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1. Introduction

Most embryonic mesoderm cells are initially specified when they reside in an epithelium. 

An epithelial to mesenchymal transition (EMT) then removes them from the epithelial layer 

and they adapt a mesenchymal phenotype. In some cases, these cells again become epithelial 

and go through additional EMTs. This process of leaving the epithelium also occurs with 

carcinoma cells. Whether the two EMTs share mechanistic components of the process is a 

question that has often been asked. Literature reports indicate that they do indeed share 

multiple properties: they tend to use the same controlling transcription factors (twist, snail, 
and zeb1), though not always. They appear similar in behavior (the cells become motile, 

change polarity, invade through the basement membrane, de-adhere from the adherens 

junction, and the plasma membrane is remodeled), though differences are observed in 

different model systems. What is clear is that in both the carcinoma and embryo systems, the 

molecular basis of this complex cellular event called EMT is incompletely understood. 

Indeed, of the several thousand papers a year on EMT, most focus on the epiphenomenon, 

that is, does the phenotypic change occur to an epithelial culture, or layer, under applied 

experimental conditions? Many fewer papers focus on the functional mechanics of that EMT 

in molecular detail.

A major reason for not understanding the EMT sequence in greater detail is that most 

systems are asynchronous, that is, the cells undergoing an EMT are at different states at any 

given time making it difficult to deduce the precise sequence of molecular events. A few 

cases of EMT in embryonic systems do offer synchrony, but each of these also has 

shortcomings. For example ventral furrow formation in Drosophila provides a near 

synchronous EMT of mesenchyme cells, and some genes necessary for the process have 

been identified, but the difficulty in that system is that the number of mesenchymal cells is 

small relative to the remaining cells of the embryo, and the EMT occurs relatively early in 

development, at a time when many maternally expressed genes are still expressed making it 

difficult to use the power of Drosophila genetics to discover the genes mechanistically 

involved specifically in the EMT process (Schafer et. al 2014). Anchor cell invasion in C. 
elegans is another embryonic model of EMT in which one cell invades through the basement 

membrane as part of vulval assembly (Schindler et. al 2013). In this case the system is 

genetically tractable because there is no question of synchrony since only the one cell 

participates, and a number of genes involved in the process have been identified. The 
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shortcoming of this system for EMT analysis is that the anchor cell does not complete an 

EMT. It breaches the basement membrane in a manner similar to that utilized by cells 

undergoing EMT in other systems, but it does not de-adhere from the epithelium. The sea 

urchin embryo also has a population of cells that undergo EMT at a precise time in early 

development and a gene regulatory network of specification is well established for those 

cells, making this a useful model system for understanding control of the process (Saunders 

et. al 2014). Nevertheless, this system also has shortcomings in that the skeletogenic cells 

that go through the EMT are only 5% of the population of cells in the embryo, making it a 

challenge to determine the sequence of molecular events in that small population.

Here we describe a method that can be used on any system to at least partially overcome 

some of the shortcomings of many systems. Single cell RNA sequencing (scRNA-seq) has 

advanced to the point where one can obtain a profile of expressed RNA in each cell. 

Computational approaches along with a temporal trajectory of single cells offers an 

approach to profile the molecular changes that occur in each cell undergoing the EMT over 

time. This approach therefore, has the potential of eliminating much of the noise introduced 

either by asynchrony of the EMT and/or inclusion of non-involved cells, and the reward is 

provision of a temporal profile of molecular change.

It should be noted, however, that scRNA-seq is not the perfect solution. Because of the small 

amount of RNA obtained from each cell, amplification is necessary before sequencing. This 

and other limitations means that some rare RNA species are less likely to be included in the 

database than in bulk RNA-seq approaches. Nevertheless, the advances in scRNA-seq 

approaches provide the investigator with a valuable tool to penetrate EMT mechanisms to a 

level that heretofore has been unreachable.

2. The single cell RNA sequencing approach, a justification.

Next generation sequencing (NGS) platforms increasingly allow in-depth analyses of gene 

expression and genetic interactions in many biological systems. The approaches allow the 

investigator unprecedented access to biological questions. The methodology begins with 

sample preparation, includes library production, sequencing, and data analysis. The latter is 

most important as software continues to be developed to enable the investigator to gain ever 

more detail about the biological process in question. As part of the description, the caveats 

and limitations of these technologies will be discussed. The focus will be on approaches that 

advance RNA sequencing technologies and their application to Epithelial to Mesenchymal 

transitions.

