots showing the median with error bars indicating the 95% Cl.
Isotope ratios were measured by MC-ICP-MS. Statistical analysis was conducted using ACOVA and a Mann-Whitney rank test (only for 5xFAD and BL6-WT in
B, D, and F). Detailed data are presented in Tables S3 and S4. All animals were males; the age of the animals was 11 to 12 months and 5 to 6 months for L66/
NMRI-WT and 5xFAD/BL6-WT, respectively. The numbers of the animals analyzed at the different research facilities are indicated in Table 1.

the difference (lighter isotopic composition) in the Cu and Zn
serum isotopic composition between the L66-and NMRI-WT
mice could therefore be (partly) related to the dietary
change. Since the L66-mice received a different diet only at the
end of the experiment, and the metal content was overall very
similar, this is unlikely to dramatically affect the metal con-
tents in the brain tissue. The intake between the two different
diets varied by some milligrams per kilogram of the chow only
(1 mg/kg for Cu, ca. +5%; 3 mg/kg for Zn, ca. -3%; and
9 mg/kg, ca. +5% for Fe). Importantly, for all elements under
study, any significant effect of the diet change should not be
anticipated. For Fe, there was no difference in isotopic
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composition between the two diets. For Cu, the observed (not
statistically significant) trend toward a lighter isotopic
composition in the brain and serum of L66 mice compared
with NRMI-WT was the opposite of the dietary change as the
10 to 12th month chow was enriched in the heavier isotope
(°®*Cu). Additionally, we evaluated the food consumption of the
animals based on the body and brain weight at the time of
sacrifice (Table S5). L66 mice had increased normalized brain
weights (p < 0.001), accompanied by decreased body weight
(p < 0.001), compared with the NRMI-WT. This is also
confirmed for the 5xFAD model versus BL6-WT (p < 0.05).
This observation may indicate reduced chow consumption in

SASBMB



Cu, Fe, & Zn isotopic profiles in brain & serum of AD mice

A + L66,p=0.595p=0.012
00~ A NMRI-WT, p=0.689, p = 0.087
0.2
ol .
=
o 04 .
% A
*.
E -0.6- A 0}. ¢ N
S 08 N i
*®
1.0 T r .
0.0 0.5 1.0 15
Brain 5%°Cu, %o
c + L66,p=-0.203,p=053
A A NMRI-WT, p=0.655, p = 0.35
s -1.8- A
= . . Aa
£ 2.0
% ?
£ 2.2 . 4
2 > ¢
B 24 b
'26 ] T T 1
2.6 2.5 2.4 2.3 2.2
Brain 5°Fe, %o
E + L66, p=0.659, p=0.002
oas & NMRIWT, p=0.801, p=0.009
* e
£ 0.2 A
S .
% 0.0- R I N
* *
g s
3 -0.2- . ¢
*
-0.4 T T T 1
1.2 1.0 -0.8 -0.6 -0.4

Brain 5%6Zn, %o

B m 5xFAD, p =0.540, p=0.13
e BL6-WT, p=0.429, p=0.29

IR
o ®©
1 ]

1.1 °

Serum &%5Cu, %o
o
|
°

-1.5 T T 1

1
0.0 0.2 0.4 0.6 0.8
Brain 5%°Cu, %o

D m 5xFAD, p =0.748, p = 0.033
e BL6-WT,p=0.478,p=0.28

-1.6
°
& 1.8 ° =
i L4 [
‘E 2.0 * . N 0
2 ° l‘
S 2.2 o
-2"' 1 1 1 1
2.3 2.2 2.1 -2.0 -1.9
Brain 5%Fe, %o
F m 5xFAD, p =0.657,p=0.16
05~ ® BL6-WT, p=0.008, p=0.99
2 0.4 »
< ]
N 0.3
1 n" a"
g 021 o0 4 °
[
€D 0.1
0.0 T T T 1
-0.4 -0.3 -0.2 -0.1 0.0

