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Abstract

RAD21 (also known as KIAA0078, NXP1, HR21, Mcd1, Scc1, and hereafter called RAD21), an 

essential gene, encodes a DNA double-strand break (DSB) repair protein that is evolutionarily 

conserved in all eukaryotes from budding yeast to humans. RAD21 protein is a structural 

component of the highly conserved cohesin complex consisting of RAD21, SMC1a, SMC3, and 

SCC3 [STAG1 (SA1) and STAG2 (SA2) in metazoans] proteins, involved in sister chromatid 

cohesion. This function is essential for proper chromosome segregation, post-replicative DNA 

repair, and prevention of inappropriate recombination between repetitive regions. In interphase, 

cohesin also functions in the control of gene expression by binding to numerous sites within the 

genome. In addition to playing roles in the normal cell cycle and DNA DSB repair, RAD21 is also 

linked to the apoptotic pathways. Germline heterozygous or homozygous missense mutations in 

RAD21 have been associated with human genetic disorders, including developmental diseases 

such as Cornelia de Lange syndrome (CdLS) and chronic intestinal pseudo-obstruction (CIPO) 

called Mungan syndrome, respectively, and collectively termed as cohesinopathies. Somatic 

mutations and amplification of the RAD21 have also been widely reported in both human solid 

and hematopoietic tumors. Considering the role of RAD21 in a broad range of cellular processes 

that are hot spots in neoplasm, it is not surprising that the deregulation of RAD21 has been 

increasingly evident in human cancers. Herein, we review the biology of RAD21 and the cellular 

processes that this important protein regulates and discuss the significance of RAD21 deregulation 

in cancer and cohesinopathies.
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1. Introduction

Since the discovery of RAD21 at the end of the last century as a principal component of 

chromosomal cohesin complex, numerous other functions of this important molecule have 

been described. During the last two decades, more than 4500 manuscripts have been 

published on RAD21, describing not only its canonical functions in sister chromatids 

cohesion and DNA damage repair but also other functions such as regulation of gene 

transcription, maintenance of nuclear architecture, biogenesis of centrosomes, meiosis, 

apoptosis, and hematopoiesis. In view of these pleiotropic functions of RAD21 in a broad 

range of cellular processes, it is not surprising that the deregulation of RAD21 has been 

increasingly evident in human diseases including developmental diseases, such as 

cohesinopathies, and cancer. How RAD21 regulates such a diverse array of cellular 

functions and how RAD21 mutations cause human diseases remain unclear. This review is 

an attempt to provide a broad view of RAD21 with a goal to synthesize a handbook of our 

current knowledge of RAD21, which we expect to serve as a link between the past and the 

future studies in this field.

2. Identification of RAD21

rad21 encoding a 628 amino acid (aa) protein was first cloned by Birkenbihl and Subramani 

in 1992 by complementing the radiation sensitivity of the rad21–45 mutant fission yeast, 

Schizosaccharomyces pombe. They reported that rad21 not only has a role in DNA double-

strand break (DSB) repair but also is essential for the mitotic growth of S. pombe. By 

sequencing a human immature myeloid cell line-derived complementary DNA (cDNA) 

library, Nomura et al. (1994) identified a cDNA encoding a homolog of S. pombe rad21 that 

they termed KIAA0078 that encodes a 631aa protein. The murine and human homologs of 

S. pombe rad21 were cloned by McKay et al. (1996). By probing a testis cDNA library with 

the mouse sequence, they obtained a cDNA encoding hRAD21, which they termed HR21. 

Sadano et al. (2000) cloned RAD21 by immunoscreening a placenta cDNA expression 

library, which they designated NXP1. In 1993, by screening mutant budding yeast 

Saccharomyces cerevisiae strains with defective sister chromatid cohesion, Guacci et al. 

(1993) identified Mitotic Chromosome Determinant (Mcd1). By screening for mutation of 

the genes that result in loss of chromosomes in budding yeast as a function of an anaphase-

promoting complex with a known role in the loss of sister chromatid cohesion, Michaelis et 

al. (1997) identified sister chromatid cohesion 1 (Scc1). Mcd1/Scc1 was found to be an 

ortholog of RAD21, a structural component of the chromosomal cohesin complex in the 

mitotic cell cycle that, in addition to RAD21 (Mcd1/Scc1), comprises SMC1, SMC3, and 

SCC3 subunits in yeast [also known as STAG1 (SA1) and STAG2 (SA2) in multicellular 

organisms].

The human RAD21 (hRAD21) gene is located on the long (q) arm of chromosome 8 at 

position 24.11 (8q24.11) (Nomura et al., 1994; McKay et al., 1996), and its molecular 

locations spread across 28,933 bases from 116,845,934 to 116,874,776 on chromosome 8 

(Homo sapiens Updated Annotation Release 109.20200228, GRCh38.p13) (NCBI). 

hRAD21 consists of 28,933 bases, 13 protein-coding exons, and 12 introns with a transcript 

length of 3,660 bps and translation length of 631 amino acid (aa) residues.
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Northern blot and RNA-seq analyses revealed ubiquitous expression of a 3.7-kb transcript in 

human tissues, with the highest expression in testis, thymus, bone marrow, and lymph node, 

and least expression in the pancreas. Northern blot analysis determined that expression 

increases during the S phase and peaks in the G2 phase in HeLa cells (McKay et al., 1996). 

No increase in expression was noted after ionizing radiation was applied. Expression 

analysis revealed ubiquitous expression of a 3.1-kb transcript in mouse tissues, with the 

highest expression in testis and thymus. Testis also expressed a 2.2-kb transcript in 

postmeiotic spermatids (McKay et al., 1996), which possibly encodes the meiotic version of 

Rad21.

