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Meiosis, which produces haploid progeny, is critical to
ensuring both faithful genome transmission and genetic di-
versity. Proteasomes play critical roles at various stages of
spermatogenesis, including meiosis, but the underlying mech-
anisms remain unclear. The atypical proteasomes, which
contain the activator PA200, catalyze the acetylation-
dependent degradation of the core histones in elongated
spermatids and DNA repair in somatic cells. We show here that
the testis-specific proteasome subunit α4s/PSMA8 is essential
for male fertility by promoting proper formation of sperma-
toproteasomes, which harbor both PA200 and constitutive
catalytic subunits. Immunostaining of a spermatocyte marker,
SYCP3, indicated that meiosis was halted at the stage of
spermatocytes in the α4s-deficient testes. α4s stimulated the
in vitro degradation of the acetylated core histones, instead of
nonacetylated histones, by the PA200-proteasome. Deletion of
α4s blocked degradation of the core histones at DNA damage
loci in spermatocytes, leading to meiotic arrest at metaphase I.
Thus, α4s is required for histone degradation at meiotic DNA
damage loci, proper progression of meiosis, and fertility in
males by promoting proper formation of spermatoprotea-
somes. These results are important for understanding male
infertility and might provide potential targets for male
contraception or treatment of male infertility.

Proteasomes are responsible for degradation of most cellular
proteins, and their inhibitors, such as bortezomib and carfilzo-
mib, are clinically used to treat multiple myeloma and mantle
cell lymphoma (1). Proteasomes usually contain one 20S cata-
lytic core particle (CP) and one or two regulatory particles,
which serve as activators, including the 19S regulatory particle,
PA28α/β, PA28γ, and PA200 (2). The typical 26S proteasome
contains the 19S regulatory particle and the 20S CP with
constitutive catalytic subunits (including β1, β2, and β5) and
promotes degradation of the ubiquitinated proteins. The
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immunoproteasome contains the 20S CP with the variants of
catalytic subunits (including β1i, β2i, and β5i) (3). Certain
fraction of 20S CPs in the PA200-containing proteasomes in
testes harbors the catalytic subunits of the immunoproteasome,
rather than regular catalytic subunits (4). The PA200-containing
proteasomes promote the acetylation-dependent degradation of
the core histones during somatic DNA repair and spermio-
genesis (4, 5). In testes, proteasomes are largely specialized into
spermatoproteasomes, which contain the testis-specific 20S
subunit α4s/PSMA8 and/or the catalytic subunits of the
immunoproteasome in addition to PA200 (4). α4s is specifically
expressed in pachytene spermatocytes and the cells derived
from them, including spermatids and spermatozoa (6).

Meiosis includes 2 cell divisions to produce haploid prog-
eny. Spermatogenesis is a complex process in which primary
spermatocytes progress through leptotene, zygotene, pachy-
tene, and diplotene stages at prophase I of meiosis. After
completion of meiosis I, secondary spermatocytes rapidly go
through meiosis II to form haploid spermatids, which undergo
spermiogenesis to differentiate into spermatozoa (7–9). Dur-
ing meiosis I, homologous chromosomes undergo genetic
recombination by which DNA double-strand breaks (DSBs)
are generated and then repaired, allowing them to exchange
some of the genetic information. The subsequent repair of
DNA DSBs is also critical to successful meiosis (10, 11). The X
and Y chromosomes share homology only in a small segment,
the pseudoautosomal region. This asynapsis leads to the pro-
longed DNA damage response. Thus, male sex chromosomes
are associated with many DNA damage response proteins,
including γH2AX (a phosphorylated form of the histone
variant H2AX), at the XY body (12). The pseudoautosomal
region forms DSBs at a higher frequency than typical auto-
some segments (11, 13). SPO11 makes DSBs through a
topoisomerase-like reaction (12).

We demonstrate here that α4s/PSMA8 is required for the
removal of the core histones at DNA damage loci, the proper
progression of meiosis, and fertility in males by promoting
formation of the properly assembled spermatoproteasome,
which harbors both PA200 and regular constitutive catalytic
subunits. During the preparation of this article, two
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α4s and histone degradation during meiotic DNA repair
independent works on the role of α4s/PSMA8 in male meiosis
have been published (14, 15). Although they also demonstrated
that the deletion of α4s/PSMA8 leads to male infertility in
mice, the underlying mechanisms we each provide are com-
plementary. Given that proteasomes are the known drug tar-
gets (1), our results might provide potential targets for male
contraception or treatment of male infertility.