Brain 5%6Zn, %o

Figure 5. Pearson’s correlations of 6%°Cu (A and B), 6°°Fe (C and D), and 8°¢Zn (E and F) values between the brain and blood serum for L66 (blue
diamonds) and NMRI-WT controls (gray triangles)—A, C, and E; for 5xFAD mice (red square) and matched BL6-WT (gray circles)—B, D, and F. Linear
regressions were calculated by Pearson'’s correlation and correlation coefficient p between pairs is given in the figure. Statistically significant correlations
(p < 0.05) are indicated in blue font, while values that are not statistically significant are marked in red. All animals were males; the age of L66 and NMRI-WT
mice was 11 to 12 months; the age of 5xFAD and BL6-WT animals was 5 to 6 months. The numbers of animals analyzed at the different research facilities are

indicated in Table 1.

transgenic mice compared with the WTs, which might
partially compensate for the effect of the consumption of the
different chow by the L66 mice. Nevertheless, specifically, the
data on Zn isotopic composition in L66 mice (which were also
demonstrated to be not statistically significant) should be
considered with care, and this can be considered an un-
avoidable limitation of the current study. The potential effect
of the diet must be addressed in further research. For total
quantification, significantly increased Fe contents and a ten-
dency toward an increase in the level of Cu and Zn in L66 tau-
transgenic mice compared with NMRI-WTs are consistent
with previous reports for humans (for review see (14, 47)).
The 5xFAD mice and their matching BL6-WT controls
were fed with the same chow for the whole duration of the
experiment, and thus, the potential effect of the diet can be
excluded for them. It is noteworthy that except for Cu, the
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isotopic compositions of Fe and Zn in the chow used to feed
the 5xFAD and BL6-WT mice differed significantly (Table S1,
p < 0.05) from those in both chows used to feed the L66 and
NMRI-WT mice. Therefore, the differences observed between
mouse lines may, at least partially, be attributed to a different
nutritional baseline, as well as to a different genetic back-
ground. Unfortunately, proper comparison of the two WT
lines is not possible due to different age, diet, and housing
conditions. There was less Cu in brain tissue of the 5xFAD
mice than in that of BL6-WT. Contrary to that, Zn was
accumulated in the brain tissue of 5xFAD mice, which may be
attributed to a dysregulated Zn homeostasis between the brain
and blood (53). Since A aggregation in the brain of these mice
starts before 5 to 6 months of age, this could explain the lower
Cu contents in the brain tissues of our 5-month-old 5xFAD
transgenic mice.
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For the 5xFAD mice, a lighter isotopic composition of Zn
(6°Zn, 6°Zn, and 6°%Zn) was observed (Fig. 4). We observed
statistical significance (p < 0.05) for 8’ Zn and 8°*Zn only. But as
the 6°°Zn value is not an independent variable from ¢°’Zn and
8°®Zn due to the mass-dependent nature of the isotope frac-
tionation, the finding for 8°°Zn (not significantly different be-
tween the groups) may be related to the uncertainty of the
measurements. The same may be suggested for the findings for
Fein serum for L66 versus NRMI-WT mice, where only for 8°°Fe
the significance level was reached. The difference in the trend for
Fe isotopes between 5xFAD and L66 mice may indicate different
biochemical pathways involved in changing iron homeostasis
under different proteinopathies (54). In the case of tau-
pathology in L66 mice, the lighter isotopic composition of Fe
may be indicative of its increased turnover in the brain, which is
probably not the case for the amyloidogenesis in 5xFAD mice
(55). Additionally, the isotopic patterns in blood serum of
5xFAD mice versus BL6-WT were not found to display signifi-
cant differences for Fe, while Zn was slightly enriched in the
heavier isotopes in contrast to the corresponding brains. How-
ever, in this case the trend is even weaker due to very low levels of
Zn in serum of 5xFAD and BL6-WT, leading to higher mea-
surement uncertainty. Importantly, no significant difference in
the Cu isotopic composition between transgenic mice and
matched WT was found in both AD mouse models.

L66 tau transgenic mice show early-onset and extensive tau
aggregation in multiple brain regions; these aggregates were
reactive with silver and primulin, indicating the formation of
stable tau aggregates (24). The tau pathology induces robust
motor impairments in line with the symptomatology of FTD
patients, such as abnormal gait pattern and dysfunction in
motor coordination and motor learning (24). It is therefore not
unexpected that metal homeostasis is severely impaired in
these mice, also affecting the isotopic compositions of the el-
ements considered. While this is important information for
diagnostic considerations, it remains unclear whether it is the
result of tau pathology or other disease processes and whether
there may be a causal link.