Two methods of RNA sequencing are currently utilized, single cell RNA-sequencing 

(scRNA-seq) and bulk RNA-sequencing (RNA-seq). They each have their own individual 

advantages and disadvantages and are useful for addressing different biological questions. 

Bulk (whole-tissue) RNA-sequencing has many applications for research including 

comparative gene expression analyses between samples of various conditions, differential 

gene expression, identification of mRNA splice variants and small or long noncoding RNAs. 

RNA material collected from whole-tissue samples requires less or no amplification relative 

to sc-RNAseq and the sample can be more deeply sequenced than that obtained from a 
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single cell. Bulk RNA-seq is also easier: obtaining single cell suspensions from fixed or 

frozen tissue is non-trivial, and may be very difficult for some samples. Thus, bulk-RNA 

sequencing is a good option in many applications. However, bulk RNA-seq is not as 

informative for identifying transcriptional differences within heterogeneous cell populations 

such as in developing and complex tissues because bulk RNA-seq measures the expression 

level of transcripts across a population of various types of cells, therefore creating an 

average transcriptomic profile of the tissue. This can become an issue when rare cell types 

are of interest, because their signal is essentially lost in the noise and more abundant 

transcripts. One way to get around this issue is by enriching for the population of interest, 

using a cell surface marker, fluorescence or antibody, however, this will still provide an 

averaged transcriptome across cells and does not capture heterogeneity at the single cell 

level. Another way to improve the analysis is to perform a temporal trajectory of the material 

in question. For embryonic material this can be highly informative because it adds the 

element of time, although still, within each sample the heterogeneity produces noise.

Single cell RNA sequencing has the potential to eliminate much of the noise within a mixed 

population of cells. With a temporal profile it enables the investigator to probe the 

transcriptional dynamics of heterogeneous cell populations because it measures the 

distribution of mRNA expression from individual cells. Single cell transcriptomes can be 

profiled for a number of purposes such as creating cell atlases, mapping cell lineage 

trajectories (Cao et. al 2017, Chen et. al 2018, Fincher et. al 2018, Plass et. al 2018, Tintori 

et al 2016, Han et. al 2018, Wagner et. al 2018), modeling virtual in situ hybridization 

(Karaiskos et al 2017) and more (Haque et. al 2017). Using scRNA, one can capture cell 

trajectories and developmental processes such as an EMT by applying a scRNA-seq time 

course to construct a cell trajectory map (Griffiths et. al 2018). Generating an EMT time 

course to capture transient cell states at single cell resolution informs the investigator with 

information on how this dynamic process occurs over time, providing a resource that is not 

available in any other known way.

Single cell RNA sequencing is rapidly becoming a viable alternative to bulk RNA 

sequencing, however, there are still some inherent issues with the platform. One challenge is 

due to the fact that RNA is harvested from only a single cell, and generally needs to be 

amplified with reverse transcription or PCR. This process of amplification can introduce bias 

that can lead to an incorrect interpretation. However, this can be overcome during the 

normalization and computational analysis by using Unique Molecular Identifiers (UMI), to 

uniquely label individual RNA molecules, greatly reducing amplification bias. Additionally, 

due to the sparsity of some RNA transcripts present in the cell and the inefficient cell capture 

process, sometimes a gene may have moderate expression in some cells, but cannot be 

detected in another cell. These occurrences, known as gene dropouts can be misleading 

because it is difficult to differentiate between inefficiency of transcript capture and a cell 

lacking that particular gene expression, or a gene that is expressed intermittently, therefore 

dimensionality reduction and normalization should to be performed computationally (Becht 

et al 2018, Van der Maaten 2008).