Results

Deletion of α4s leads to male infertility by stopping
spermatogenesis at the stage of spermatocyte

To investigate the role of α4s in spermatogenesis, we
generated the mutant mice with global deletion of α4s gene
(Fig. 1A and Fig. S1A). Homozygous deletion of α4s led to the
reduced size and weight of testes in adult mice and caused
male infertility but had no obvious adverse effects on female
fertility or other male organs/tissues (Fig. 1, B–C and Fig. S1,
B–C). There were few, if any, spermatids or spermatozoa in the
seminiferous tubule and the epididymis from the α4s-deficient
mice (Fig. 1D). Actually, a small fraction of haploid population
(i.e., 1C) of cells was observed in the α4s-deficient testes
(Fig. S1D), suggesting that a relatively small number of sper-
matids survived after meiosis. Synaptonemal complex proteins
(SYCP) 1, 2, and 3 are meiosis-specific scaffolds in spermato-
cytes (16, 17). Immunostaining of SYCP3 indicated that
meiosis, which is not yet completed at postnatal day (pnd) 20,
was halted at the stage of spermatocytes in the α4s-deficient
testes (Fig. 1, E–F). As specifically marked by SOX9 (18), the
formation of Sertoli cells (nurse cells) in testes was not affected
by α4s deletion (Fig. S1E).

Deletion of α4s reduces assembly of PA200 and regular
catalytic subunits into proteasomes in adult testes

The typical 26S proteasome contains three constitutive
catalytic subunits (i.e., β1, β2, and β5) in addition to the 19S
regulatory particle, whereas the immunoproteasome contains
different catalytic subunits (i.e., β1i, β2i, and β5i) (2). Deletion
of α4s markedly decreased the protein levels of PA200 and all
three constitutive catalytic subunits (i.e., β1, β2, and β5) but
increased the protein levels of the catalytic subunits of the
immunoproteasome (e.g., β1i and β5i) and the proteasome
activators PA28α and PA28β in adult testes (Fig. 2, A–B). The
protein levels of PA28γ and the other subunits from the
typical 26S proteasome (e.g., Rpt2, α4, and β7) had little, if
any, change in the α4s-deficient testes (Fig. 2, A–B). To un-
derstand the mechanisms for these effects of α4s deficiency
on the levels of various proteasome subunits, we demon-
strated that the mRNA levels had similar changes to their
protein levels (Fig. 2C), suggesting that α4s deficiency causes
these changes in various proteasome subunits at least
partially by altering their transcription or mRNA stability.
Considering the difference in cell types, we purified 4C
spermatocytes, which contain four times monoploid number
of chromosomes (i.e., 4C spermatocytes) at stages after DNA
replication and before nuclear separation in the process of
meiosis I, and haploid spermatids. Isolation of these types of
2 J. Biol. Chem. (2021) 296 100130
cells was successful as indicated by the presence of protamine
and SYCP3 (Fig. 2D and Fig. S1D), which mark spermatids
and spermatocytes, respectively (16, 19). α4s deficiency had
similar effects on the levels of the above-mentioned protea-
some subunits in 4C spermatocytes in comparison with those
in testicle homogenates (Fig. 2, A and D). Native PAGE and
glycerol gradient analyses demonstrated that changes in the
levels of these subunits were similar to those in the protea-
somal complexes at or after pnd 28 (Fig. 3, A–B and
Fig. S2A). Although a dramatic decrease in the levels of
PA200 was not observed until pnd 28, replacement of
constitutive catalytic subunits with immunoproteasome
counterparts was obvious at pnd 23 in the α4s-deficient
testes, as evidenced by the reciprocal changes in the levels of
β5 and β5i (Fig. S2A). Using peptide substrates for protea-
somes (i.e., LLVY-amc, LLE-amc, and LRR-amc), we showed
that deletion of α4s decreased all three peptidase activities of
proteasomes in testes after pnd 23 but had no effect on these
activities in young testes from mice at pnd 18, adult liver with
the typical 26S proteasome, and adult spleen with the
immunoproteasome (Fig. 3C and Fig. S2, A–B). Thus, α4s is
required for the formation of the properly assembled sper-
matoproteasome, which contains both PA200 and regular
catalytic subunits, in adult testes.
Deletion of α4s increases the rates of spermatocyte apoptosis
and disrupts MSCI

The TUNEL assay can usually detect apoptotic cells by
attaching the fluorescently labeled nucleotides to the exposed
3’ ends of DSBs. Under low-resolution microscopy (20×) in the
tissue sections, the TUNEL assay could show the condensed
chromatin or apoptotic bodies, hallmarks for apoptotic cells.
Deletion of α4s sharply increased the number of the apoptotic
bodies-positive spermatocytes in the sections of testes (Fig. 4,
A–B). Fluorescent annexin V conjugates provide reliable
detection of the externalized phosphatidylserine, another in-
dicator of apoptosis (20). Deletion of α4s also dramatically
increased the number of the annexin V-positive spermatocytes
in the sections of testes (Fig. S3, A–B). When normalized to
that in the wildtype testes, the rate for the increased number of
apoptotic spermatocytes was much higher than that for
γH2AX- or SYCP3-positive cells during mouse development
(Fig. 4, C–F).