The 5xFAD mouse model used in the current study is char-
acterized by increased APP expression early in life, modeling
familial AD, with pronounced, early amyloid pathology,
neuronal loss (33, 56), and changes in spine density in the so-
matosensory and prefrontal cortex by ~6 months of age (57).
The age of onset is dependent on the genetic background. For
the 5xFAD mouse on BL6/] background used in the current
study, brain APy, accumulation starts around 2 to 3 months of
age (58). By 4 to 5 months, the animals exhibit neurological
phenotype, including anxiety and freezing-fear behavior (58, 59).
The 5xFAD mice develop congophilic amyloid angiopathy
(60, 61), which also makes them an adequate model for human
AD, often containing vascular pathology (62). Additionally,
these mice, when kept on a C57BL6/] genetic background,
exhibit epileptiform activity, independent of the presence of
amyloid plaques, probably related to a high brain APP level per
se (63). Recently, Bundy et al. (50) reported significant alteration
of gene expression in 5xFAD female mice compared with
matched WT by 4 months of age; many of the altered genes
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were found to be associated with immune function. Thus, by the
age of 4 to 5 months, 5xFAD mice have considerable changes in
brain physiology and biochemistry, which may affect metal ho-
meostasis, e.g, transition metal turnover and balance, and result
in the differences in total levels of the elements and their iso-
topic composition as observed here.

Since the brain is strongly separated from the periphery by the
blood-brain barrier (BBB), the chemical composition of blood
serum as a peripheral fluid does not necessarily reflect the
composition of the brain compartment (64, 65). To test whether
serum isotopic signatures can be potential biomarkers for
changes in brain metal homeostasis, we evaluated linear corre-
lations of the §-values between the brain and blood serum.
Mostly not significant correlations were observed, except for
8%07Zn in L66 versus NRMI mice, as well as for 8°°Cu in L66 mice
and for §°°Fe in X5FAD mice, but not for the matched WT
controls in the case of Cu and Fe. Although the final number of
points was rather low to be conclusive, the correlations revealed
indicate that the serum isotopic composition is basically inde-
pendent from that of the brain. This is in line with data for other
potential biomarkers in AD (64, 66). The entrance of the metal
ions and other nutrients to the brain, as well as the clearance of
metabolites and toxins over the BBB, is strictly controlled in the
healthy brain (67, 68). A wide spectrum of factors is probably
involved in clearance and accumulation of the compounds in the
brain versus blood (68), including transport mechanisms across
the BBB, ie., passive diffusion versus active transport, sex,
age, circadian rhythm, etc. Additionally, proteinopathies seem to
create specific sinks for toxins such as metals, which may affect
the equilibrium between tissues even further. Furthermore,
metal ions seem to be able to hijack the corresponding trans-
porters making them prone to accumulate in the brain tissue
(69), while peripheral levels may remain low. Brain clearance of
neurotoxic agents such as, first of all, AP and tau, but also other
disease-implicated substances, is currently a major research area
for both diagnostic and therapeutic advances in dementia
research (70). The metals should be addressed more closely in
this regard in further studies.

To the best of the authors’ knowledge, this is the first study
reporting on the Fe isotopic compositions of blood serum and
brain tissue in relevant AD models, as well as the first to report
on the isotopic composition of Cu, Fe, and Zn in tau-
transgenic mice. A previous study related to the isotopic
composition of Zn as potentially relevant to AD was published
in 2017 by Moynier et al. (71). They studied the isotopic
signature of Zn in the brain tissue, red blood cells, and blood
serum in 5XxFAD compared with WT controls. The sampling
was performed at 6, 9, and 12 months. Contrary to our study,
the authors reported a heavier Zn isotopic composition in
5xFAD brains compared with that in the WT (significant at
p < 0.01 for 12 months of age). Additionally, a change in the
Zn isotopic composition with aging was also reported, which
the authors attributed to the potential increase of free,
nonprotein-bound Zn (71). In a follow-up study, the same
group (72) reported isotope ratios for Cu in the blood serum
and brain tissue of 5xFAD transgenic mice, sampled at the age
of 3, 6, 9, and 12 months for the blood serum and at 9 and
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12 months for the brain tissue, respectively. Importantly, the
authors presented data for both sexes. Similar to our study, no
significant difference in the Cu isotopic signature was detected
between 5xFAD and WT mice (72). The individual &-values
(Supplementary Data) obtained here for the brain and blood
serum were, generally, in line with the previous studies (46).
Also, a significantly lighter Cu isotopic composition was
observed in serum compared with that of the brain, which is in
agreement with previously reported data (46, 72).