Massri et al. Page 3

Methods Mol Biol. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3. Preparation of single cell suspensions for scRNA-seq

The key to any scRNA-seq experiment is generating a healthy representative single cell 

suspension from dissociated tissues or embryos. Therefore, it is imperative to develop a 

single cell dissociation protocol that properly dissociates all single cells with minimal loss of 

integrity of the cells and minimal degradation of RNA. To achieve these goals, it is of utmost 

importance to minimize the time away from a cell’s native environment while generating 

and handling single cell suspensions to accurately capture a cell’s RNA identity, before 

alterations can occur. The transient nature of RNA expression can potentially be fixed in 

time following dissociation with a proper fixative, such as methanol, and the cells washed 

and rehydrated in 3x SSC rather than PBS, because rehydration in PBS can cause RNA 

degradation (Juliano et. al 2014, Chen et. al 2018). Tissue types from various organisms and 

embryos are highly variable in their composition, therefore to generate a single cell 

suspension, different tissues require different enzymes, temperatures, salinity, and pH. Many 

groups have utilized enzymes that degrade extracellular matrix components to facilitate their 

dissociations. To establish a protocol, single cell preparations should be kept consistent, 

because altering the method of preparation can introduce a sampling bias. To establish the 

optimal conditions our single cell dissociation protocol was developed using a pilot study to 

establish the most reliable approach and as part of that, establish that a fixative such as 

methanol can be used to stabilize the RNA. The pilot study helped establish optimal scRNA-

seq conditions for our system. The details of dissociation and stabilization of RNA are too 

varied to be covered in this chapter, but in each case the goals outlined above should be 

sought.

4. Considerations of approach and instrumentation available for library 

preparation from single cells

To a research group beginning a scRNA-seq project, the next big question to ask is what 

platform should be used? Single Cell RNA sequencing has rapidly evolved since it was first 

used in 2009 by Tang et. al. When scRNA-seq was first introduced, it involved manually 

pipetting single cells into microwells and was relatively low throughput with a considerable 

amount of work required per cell. Since then, many groups have contributed to making 

scRNA-seq cost efficient and high throughput, and today many variations of these 

technologies exist. The introduction of multiplexing in 2011 by Islam et. al was a major 

milestone where they showed many single cells could be sequenced together and 

quantitatively when UMIs were used. Additionally, in 2013, Brennecke et. al integrated 

fluidic circuits, to allow for higher throughput, and more reproducibility. In 2015, Macosko 

et. al and Klein et. al introduced droplet-based methods where single cells are placed in 

droplets using microfluidics and beads with UMIs to uniquely label RNA molecules in each 

cell.

Currently a number of platforms are available to choose among, each with its advantages 

and disadvantages. Platforms differ from each other by either method of RNA quantification, 

or by method of cell capture. RNA expression is quantified by measure of either full length 

cDNAs or by tag-based UMIs. There are three methods of cell capture, microwell-based, 
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microfluidic-based, and droplet-based. With the various options, it may seem difficult to 

determine which method is best, and the answer is it depends on the question being asked. 

Ziegenhain et. al (2017) and Svensson et. al (2017) realized this and so to assist you in 

making an informed decision they compare and contrast the common scRNA-seq 

techniques’ accuracy, sensitivity, precision, power, and cost efficiency. Based on their 

findings, Smart-seq2, had the best sensitivity, accuracy, precision and the lowest gene 

dropout rate, however this approach provides relatively low throughput compared to droplet 

based methods that are not as sensitive but significantly less costly. Smart-seq2 currently is 

the best option for increased sequencing depth but for a smaller number of cells, as cost can 

be quite considerable. If willing to sacrifice some sequencing depth, drop-seq is the most 

cost efficient of the methods, but requires a tedious multi day protocol to be performed. Labs 

and sequencing centers also are adapting commercial platforms that include Fluidigm’s C1 

microfluidic chip, Wafergen ICELL8, BioRad’s ddSEQ, and perhaps the most popular 10x 

Genomics Chromium. Other alternatives utilize combinatorial indexing such as sciRNA-seq, 

while SPLiT-seq utilizes a split and pool method of barcoding cells within wells (Cao et. al 