SYCP1 and SYCP3 are present in autosomes only and all
chromosomes, respectively. Deletion of α4s had not affected
synapsis formation of either autosomes or sex chromosomes,
which were differentially marked by SYCP1 and SYCP3
(Fig. S3C). In early pachytene spermatocytes, γH2AX is pre-
sent only as small foci. In mid-pachytene to late diplotene
spermatocytes, γH2AX is restricted solely to the XY body (21).
Although deletion of α4s increased the number of the γH2AX-
positive cells in testes (Fig. 4G and Fig. S4A), it did not affect
the chromosomal distribution of γH2AX at various stages of
prophase I of meiosis in spermatocyte nuclei (Fig. S4B).

Transcription in the XY body is repressed, leading to
meiotic sex chromosome inactivation (MSCI) in the asynapsed



Figure 1. Deletion of α4s leads to male infertility by stopping spermatogenesis at spermatocytes. A–B, immunoblotting analysis of α4s protein (A) and
photograph of the testes (B) of the wildtype and the α4s-deficient mice. C, testicle weights relative to body weights of the wildtype and the α4s-deficient
mice. D, H&E staining of histological sections of the testes and epididymis of the wildtype and the α4s-deficient mice. The filled and open arrows point to
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sex chromosome regions, and sex chromosomes are depleted
from active histone marks, especially acetylation (22). DSBs are
required for this meiotic silencing. For example, mice with a
mutation in Spo11 are defective in MSCI (23, 24). Accordingly,
H2AX-null male mice display meiotic arrest with MSCI failure
(25). The X-linked gene, Hprt1, and the Y-linked gene,
Rbmy1a1, are usually silenced during the MSCI in the wildtype
testes (26) but were not silenced in the α4s-deficient testes.
Their backup genes (Cetn1, Pdha2) located on autosomes are
usually activated during MSCI but were silenced in the α4s-
deficient testes (Fig. S4C). Thus, deletion of α4s disrupts
MSCI, hinting an essential role of α4s in meiotic DNA repair.

Deletion of α4s suppresses repair of DNA double-strand
breaks at meiotic metaphase I

Natural generation and subsequent repair of DNA DSBs are
critical to mammalian meiosis and genetic diversity (10, 11).
MLH1, a DNA mismatch repair protein, plays an important
role in the formation of meiotic crossover in mid-pachynema
(27). Deletion of α4s had no influence in the recruitment of
MLH1, because the number of MLH1 foci did not change in
the nuclei of the α4s-deficient spermatocytes (Fig. 5A and
Fig. S5). Rad51 is required for heteroduplex formation in
meiotic DNA repair and forms foci along the axial element
from leptonema on. These foci are located along synaptonemal
complexes in zygonema, and gradually disappear in pachy-
nema (28, 29). In the α4s-deficient spermatocytes, the pattern
for RAD51 foci was similar to that in the wildtype throughout
prophase I (Fig. 5, B–C and Fig. S6, A–B), suggesting that
deletion of α4s did not increase the recruitment of RAD51
onto chromosomes during prophase I.

To directly examine the role of α4s in meiotic DNA repair,
we employed the TUNEL assay to monitor DSBs in the nuclei
of nonapoptotic cells under a microscope with high resolution
(100×) as reported (30). The numbers of TUNEL foci in the
spread nuclei were similar between the wildtype and the α4s-
deficient spermatocytes at prophase I (Fig. S6, C–E). In com-
parison with those in the wildtype testes, the levels of SYCP3
and γH2AX increased, but the levels of the acetylated histones,
including H4K16ac, decreased, whereas the levels of the core
histones (such as H2B, H3, and H4) did not change in the
homogenates of the α4s-deficient testes (Fig. S6F). The
decreased levels of acetylated histones in the α4s-deficient
testes were apparently due to the disappearance of round
spermatids, where acetylation of the core histones is known to
be associated with histone displacement or degradation during
the elongation of spermatids (4, 31). To exclude the influence
of the cell types, we purified 4C spermatocytes and haploid
spermatids. Indeed, deletion of α4s increased the levels of
H4K16ac in the lysates of 4C spermatocytes in addition to the
levels of SYCP3 and γH2AX (Fig. 5D, Figs. S6F and S7A). If
spermatocytes and spermatids, respectively, and the triangle points to a sperm
the paraffin sections of the testes of the wildtype and the α4s-deficient mice at
of SYCP3-positive spermatocytes was analyzed. Unless stated otherwise, all m
experiment with at least two independent biological replicates. *p < 0.05, **p
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DNA repair is normal, the levels of DNA repair proteins would
increase, since the ratio of spermatocyte increased in the α4s-
deficient testes (Fig. 1). However, the levels of MLH1, RAD51,
and RPA1 all remained constant in both the homogenates of
α4s-deficient testes and the lysates of 4C spermatocytes
(Fig. 5D, Figs. S6F and S7A), hinting that deletion of α4s might
block the repair of DNA breaks, resulting in eventual failure of
meiosis and the ensuing apoptosis.