To conclude, the observed changes in the isotopic pattern of
Fe and Zn in the brains and serum may be attributed to
different pathological events in transgenic mice. Specific
pathological processes in AD, such as deposition of misfolded
protein aggregates of AP or hyperphosphorylated tau (54), are
clearly accompanied by changes in the brain microenviron-
ment, such as neuroinflammation. All these metals were
shown to be modulating both AP and tau aggregation at
several levels (10, 14, 73). Their biochemical activity regarding
protein folding was rather widely explored in both in vitro and
in vivo studies. For AP, those include affecting APP expression
(74) and utilization by a-, -, and y-secretase (75), and direct
binding of AP and its oligomers with free metal ions (54, 76).
Cu, Fe, and Zn seem to be involved in tau-pathology by
modulating the activity of cyclin-dependent kinase (CDK)5/
p25 complex and glycogen synthase kinase-3p (GSK-3)
(77-79) or affecting the activity of phosphatase like protein
phosphatase 2A (PP2A) (80) and by binding tau per se. Metals,
first of all, Fe and Zn, binding to AP and/or hyper-
phosphorylated tau might be, at least partially, responsible for
the observations of the current study since such binding may
induce mass-dependent isotope fractionation (38). However,
this notion should be addressed in further research.

Another opportunity behind the current observation may be
related to the modulation of the brain's metal intake. Common
features of neurodegenerative disorders are the increased
production of reactive oxygen species (81) and the decline of
BBB and blood-cerebrospinal fluid barriers (67, 82), both of
which may seriously impact the transition metal homeostasis
(68). Critically, both animal (83) and human studies (84, 85)
indicate the vulnerability of the neurovascular unit in AD (86),
and both protective and trophic functions of the neural barrier
seem to be impaired (82, 87). Simultaneously with altered
metal—protein interactions due to the complexing capacities of
amyloid-B and hyperphosphorylated tau, the deterioration of
the barrier may be one of the reasons for the observed devi-
ation of the isotopic patterns in AD murine models compared
with matched WT mice. Reduced BBB integrity may promote
excessive exposure of the brain to metal ions such as Fe and Zn
leaking from serum proteins (54, 88), resulting in a shift in
metal binding, releasing more “free” metal ions or, on the
contrary, sequestering them from the normal biochemical
turnover. That, in turn, may further exacerbate AD pathology.
Metal homeostasis in early versus late dementia, the transport
of metals via the BBB, and their accumulation profile associ-
ated with amyloid versus tau pathologies, should be addressed
in future studies, as it may offer both diagnostic and thera-
peutic opportunities. Other prospects for further research
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would involve the study of sex- and age-based differences in
isotopic signatures of neurodegeneration-associated metals in
transgenic mice models and samples of AD patients, as well as
the isotopic patterns in different brain compartments.

Study strengths and limitations

We consider the use of relevant transgenic mice models of AD
and high-precision isotopic analysis as well as interlaboratory
comparisons applied as the strengths of our study. However, this
study has certain limitations: different numbers of animals per
group were used; for L66 mice a different chow was administered
at the end of the of the study due to animal welfare requirements;
Fe level and isotopic composition were assessed in one laboratory
only, which resulted in a lower number of observations for these
parameters; the study was conducted at one fixed age of the
animals and with male individuals only, thus, providing no
information on potential sex- and age-based effects; finally, A or
tau-protein was not assessed in this study.