2017, Rosenberg et. al 2018) These allow for higher throughput and cost efficiency than 10x 

and Drop-seq, however, the sample preparation takes longer, and there is a potential for 

introduction of sampling bias. In addition, the cell quality reportedly is a bit lower than 10x 

and Drop-seq. With all these options, it can be difficult to identify which method is best, for 

your research question. For a process such as EMT which has a temporal component, and 

for a process that occurs within an in vivo model (in our case, the sea urchin), we sought a 

method that could process many single cells with the best depth possible. To satisfy such a 

requirement, 10x Genomics was our choice of platform. Following library construction of 

single cells via 10x Genomics protocol, cells are sequenced at ~50k reads per cell and using 

a 150 bp paired end Illumina run. Similarly, other single cell library preparation protocols 

utilize Illumina’s paired end sequencing but may have different run length of 75, 125, 250bp 

and more. Depending on the number of cells and the run length, a variety of options will be 

available using Illumina. For example, using a total of 1 billion PE reads on the NovaSeq 

6000 and 150bp PE run, roughly, 20k cells can be sequenced at 50k reads/cell to generate a 

single cell atlas capturing EMT. Indeed, the multitude of scRNA-seq techniques and 

methods are rapidly evolving, and as cost of scRNAseq decreases, previous technologies 

will surely become obsolete. Research groups continue to push the limits and cost efficiency 

of scRNA-seq with methods like cell hashing that allow for “super loading” of cells, and it 

will only drive the cost down.

5. Bioinformatic Analysis-Overview of procedure for analysis of results

Once single cell libraries are prepared and samples have been sequenced, the first step in 

analyzing the data is to create an expression matrix from the raw sequencing output. First, 

your bcl file should be demutiplexed using bcl2fastq to produce fastq files that can be 

checked for read quality control. A pipeline should be established early to identify what type 

of analyses will be performed. Following sequencing, Unique Molecular Identifiers (UMI) 

should be extracted and reads demultiplexed using UMI-tools, or zUMIs (Smith et. al 2016, 

Parekh et. al 2018). To perform a quality check on your reads, a common tool used is 

FastQC (Andrews, S. 2010). Once reads have been checked for quality control, they should 
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be trimmed if a sample has poor base per sequence quality scores below 20, or if any 

exogenous nucleotides such as adapters were introduced. A few commonly used trimming 

tools are Trimmomatic, TrimGalore, and Cutadapt (Bolger et. al 2014, Krueger et. al 2012, 

Martin et. al 2011). Trimmed reads can then be mapped back to a reference genome or 

transcriptome using a bulk RNA-seq aligner/pseudoaligner such as STAR/Kallisto or your 

aligner appropriate for your research question (Dobin et. al 2013, Bray et. al 2016). Once 

reads have been mapped to genes, they are counted on a per gene and per cell basis to 

generate a single cell gene expression matrix (Andrews et. al 2019, Smith et. al 2016). This 

matrix has a row for each cell and a column for each gene. The i, j entry encodes the number 

of molecules of mRNA for gene j in cell i. Therefore, each row encodes the expression 

profile of a cell as a point in a high-dimensional gene-expression space, where there is a 

dimension for each gene.

With the expression matrix in hand, we are now ready to begin visualizing, exploring and 

analyzing the data. We begin by visualizing the high-dimensional single-cell gene 

expression profiles in two or three dimensions. Some popular tools for visualizing single cell 

datasets include force layout embedding (FLE), UMAP, and tSNE (Brecht et. al 2018, Van 

der Maaten et al 2008). Instead of applying these tools directly to the single cell expression 

data, it can be helpful to first reduce the dimensionality from 20,000 down to ~1000 by 

selecting variable genes, and then down to ~100 using principal components analysis (PCA) 

or diffusion maps. This gradual decrease in dimensionality can help extract meaningful 

signals in the visualization. This visualization results in a set of x, y (and maybe z) 

coordinates that can be used to plot cells as points in 2 or 3 dimensions. Cells can be colored 

according to time of collection, batch, or expression of individual genes or gene signatures. 

The second component of exploratory data analysis involves searching for sets of cells with 

coherent gene expression programs. There are two main ways to do this. The first is to 

cluster cells (e.g. using Louvain clustering in diffusion component space). The second is to 

define cell sets according to expression of gene signatures. A gene signature is a list of genes 

(10 to 100 genes) related to a specific biological process or cell state (e.g. Epithelial 

Identity). To define an Epithelial cell state, we could select the top 10% of cells with highest 

expression of the Epithelial Identity gene signature.