As revealed by staining of α-tubulin, deletion of α4s sharply
reduced the numbers of spermatocytes at metaphase I and the
ensuing phases, such as anaphase I and telophase I (Fig. 5E).
γH2AX can mark chromatin domains with DNA breaks (32).
Although there was no detectable colocalization between
γH2AX and DNA at metaphase I in the wildtype testes,
γH2AX colocalized with DNA in almost all spermatocytes at
metaphase I in the α4s-deficient testes (Fig. 5F). In accord,
deletion of α4s also caused the staining of DNA breaks by
TUNEL assay at metaphase I of spermatocytes (Fig. 5G). These
results suggest that deletion of α4s suppresses the repair of
DSBs at metaphase I in spermatocytes.

α4s is required for the programmed removal of the acetylated
core histones during meiotic DNA repair

Chromatins with meiotic DSB sites are sensitive to DNases
in both yeast and mice, hinting that histones might be removed
during meiotic recombination repair (33, 34). But, unlike that
in the wildtype testes, H4K16ac partially colocalized with DSBs
as marked by TUNEL staining and γH2AX in the α4s-deficient
testes (Fig. 6, A–B), hinting that degradation of the acetylated
histones was insufficient at DSB loci in the α4s-deficient testes.

Recently, we have demonstrated that the PA200-containing
proteasomes degrade the acetylated core histones during so-
matic DNA repair and spermiogenesis (4). To test the role of
α4s in histone degradation, we incubated the acetylated core
histones with the 20S catalytic particles from testes, which
contain α4s, in the absence or presence of PA200. The 20S
particle from muscle, which does not contain any α4s, served
as a control. α4s stimulated the in vitro degradation of the
acetylated core histones, instead of nonacetylated histones
(e.g., H2B), by the PA200-proteasome (Fig. 6C). Finally, dele-
tion of α4s suppressed the degradation of the acetylated core
histones in testis lysates from mature mice (Fig. S7B). Taken
together, our results suggest that α4s mediates degradation of
the core histones during meiotic DNA repair, and is required
for proper progression of meiosis and fertility in male mice.

Discussion

The repair of DNA DSBs is critical to the completion of
meiosis (10, 11). In mice, failure in meiotic DNA repair usually
leads to arrest at meiotic prophase I (35) and eventually in-
duces apoptosis (24). Even though meiotic DNA repair is not
. The scale bar represents 50 μm. E, immunofluorescent staining for SYCP3 in
various postnatal days (pnd). The scale bar represents 100 μm. F, percentage
ice were 84 days old (mean ± SEM, n = 6). Data are representative of one
< 0.01 (two-tailed unpaired t test).



Figure 2. Deletion of α4s reduces the amount of PA200 and regular catalytic subunits of proteasomes in spermatocytes. A, immunoblotting analysis
of the extracts from the testes of the wildtype and the α4s-deficient adult mice. The asterisk indicates a nonspecific band. B, immunoblotting analysis of the
extracts from the testes of the wildtype and the α4s-deficient mice at age 20 or 28 days. C, RT-PCR analysis of the mRNA levels of constitutive and immune-
catalytic subunits and PA200. The mice were 20 or 28 days old. D, immunoblotting analysis of the extracts from the 4C spermatocytes of the wildtype and
the α4s-deficient mice at age 28 days. Spermatid serves as a control. Data are representative of one experiment with at least two independent biological
replicates (mean ± SEM, n = 6).

α4s and histone degradation during meiotic DNA repair
completed, chromosomes, including sex chromosomes, still
remain paired before anaphase I in certain mammalian species
(36). PA200 promotes the acetylation-dependent degradation
of the core histones during somatic DNA repair and in elon-
gated spermatids (4). A recent work suggests that the chro-
matin remodeler INO80 is required for the histone
J. Biol. Chem. (2021) 296 100130 5



Figure 3. Deletion of α4s reduces the amount of PA200 and regular catalytic subunits in proteasomes of mature testes. A, immunoblotting and
peptidase activity analyses were performed following native PAGE of the extracts from the testes of the wildtype and the α4s-deficient mice. Proteasomal
peptidase activity was analyzed by incubating the gel with LLVY-amc in the absence or presence of 0.02% SDS, which activates the 20S proteasome. B,
immunoblotting of the fractions of glycerol gradient ultracentrifugation of the extracts from the testes of the wildtype and the α4s-deficient mice. Pro-
teasomal peptidase activities were assayed using LLVY-amc as a substrate. C, the proteasomal peptidase activities of three tissue extracts of the wildtype
and the α4s-deficient mice. All mice were 84 days old (mean ± SEM, n = 6). Data are representative of one experiment with at least two independent
biological replicates. **p < 0.01 (two-tailed unpaired t test).
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Figure 4. Deletion of α4s increases the rates of spermatocyte apoptosis. A, TUNEL staining of the testicle sections of the wildtype or the α4s-deficient
mice at different ages, visualized at low resolution (20×). The scale bar represents 100 μm. B, TUNEL staining of the testicle sections of the wildtype and the
α4s-deficient mice at pnd 84, visualized at high resolution (100×). C–D, percentile of SYCP3- (C) or γH2AX (D)-positive cells in the wildtype or the α4s-
deficient testes. E, percentile of apoptotic cells among the SYCP3-positive cells in the wildtype or the α4s-deficient testes. F, numbers of γH2AX-, TUNEL-,
and SYCP3-postive cells in the α4s-deficient testes were normalized to those in the wildtype testes. G, immunofluorescent staining of the testicle sections of
the wildtype and the α4s-deficient mice. γH2AX-positive spermatocytes were quantitated.