Experimental procedures
Mice and tissue

Experiments on animals were carried out in accordance
with the European Communities Council Directive (63/2010/
EU) with local ethical approval, ie., either a project license
issued under the UK Scientific Procedures Act 1986 (PPL 60/
4085, for 5xFAD and BL6-WT mice), or in accordance with
the German Law for Animal Protection (Tierschutzgesetz;
G0068/18, for Line 66 and NMRI-WT mice).

Tau-transgenic mice

Male homozygous tau-transgenic L66 and NMRI wild-type
controls were generated as previously described by Melis et al.
(24). Two aggregation-promoting mutations, P301S and G335D
in the repeat domain, were inserted into the tau cDNA and L66
mice were bred and maintained on an NMRI background. Mice
were bred in pressurized isolators and pathogen-free conditions.
They were then colony-housed (up to four per cage) in Type 2
Macrolon wire lid cages on corn cob bedding in a controlled
facility (temperature 20-22 °C, 60-65% humidity, air changes:
17-20 changes per hour). The animals were under a 12-h light/
dark cycle and had ad libitum access to food and water. In this
study, 26 L66 and 14 NMRI-WT mice at 11 to 12 months of age
at the time of sacrifice were used (Table 1). Both mouse lines
were housed at Charité and received the same chow (V1534-3;
metal levels according to the manufacturer, confirmed locally by
ICP-MS: 16, 176, and 94 mg/kg for Cu, Fe, and Zn, respectively)
for the first 10 months. After 10 to 12 months, when L66 mice
developed a considerable tremor, the standard chow had to be
substituted with a different chow with higher protein content
(V1124-3; metal levels: 17, 185 and 91 mg/kg for Cu, Fe, and Zn,
respectively) for ethical reasons.

APP/PSENT transgenic mice

Male homozygous 5xFAD-transgenic (5xFAD) and their
C57BL6/] wild-type (BL6-WT) littermates were generated as
previously described (32). 5xFAD mice were bred and
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maintained on a C57BL6/] background. Mice were kept in a
holding room with a 12-h light/dark cycle, the temperature was
maintained at 23 °C + 2 °C and relative humidity was 40 to 60%.
Mice were allowed ad libitum access to food and water (metal
levels according to the manufacturer, confirmed locally by ICP-
MS: 16, 131, and 87 mg/kg for Cu, Fe, and Zn, respectively).
Twenty 5xFAD and 20 BL6-WT mice (~5 months of age at the
time of sacrifice) were used in this study (Table 1). These mice
were housed at the University of Aberdeen and received the
same chow during the whole experimentation period.

Perfusion of mice and collection of brain tissue and blood serum

Mice were injected intraperitoneally with Euthatal as anes-
thetic at a dose volume of 10 ml/kg of body weight (5XFAD
and BL6-WT) or with ketamine/xylazine (0.2 ml of 100 mg/ml
ketamine, 0.2 ml of 20 mg/ml xylazine, and 0.6 ml of 0.9%
saline) at a dose volume of 6 ml/kg of body weight (L66 and
NMRI-WT). Blood was collected via cardiac puncture in
lithium-heparin-tubes and the mice were perfused via intra-
cardiac puncture with heparinized saline solution (50 mg of
heparin per litre of 0.9% saline) for 3 min before harvesting the
brains. The brain was separated into hemispheres, transferred
into Eppendorf vials, and immediately frozen in liquid nitro-
gen. Blood was centrifuged for 5 min at 2000g in reaction tubes
after standing for 20 to 30 min. The serum was then trans-
ferred into Eppendorf tubes and snap-frozen in liquid nitro-
gen. Brain and serum samples were kept at -80 °C until use.
All containers used for sampling were acid and ultrapure water
washed in cleanroom conditions to avoid metal contamina-
tion. The body and the brain weights of all mice were taken at
the time of sacrifice. Body weight (g), brain weight (mg), and
normalized brain weight (brain weight to body weight ratio
(mg/g)) are given in Table S5.

Analytical methods

The study was conducted at multiple centers. An overview
of the study details, including mouse housing facilities, and a
description of which laboratories involved carried out quan-
titative determination and isotopic analysis of Fe, Cu, and Zn,
is provided for both sample groups in Table 1.