In a time-course experiment, an expression matrix is obtained for each time point. The 

exploratory analysis described above can be applied to all time-points together in order to 

learn about general trends in expression over time. But, in order to learn about the different 

developmental trajectories and gene regulatory networks controlling differentiation, we must 

perform trajectory analysis.

The first goal of trajectory analysis is to infer ancestor-descendant relationships between 

pairs of time-points. This is crucial because scRNA-seq kills cells; therefore, we cannot use 

it to directly measure the change in gene expression of any individual cell over time. Live-

cell imaging with fluorescent reporters can address this, but only for a handful of genes at a 

time. Many algorithms have been proposed to recover trajectories from scRNA-seq data. 

Waddington-OT is the only algorithm developed to date that is capable of modeling cell 

growth and development in a scRNA-seq time-course. All other algorithms either cannot 

incorporate known information about time of collection, or assume that all cells grow at the 
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same rate (and therefore give rise to the same number of descendants). Waddington-OT 

infers ancestor-descendant relationships between pairs of time-points by leveraging a 

classical mathematical tool called optimal transport (OT). Intuitively, OT is based on the 

principle that cells can’t change expression of all genes by large amounts in a short period of 

time. Therefore, cells are connected to “putative descendants” in a way that minimizes the 

total net change in expression over time. Each cell is allocated a certain amount of 

“descendant mass” according to an estimate of its proliferative ability and apoptosis rate (i.e. 

more proliferative cells are connected to more descendants). These growth rates are initially 

based on gene signatures of cell cycle and apoptosis, but are ultimately learned from data. 

The output of this first step of trajectory analysis is a “transport matrix” connecting each pair 

of time-points. The transport matrix has a row for each cell at time 1 and a column for each 

cell at time 2. The entries of the matrix indicate the amount of descendant mass each cell 

from time 1 gives rise to at time 2 (if we hadn’t killed the cells).

After inferring ancestor-descendant relationships, the second goal of trajectory analysis is to 

infer gene regulatory networks controlling development and differentiation. To do this, 

Waddington-OT looks for transcription factors that are most predictive of transitions to 

various cell sets. For example, in iPSC reprogramming which transcription factors are 

responsible for pushing cells towards the stem cell state? Waddington-OT also allows us to 

analyze the shared ancestry connecting pairs of cell sets. This allows us to answer -- does 

this pair of cell sets share a common ancestor near the beginning of the time-course and 

when does the pair diverge? We can then look for transcription factors that explain the 

bifurcation.

One common drawback of all these techniques is that spatial information is lost when cells 

are dissociated into suspension, however, the robust characterization of spatial markers 

within a tissue and developing embryo make it possible to reconstruct spatial patterning in 
silico. To reconstruct spatial information from dissociated tissues or embryos, Seurat can be 

employed to estimate a cell’s likely position within spatial domains of the original tissue or 

embryo. As software matures and techniques improve in resolution, spatial transcriptomic 

technologies like Spatial Transcriptomics, Slide-Seq, and Seurat can provide more accurate 

spatial transcriptomic distributions (Eng et. al 2019, Rodrigues et. al 2019).

An outcome sought from this long list of computational options is a list of genes to be used 

in follow-up mechanistic studies. The question of how to reduce the size of that list varies 

with the goals in the system. In the case of the EMT, one approach might be to eliminate 

RNAs that are constitutively expressed since the EMT is fundamentally a change. Then, the 

direction of change and its timing can be considered using trajectories of RNAs and 

clustering programs. To that, data on perturbations, either based on known transcription 

factor control or perhaps on known drug effects can provide differential expression data that 

helps narrow the candidate list. Ultimately the goal is to identify candidates that are essential 

to the EMT and will help the investigator understand how the process works. To that end 

scRNA-seq provides an excellent tool.
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Figure 1: 
General scRNAseq pipeline

Figure adapted from and inspired by the single cell RNA sequencing course (Kiselev et. al 

2019). Bioconductor is a repository that houses toolkits for sequencing and cell quality 

control, analysis, visualization, exploration, and more. Common packages used for each step 

in the pipeline are included. Using these methods, each gene’s expression during EMT can 

be quantitatively measured in single cells, allowing for a deeper understanding of the 

underlying mechanistic structure of EMT.
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