α4s and histone degradation during meiotic DNA repair
degradation coupled with DNA damage (37). This study shows
that α4s is required for the removal of acetylated core histones
during meiotic DNA repair in spermatocytes and male fertility.
In comparison, deletion of PA200 just reduces the male
fertility by delaying the degradation of the core histone during
the elongation of spermatids after meiosis (4). Eventual
cleavage of histones should be executed by catalytic subunits
in the 20S particle. We suggested previously that
J. Biol. Chem. (2021) 296 100130 7



Figure 5. Deletionofα4ssuppresses repairofmeioticDNAdouble-strandbreaks in testes.A, immunostainingof thespermatocytenuclei fromthewildtypeor the
α4s-deficient mice (n = 20).White arrows point to MLH1 foci. B–C, immunostaining of the spermatocyte nuclei from the wildtype or the α4s-deficient mice (B) and the
numbers of RAD51 foci per nucleuswere quantified (C).White arrows point to RAD51 foci.D, immunoblotting analysis of the extracts from the 4C spermatocytes of the
wildtypeand theα4s-deficientmice. Spermatids fromthewildtypemice serveasa control.E, phases inmeiosis I of the spermatocytewereexamined in thewildtypeand
α4s-deficient testes by immunostaining of SYCP3 and α-tubulin. DNA was stained by DAPI. White arrows point to spermatocytes at corresponding phases. F, sper-
matocytes atmetaphase I were examined in thewildtype and α4s-deficient testes by immunostaining of γH2AX and α-tubulin. DNAwas stained byDAPI.White arrows
point to spermatocytes at metaphase I. The scale bars represent 40 μm. G, TUNEL staining of the testicle sections of the wildtype or the α4s-deficient mice at pnd 28.
TUNEL-positive cells atmetaphasewere quantitated.White arrowspoint tometaphase cells. The scale bar represents 40μm. Except as stated inG, allmicewere 84days
old (mean± SEM, n=6). Data are representativeof oneexperimentwith at least two independentbiological replicates. *p< 0.05, **p< 0.01 (two-tailedunpaired t test).
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Figure 6. α4s is required for programmed removal of the acetylated core histones in spermatocytes. A, colocalization of H4K16ac with DNA breaks
marked with TUNEL staining was analyzed in the wildtype and α4s-deficient testes from mice at pnd 28 by immunostaining. The white arrow points to a
spermatocyte with colocalization of TUNEL signal with H4K16ac. The ratios of cells containing H4K16ac to TUNEL-positive cells were quantified (mean ±
SEM, n = 6). The scale bar represents 40 μm. Data are representative of one experiment with at least two independent biological replicates. *p < 0.05, **p <
0.01 (two-tailed unpaired t test). B, colocalization of γH2AX with H4K16ac was analyzed in the wildtype and α4s-deficient testes by immunostaining. The
filled and open red arrows point to spermatocytes and spermatids, respectively, and the white arrow points to a spermatocyte with costaining of γH2AX with
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spermatoproteasomes contain α4s/PSMA8 and/or the catalytic
β subunits of immunoproteasomes in addition to PA200,
because we had not presented the evidence whether or not
spermatoproteasomes contain both α4s and the catalytic β
subunits of the immunoproteasome (4). In this study, we show
that α4s is required for the formation of the properly assem-
bled spermatoproteasome, which contains both PA200 and
constitutive catalytic subunits (i.e., β1, β2, and β5), in adult
testes. However, catalytic subunits of the immunoproteasome
(i.e., β1i, β2i, and β5i) could replace, at least partially, the
constitutive catalytic subunits in the α4s/PSMA8-deficient
testes. We further provide evidence that α4s deficiency cau-
ses the changes in the protein levels in various proteasome
subunits at least partially by altering their transcription or
mRNA stability. As a consequence, the phenotype of α4s
deficiency was much more severe than that of PA200 defi-
ciency. The switch between constitutive proteasome subunits
and immunoproteasome subunits might also account for the
severe phenotypes in the α4s/PSMA8-deficient mice. Thus,
α4s should be a better drug target than PA200 in controlling
histone degradation during spermatogenesis.

The difference between α4s and α4 is concentrated on the
outer surface of the subunits (6). A large part of the surfaces
generated by the unique regions of α4 and α4s are negatively
charged. A remarkable difference is that the C-terminal unique
regions have an opposite charge, e.g., Glu223 for α4 and
Lys225 for α4s (6). The extensive interactions between PA200
and the 20S catalytic particle result in significant α-ring
conformational rearrangements (38). In 20S-PA200, the N-
terminal tails of α5 to α7 of the 20S particle are fully ordered
and relocated from the proteasome axis into grooves at the
inner surfaces of the PA200 dome, but the tails are disordered
and not recovered for the remaining α subunits, particularly
evident for α3 and α4 (38). The difference in α4s sequence
might make it a better fit than α4 for the assembly of the 20S
particle with PA200, and perhaps for the recruitment of reg-
ular catalytic subunits, including β1, β2, and β5, in comparison
to their immunoproteasome counterparts.