Sample preparation

The analysis of the brain tissue and blood serum was per-
formed at three separate analytical facilities (at BAM, Ghent
University, and University of Aberdeen) to ensure data quality.
For BAM, all sample preparation steps (except for the digestion
step) were carried out in an ISO 6 clean room (PicoTrace); the
digestion system and the ICP-MS instruments are located in
ISO 7 clean rooms. For Ghent University, all sample manipu-
lations were performed in an ISO 4 clean room (PicoTrace). At
the University of Aberdeen, all sample preparation steps were
carried out in analytical chemistry labs under a laminar flow
hood. For quantitative determination of the metal contents, the
sample preparation protocol consisted of the mineralization of
the sample (serum and brain tissue) via acid digestion. For
isotopic analysis, additional sequential chromatographic
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separation of the target analytes from the matrix is required.
The measurements were performed using SF-ICP-MS or Q-
ICP-MS and MC-ICP-MS for element contents and isotope
ratios, respectively. Animal chow (0.1 g per replicate) was
prepared and analyzed analogously with the brain tissue to
evaluate the background isotopic composition of the animals.

Digestion procedure

BAM: In 10-ml quartz vessels, the digestion was accomplished
using 3.2 ml and 2.5 ml conc. HNOj3 (67-70%, purified in-house
by two-stage subboiling distillation) for the brain (whole) and
serum samples, respectively. A high-pressure asher system (HPA-
S, Anton Paar, Austria) was used for sample digestion. The
operating conditions for the HPA-S were: ramping to 300 °C over
30 min and holding at 300 °C for another 90 min and then
allowing to cool down. Pressure was set to 100 bar throughout the
digestion program. The contents of the digestion vessel were
transferred to a 15-ml PFA vessel (Savillex). The digestion vessel
was thoroughly rinsed with 0.28 mol/l HNOj; and the rinse was
transferred to the PFA vessel. The digestion solution was evapo-
rated till dryness at 120 °C. The dried residue was dissolved in 1 to
2 ml conc. HCI (32-35%, purified in house by two-stage sub-
boiling distillation) and then dried. This process was repeated and
the residue was finally redissolved in 8 mol/l HCI +0.001% H,O,
for the chromatographic separation of Cu, Fe, and Zn from the
sample matrix.

Ghent University: Ultrapure water (resistivity 218.2 MQ cm
at 25 °C) was obtained from a Milli-Q Element water purifica-
tion system (Merck Millipore). Trace metal analysis grade
14 mol/l HNO; and 12 mol/l HCI (PrimarPlus, Fisher Chem-
icals) were further purified by subboiling distillation in a Savillex
DST-4000 acid purification system (Savillex Corporation). The
purified acids thus obtained were titrated prior use to establish
the exact concentration. TraceSELECT 9.8 mol/l H,O, acquired
from Sigma-Aldrich was used for sample preparation. Brain
tissue, animal chow, and blood serum samples were digested
using a mixture of subboiled 14 mol/l HNO3 and 9.8 mol/l H,O,
in Teflon Savillex beakers at 110 °C for 16 h. Four milliliter of
HNOj; and 1 ml of Hy,O, was used for the brain tissue or chow
specimens; 2 ml of HNO; and 0.5 ml of H,O, were used for
blood serum digestion. Subsequently, the sample digests were
evaporated to dryness at 90 °C and redissolved in 5 ml of 8 mol/l
HCI containing a small amount of H,O, (~0.001%) to assure
occurrence of Cu and Fe in the Cu(II) and Fe (III) oxidation
states, respectively, for the chromatographic isolation of the
target elements. The samples were used for isotopic analysis
only.

University of Aberdeen: Mouse brains were separated into
hemispheres prior to digestion. Each hemisphere was 200 to
400 mg in weight and was digested in 1.5 ml of ultrapure
concentrated (65%) nitric acid using a microwave system (Ethos
Up, Analytix). Samples were digested in TMF inserts, using a
predetermined program with a maximum temperature of 200 °C
being maintained for 20 min and subsequently cooled to <35 °C.
Following digestion, samples were diluted to 10 g with ultrapure
Milli-Q water. The samples were used for total quantification only.
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Target element isolation

For the determination of isotope ratios at both BAM and
Ghent University, Fe, Cu, and Zn were chromatographically
separated from the matrix via a protocol modified from that
developed and reported by Lauwens et al. (89) and Van Heghe
et al. (90) using strong anion exchange resin. Analytical grade
AG MP-1 strong anion exchange resin (100—200 um dry mesh
size, chloride anionic form, Bio-Rad) packed in polypropylene
chromatographic columns (Bio-Rad PolyPrep) was used.

The separation procedure is shown in Table S6. Spectral
and nonspectral interferences from concomitant matrix ele-
ments were thus virtually eliminated. The purified Fe, Cu, and
Zn fractions were evaporated till dryness and the residues
redissolved twice in 14 mol/l HNOj; to remove residual chlo-
rides. The final residue was redissolved in 0.28 mol/l HNOj for
determination of the total element content and isotope ratios.
Quantitative recoveries were obtained for the three elements
upon chromatographic separation (~100%), thus ensuring that
potential on-column isotope fractionation would not affect the
final isotope ratio data.

Determinations by ICP-MS
Total element content

BAM: The total contents of Cu, Zn, and Fe in the brain and
serum digests were determined via external calibration using a
single-collector sector field ICP-MS unit (Element 2/Element XR,
Thermo Scientific), operated at medium mass resolution (R ~
4000). The instrument was equipped with a jet interface and a
sample introduction system consisting of a 200 ul min™* quartz
concentric nebulizer and a cyclonic spray chamber. Tuning, mass
calibration, and determination of mass offsets of the target iso-
topes were performed before each analytical sequence. In brief,
the samples and calibration standards were prepared in 0.28 mol/l
HNOj; and Ge (50 pg/1) was used as an internal standard to correct
for matrix effects and instrument instability. The instrument
settings and data acquisition parameters are presented in
Table S7. The analytical method was validated using NIST SRM
1598a (Inorganic Constituents in Animal Serum, NIST) and
Seronorm Trace Element Serum level 1 (Sero AS).

University of Aberdeen: The total contents of Fe, Cu, and Zn
in the brain digests were determined using an Agilent 7900
quadrupole-based ICP-MS instrument using no gas mode for
Cu and Zn and hydrogen gas mode for Fe. During analysis, a
10 pg/l Y and 10 pg/l Rh internal standard solution was
continuously introduced into the system. The instrument
settings and data acquisition parameters are presented in
Table S7.

Isotope ratios

Single-element standard stock solutions of Cu, Fe, Zn, Ni,
and Ga (Inorganic Ventures) were used for element quantifi-
cation and mass bias correction. The following isotopic
reference materials were used for external mass bias correc-
tion: NIST SRM 976 (National Institute of Standards and
Technology) for Cu, IRMM-014 (European Commission) for
Fe, and IRMM-3702 (European Commission) for Zn. Single-
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element standard solutions of Cu, Fe, and Zn (Inorganic
Ventures), previously characterized for their isotopic compo-
sition (in-house standard solutions), were used for monitoring
the quality of the isotope ratio measurements. All standards
and samples were properly diluted with 0.28 mol/l HNOj for
elemental determination and isotope ratio measurement.

Isotope ratio measurements were accomplished using a
Neptune multicollector (MC)-ICP-MS instrument (Thermo
Scientific) at both BAM and Ghent University. The instrument
settings were tuned daily (Table S8). The measurements were
performed at (pseudo) medium mass resolution, in static
collection mode and using 10" Q amplifiers connected to the
Faraday collectors. Samples were measured in a sample-
standard bracketing approach (SSB).

For SSB, Ghent University used the following isotopic
reference materials: NIST SRM 976 for Cu, IRMM-014 for Fe,
and IRMM-3702 for Zn. The internal standards used for
correction of instrumental mass discrimination were Ni, Ga,
and Cu for the Fe, Cu, and Zn isotope ratio measurements,
respectively. Correction for instrumental mass discrimination
was performed using a combination of internal correction by
means of the revised Russell’s law (91) and external correction
using the isotopic reference materials cited above.