During the preparation of this article, two independent
works on the role of α4s/PSMA8 in male meiosis have been
published (14, 15). Zhang et al. (15) showed that the levels of
DNA damage repair proteins RAD51 and RPA1 in mature
testes were markedly elevated by the deletion of α4s/PSMA8 as
analyzed by immunoblotting, whereas Go’mez-H et al. (14)
showed no difference in the accumulation of DNA damage
repair proteins RAD51 and MLH1 between the wildtype and
the α4s/PSMA8-deficient spermatocytes as analyzed by im-
munostaining. In order to avoid the influence of the cell types,
we analyzed the levels of these DNA damage proteins in the
purified 4C spermatocytes by immunoblotting and further
validated these results by immunostaining of spermatocytes.
H4K16ac. All mice were 84 days old (mean ± SEM, n = 6). The scale bar represe
degradation assay for the core histones by the α4s-containg (from testes) a
Degradation of the acetylated histones (Ac-H) was quantitated. D, model mech
progression in spermatocytes by stimulating assembly of spermatoproteasome
biological replicates. *p < 0.05, **p < 0.01 (two-tailed unpaired t test).
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Our results demonstrate that the levels of DNA damage repair
proteins RAD51, MLH1, and RPA1 were not elevated in the
α4s/PSMA8-deficient spermatocytes, which were in accord
with those by Go’mez-H et al., clarifying this inconsistence in
the literature. Although the levels of DNA damage repair
proteins were not elevated in the α4s/PSMA8-deficient sper-
matocytes, we showed that deletion of α4s led to accumulation
of unrepaired DNA breaks as marked by γH2AX and TUNEL
staining at metaphase I, suggesting that α4s is essential for
meiotic DNA repair and the proper progression of meiosis.
Although two other papers also demonstrated that the deletion
of α4s/PSMA8 leads to male infertility in mice, the underlying
mechanisms in their papers are different from ours (14, 15).
Although the report by Zhang et al. did not provide any valid
candidate substrates for α4s/PSMA8, Go’mez-H et al. showed
that other meiosis-related proteins, including SYCP1, SYCP3,
CDK1, and TRIP13, in addition to the acetylated histones are
also accumulated in the α4s/PSMA8-deficient spermatocytes.
But they did not provide any evidence that these proteins are
degradable by the α4s/PSMA8-containing proteasomes, and
hence, they did not prove that these proteins are the substrates
of the α4s/PSMA8-containing proteasomes. However, we
found that α4s/PSMA8 directly promotes the proteasomal
degradation of the acetylated histones in the presence of
PA200, proving that the acetylated histones are the substrates
of the α4s/PSMA8-containing proteasomes.

Taken together, our results suggest that α4s/PSMA8 pro-
motes proper formation of spermatoproteasomes, which har-
bor both PA200 and constitutive catalytic subunits, and that
α4s/PSMA8 is essential for DNA repair at metaphase I, proper
progression of meiosis, and fertility in male at least partially by
promoting histone degradation. We suggest that spermato-
proteasomes are defined to be composed of the activator
PA200 and the 20S catalytic particles with α4s as well as
constitutive catalytic subunits (i.e., β1, β2, and β5). As pro-
posed in Figure 6D, at the meiosis I in spermatocytes, (1) DSBs
are generated for exchanging genetic information between
nonsister chromosomes, and the core histones near DNA
damage sites are heavily acetylated; (2) the acetylated core
histones are recognized by the BRD-like region in PA200 in
the spermatoproteasome; (3) the subunits of the spermato-
proteasomes, including PA200 and constitutive catalytic sub-
units, are expressed and assembled in the presence of α4s; (4)
the acetylated core histones are degraded by spermatoprotea-
somes; (5) DSBs are exposed and repaired by DNA repair
enzymes; and (6) the newly synthesized core histones are
reassembled into chromatins. Thus, deletion of α4s suppressed
the degradation of acetylated core histones, blocked DNA
repair at metaphase I, disrupted MSCI, and finally led to male
infertility. Although we could not exclude the involvement of
other potential substrates of the PA200-containing
nts 40 μm. C, immunoblotting analysis following the acetylation-dependent
nd α4s-free (from muscle) 20S CP in the absence or presence of PA200.
anism by which α4s promotes histone degradation, DNA repair, and meiotic
s. Data are representative of one experiment with at least two independent
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proteasomes, degradation of the core histones during meiotic
DNA repair in spermatocytes must play an important role in
these α4s-related activities.