BAM used BAM RS standards as bracketing standard for Cu
and Zn. The BAM RS standards were then characterized
relative to the isotopic reference materials NIST SRM 976 (Cu,
purchased as IRMM-633 from LGC Standards GmbH, Ger-
many) and IRMM-3702 (Zn). The delta values obtained rela-
tive to the BAM RS standards were then recalculated relative
to NIST SRM 976 and IRMM-3702, as has been described by
Vogl et al. (92).

The isotope ratios were expressed in delta notation (J, per
mil, %o) relative to the respective isotopic reference material
and determined using Equations 1, 2 and 3 for Cu, Fe, and Zn,
respectively.

665CM _ (65CI/£/63CI/£)
(®Cu/%Cu)

sample _ 1) (1)

standard

(yFe/54Fe)sam le
standard
YZn/%*Zn
&Zn = (5 /64 Jeanp -1) 3)
( Z}’l/ Zn)stundard

in which y is 56 or 57 (for the **/>*Fe or °”/>*Fe isotope ratios) or
66, 67, or 68 (for the ®*/°*Zn, ©”/%*Zn, or °*'¢* Zn isotope ratios).

Interlaboratory validation

A rigorous interlaboratory comparison scheme was executed
for quality assurance/quality control (QA/QC). For the total
element content, Seronorm Trace Element Serum level 1 (trace-
able to NIST SRMs, Sero, Norway) was used as QC sample by
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BAM and the University of Aberdeen where the validation of the
analytical method was performed following the FDA guidelines
(93). All recoveries were in agreement with the +20% acceptability
criteria of the FDA guidelines for method validation (Tables S9
and S10).

BAM and Ghent University were supplied with a QC sample
of blood serum, provided by LGC Ltd for isotopic analysis. The
QC sample was analyzed independently and blindly in accor-
dance to the sample analysis protocol used for the real samples.
Acceptable agreement was obtained for the Cu, Fe, and Zn
isotope ratios (Tables S11 and S12) between BAM and Ghent
University.

Statistical analysis

Data analysis was performed using SPSS Statistics 23 (IBM
Corp) and Prism 8 (GraphPad Software). For each group of
mice, median 6-values were calculated and used to evaluate
statistical differences between each transgenic model and its
respective control group (5xFAD versus BL6-WT and L66
versus NMRI-WT). The outliers were identified using a
Grubbs’ test (¢ = 0.05) and excluded from further data eval-
uation. The normality of the distribution was tested using a
Shapiro—Wilk test (¢ = 0.05) for each group of mice. The
difference between the groups based on data obtained in
several laboratories (namely, total levels of Cu and Zn in brain,
isotopic composition of Cu and Zn, except Zn in blood serum
of 5xFAD and BL6-WT mice) was assessed using analysis of
covariance (ANCOVA) to exclude the effect of the measure-
ment facility. For the data obtained in a single laboratory only
(total Fe in the brain, isotopic composition of Fe, and isotopic
composition of Zn in the blood serum of 5xFAD and BL6-WT
mice), an unpaired ¢-test or Mann—Whitney rank test was used
for normally distributed (parametric) and for nonnormally
distributed (nonparametric) data sets, respectively. A level of
p < 0.05 was considered as statistically significant.

The correlation between the brain and serum isotopic
composition was evaluated using Pearson’s equation; the
correlation coefficient (p) and the p-value were calculated.
Only the subjects for whom the data for both brain tissue and
blood serum were available, were included in the correlation
analysis.

In case of a statistically significant difference or potential
trend in isotopic composition, the 4-values were calculated as
follows:

4% Cu=(median[8% Cutsestinggrouy| ~median[8% Cttypaschedcontrot] )

(4)

A Fe=(median 8 Fesestinggroup| —median [ Fepaschedcontrot] )

(5)

A Zn= (median [&Z”ltestinggroup] —-median [Gyznmatchedcontml] )

(6)

12 J Biol Chem. (2021) 296 100292

in which y is 56 or 57 (for the Fe isotope ratios) or 66, 67, or 68
(for the Zn isotope ratios). The use of 4-values is a conven-
tional approach for the data analysis in isotopic geochemistry
(94), which was already applied to biological samples as well
(95, 96).

Data availability

Raw data for elemental quantification and isotopic analysis,
including statistical processing, are presented in a supple-
mentary data file. All remaining data are contained within the
article and supplementary tables.
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