Errors in autosomal synapsis are usually associated with
the unrepaired DSBs and asynapsis, which eventually lead to
infertility (39). The failure of MSCI, which reverts the
silencing of genes on X and/or Y chromosome, results in
spermatocyte apoptosis during the pachytene stage (40). It
has been reported that mutations in genes involved in
MSCI, such as H2ax and Brca1, cause meiotic arrest (25,
41). Thus, the results from this study are important for
understanding male infertility and might provide a clue for
the treatment of male infertility.

Unplanned pregnancies, especially in teenagers, contribute
to social and financial burden associated with abortions and
deliveries by single mothers. Although there is a short list of
possible targets for contraceptive drugs (42–44), reversible
male contraceptive drugs are not yet available. Identification
of the testis-specific α4s as an essential proteasome subunit
for meiosis in male might provide a valid target for male
contraceptive drugs. Since deletion of α4s does not affect
spermatogenic cells upstream of pachytene spermatocytes,
removal of the drug that targets α4s should resume the
fertility.
Experimental procedures

Construction of the α4s-deficient mice

The α4s/PSMA8 mutant ES cells were generated in an ES
cell line of the C57BL/6N mouse using the retroviral gene
trapping techniques by the European Conditional Mouse
Mutagenesis Program (EUCOMM, clone ID: EUCE0019_F06)
and were then injected into C57BL/6N blastocysts. The
resulting male chimeras were mated with female C57BL/6N
mice. Heterozygous offspring were intercrossed to produce
homozygous mutants. Mice were kept in School of Brain and
Cognitive Sciences, Beijing Normal University, using standard
humane animal husbandry protocols. The animals’ care was in
accordance with institutional guidelines. Unless stated other-
wise, mice were six per group and age- and sex-matched in
each experiment. Sample size was based on empirical data
from pilot experiments. No additional randomization or
blinding was used to allocate experimental groups. Insert site
in Chromosome 18 was 14870771, and the Sequence between
14870771 and 14870997 was the target of alignment (GAA
CAATTTGTTTTCTCTGCCAGATCAGCAATGTGCCTTC
ATTAGTGTCATCTATTCTCAGGATTACCTGAAGCGT
TATGTGTAAGGGTGGTCTGATTTGGATGCCATGTT
GATTTCTCTGGTGAGCAATAAGTAACAAGTTCTGTA
GACACTTTGACAAGGTACATGTATGATTGAAAAATAT
TAACCCCACTAAAATTTAGAGTGCAAAATTCTGGTAA
GTTTCT). For genotyping, DNA was extracted from the tip of
the tail and analyzed by PCR with the primers as follows:

Forward primer: 50-CAACCAGTATTATAGTGACCC
AGC;

Reverse primer: 50-GGGACTAGACTGTAGTACATTT
GAGG.
Immunoblotting

Unless stated otherwise, testes were homogenized in the
buffer (50 mM of Tris-HCl [pH7.5], 150 mM of NaCl, 10%
glycerol, 5 mM of MgCl2, 5 mM of ATP, and a protease
inhibitor mixture) using a mortar, sonicated twice at 200 W
for 10 s each, and then cleared by centrifugation. Proteins
were separated by SDS-PAGE. After proteins were trans-
ferred to a polyvinylidene fluoride membrane (Millipore),
the blot was incubated with a primary antibody. The sec-
ondary antibody was goat antibody against rabbit or mouse
IgGs conjugated to horseradish peroxidase. To obtain whole
tissue extracts, testes were triturated and incubated with
cold acetone overnight. The extract was centrifuged and
dried in air, and then the pellet was dissolved in 1.2× SDS
sample buffer.

Proteasome activity

Proteasome activity was analyzed by using peptide sub-
strates, including LLVY-amc, LLE-amc, and LRR-amc, as
described previously (45).

Tissue collection and immunostaining

Testes were fixed in 4% paraformaldehyde at 4 �C overnight,
dehydrated, embedded in wax, and sectioned at 5 μm. The
sections were deparaffinized, rehydrated, and followed by
antigen retrieval in 10 mM of the sodium citrate buffer. Then,
sections were blocked with goat serum in 0.3% Triton X-100
and incubated with primary antibodies.

H&E staining

Spleens and kidneys were excised and fixed in 4% para-
formaldehyde overnight and sectioned at 5 μm and stained by
hematoxylin and eosin. The cytoplasm was stained by eosin
(red), and the nucleus was stained by hematoxylin (blue).

Purification of spermatocytes and spermatids by flow
cytometry

Testis dissociation was based on a recently described
method (46). Testes were isolated, decapsulated, and incubated
in 0.5 mg/ml of collagenase/DNase I/Dulbecco’s modified
Eagle’s medium. The tube was shaken in a horizontal position
at 150 rpm for 10 min at 35 �C, and then seminiferous tubules
were incubated in preheated collagenase I/Dnase I/trypsin/
Dulbecco’s modified Eagle’s medium. The tubules were gently
pipetted up and down. The suspension was passed through a
100-μm nylon cell strainer and washed with 1x PBS. The cells
were incubated with Hoechst and propidium iodide, respec-
tively. The cells were then sorted by a flow cytometer (BD
FACSAria III) and analyzed using BD FACSDiva.

Apoptosis detection by TUNEL assay or annexin V staining

Apoptosis detection in the testes using the DeadEnd
Fluorometric TUNEL System was carried out according to
the standard paraffin-embedded tissue section protocol
(Promega).
J. Biol. Chem. (2021) 296 100130 11
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For annexin V staining of apoptotic cells, the sections were
deparaffinized and rehydrated, followed by antigen retrieval in
10 mM of the sodium citrate buffer. Then, sections were
blocked with goat serum in 0.3% Triton X-100 and incubated
with primary antibodies of annexin V (Abcam, ab14196, 1:50).

Spermatocyte spread and immunolabeling

Spreading and immunolabeling of testicular samples were
performed according to the standard protocol (47). Briefly,
testes were dissected, rinsed in PBS, and decapsulated. The
remaining tissues were transferred into a separation medium
(hypo extraction buffer containing 30 mM Tris pH8.2, 50 mM
sucrose, 17 mM citric acid, 5 mM EDTA, 2.5 mM DTT, and
1 mM PMSF) for 30 min. Spermatocytes were released from the
tubules by finely mincing with a razor blade in 0.1 M of sucrose
solution. Twenty microliters of the mixture was added onto a
glass slide preloaded with 500 μl of 1% paraformaldehyde (pH
9.2) and spread evenly. Slides were incubated in a humidified
chamber for 2 h. For immunostaining, slides were blocked in 1×
ADB (1% goat serum, 3% BSA, 0.2% Triton X-100) at room
temperature for 10 min, followed by incubation with primary
antibodies at 4 �C overnight. On the following day, slides were
washed and incubated with secondary antibodies for 1 h and
finally mounted with DAPI (1:200). Antibodies against SYCP1
(Abcam, ab15087, 1:100), SYCP3 (Abcam, ab97672, 1:100),
MLH1 (Abcam, ab92312, 1:50), γH2AX (Millipore, 05-636,
1:50), and RAD51 (Abcam, ab133534, 1:100) were used.

Purification of PA200 and the 20S proteasome

Purification of proteasomes from bovine or rabbit tissues was
carried out as described (45). Purification of PA200 was adapted
from previous protocols (4, 48). Briefly, the supernatant from the
homogenized bovine testes (200 g) was incubated with DE52
DEAE cellulose (100 ml). The resin was washed with the buffer
containing 20 mM of Tris-HCl (pH7.5), 10% glycerol, 50 mM of
NaCl, 5 mM ofMgCl2, 0.5 mM of EDTA, 1 mM of dithiothreitol
(DTT), and 2mMof ATP and was then eluted with 250ml of the
above buffer, but containing a 50 to 300 mMNaCl gradient. The
pooled fractions with PA200 were diluted with an equal volume
of theTSDGbuffer (10mMofTris, pH8.5, 25mMofKCl, 10mM
ofNaCl, 5.5mMofMgCl2, 0.1mMof EDTA, 1mMofDTT, and
10% glycerol) and were loaded toQ Sepharose ion-exchange Fast
Flow column. The column was rinsed with 20 ml of the TSDG
buffer, eluted with 50 ml of 750 mM of KCl in the TSDG buffer,
and the eluted sample was directly applied to the equilibrated
Superdex 200 26/60 column. The fractions with PA200 from
the Superdex columnwere loaded on aUnoQcolumn (6ml, Bio-
Rad), washed with 20ml of the TSDG buffer containing 125mM
ofKCl, and elutedwith a 100-ml linear gradient of 125 to 500mM
KCl in the TSDGbuffer. The PA200 pooled from the UnoQ step
wasfinally separatedbyultracentrifugation (85,000g for 19h)ona
5% to 20% glycerol gradient.

Histone purification and acetylation

Histones from rabbit thymus or HeLa cells were purified
according to standard acid extraction protocols. As described
12 J. Biol. Chem. (2021) 296 100130
(4), histones from thymus were acetylated by His-tagged Gcn5
HAT domain (aa 98–262) in the buffer containing 50 mM of
Hepes, pH 8.0, 10% glycerol, 1 mM of DTT, 10 mM of sodium
butyrate, and 0.3 mM of acetylCoA, and the reaction was
terminated by TCA precipitation.

Degradation of acetylated histone

The degradation of acetylated histones was assayed in the
buffer containing 20 mM of Tris, pH 7.5, 0.5 mM of EDTA,
1 mM of DTT, and 1 mM of MgCl2 at 37 �C, and a 70-μl
reaction mix was supplemented with 280 ng of the 20S pro-
teasome and 3 μg of acetylated histones in the absence or
presence of 1 μg of PA200.

Quantification and statistical analysis

Unless stated otherwise, significance levels for comparisons
between two groups were determined by two-tailed unpaired t
test, mean and SEM (*p < 0.05 and **p < 0.01), normal dis-
tribution. All of the images were chosen blindingly and
randomly and quantitated by ImageJ.
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