3. Characteristics of RAD21 protein

3.1. RAD21 protein

RAD21 is a nuclear phospho-protein, exists in all eukaryotes, and ranges in size from 278aa 

in the house lizard (Gekko Japonicus) to 746aa in the killer whale (Orcinus Orca), with a 

median length of 631aa in most vertebrate species including humans. Immunofluorescence 

microscopy and Western blot analysis collectively revealed nuclear expression of a 120 kDa 

protein in human and mouse, which was higher than the predicted 68 kDa, most likely due to 

post-translational modifications, including hyper phosphorylation of RAD21. Sequence 

similarity comparison indicates hRAD21 is 96% and 25% identical to the mouse and yeast 

proteins, respectively (McKay et al., 1996). They are most conserved at the N-terminus (NT) 

and C-terminus (CT), which bind to SMC3 and SMC1, respectively. The STAG domain in 

the middle of RAD21, which binds to SCC3 (SA1/SA2), is also conserved (Fig. 1). These 

proteins have nuclear localization signals, an acidic-basic stretch and an acidic stretch (Fig. 

1), which is consistent with a chromatin-binding role.

RAD21 belongs to a superfamily of eukaryotic and prokaryotic proteins called Kleisins 

(derived from the Greek word for closure: kleisimo) that include bacterial ScpA, eukaryotic 

RAD21, Rec8, and Barren (in fly) (Nasmyth and Haering, 2005). Based on the conserved 

sequence motifs, there are three categories of Kleisin proteins in the eukaryotic superfamily: 

Kleisin-α, β, and γ (Wildpaner et al., 2001; Schleiffer et al., 2003), and based on the 

homology, hRAD21 is a member of the α-Kleisin family (Nasmyth and Haering, 2005)

RAD21 binds to the V-shaped SMC1 and SMC3 heterodimer, forming a tripartite ring-like 

structure (Gligoris et al., 2014), and then recruits SCC3 (SA1/SA2). The 4 element-complex 

is called the cohesin complex (Fig. 2). SMC1 and SMC3 are ABC-like ATPases. The NT 

and CT of the SMC molecules fold back on themselves, forming anti-parallel intramolecular 

coiled coils (Haering et al., 2002). The conserved protein domains on the CT and NT of 

RAD21 bind to the ATPase heads of the SMC1 and SMC3 heterodimer, respectively, to thus 

form a triangular ring, and SCC3 (SA1/SA2) binds to STAG domain on RAD21 to reinforce 

the ring (Fig. 2A) (Gruber et al., 2003). The binding of ATP to the ATPase head of SMC1 is 

required for RAD21 association with the SMC1 and SMC3 heterodimer (Arumugam et al., 

2003). Unlike budding yeast in which rad21 CT (269–566aa) but not the NT (1–180aa) 

physically interacts with Scc3 (Haering et al., 2002), in humans the RAD21 middle part 

(MP, 173–449aa) but not the RAD21 CT (451–631aa) interacts with SCC3 orthologs, SA1 

and SA2 (Zhang et al., 2013b). Both the yeast rad21 (566aa) and the hRAD21 (631aa) have 
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two Separase cleavage sites. The cleavage sites of the yeast rad21 are at R180 and R268 

(Uhlmann et al., 1999; Uhlmann et al., 2000). The sizes of the Separase-cleavage fragments 

of yeast rad21 NT (1–180aa) and hRAD21 NT (1–172aa) are similar, but the Separase-

cleavage fragments of yeast rad21 CT (269–566aa) and hRAD21 CT (450–631aa) are 

remarkably different. Although hRAD21 CT (451–631aa) cannot immunoprecipitate SA1/2, 

its NT extended version of RAD21 (254–631aa) can. It is possible that the interaction of 

yeast Scc3 and rad21 CT is dependent of its long MP, just like the RAD21 MP in humans 

(Zhang et al., 2013b).

Currently, there are two major competing models of sister chromatid cohesion (Fig. 2B). The 

first one is the one-ring embrace model (Haering et al., 2002), and the second one is the 

dimeric handcuff-model (Zhang et al., 2008b; Zhang and Pati, 2009). The one-ring embrace 

model posits that a single cohesin ring traps two sister chromatids inside; however, 

biochemical and cell biology studies in mammalian cells (Zhang et al., 2008b; Zhang and 

Pati, 2009) and genetic studies in budding yeast (Eng et al., 2015) argue that two or more 

cohesin molecules work together to generate cohesion, and the model by Pati and colleagues 

supports a dimeric cohesion ring in handcuff configuration (Zhang et al., 2008b; Zhang and 

Pati, 2009). Based on the molecular associations of cohesin subunits, results of a 

fluorescence protein complement assay (PCA), protein–protein interaction along with other 

cell biology techniques (Zhang et al. (2008b) provide evidence for a handcuff model of the 

cohesin complex, which consists of two rings. Each ring has one set of RAD21, SMC1, and 

SMC3 molecules. The handcuff is established when two RAD21 molecules move into anti-

parallel orientation that is enforced by either SA1 or SA2. Inhibition of SA1/SA2 leads to 

dissociation of the rings, resulting in the loss of cohesion. Cattoglio et al. (2019) recently 

reported that cohesin dimers occupy at least ~8% in mouse embryonic stem cells (mESCs). 

There is also recent evidence for dimerization or oligomerization states of cohesin subunits 

in budding yeast and human cells, and correlate this state with replication and cohesin 

acetylation (Guacci et al., 2019)hi et al 2020. Using chromatin immunoprecipitation and 

sequencing (ChIP-Seq) for SMC1a and SMC3 in STAG2 WT and KO cells, Viny et al. 

(2019) recently showed lack of statistically significant differential loci and no differential 

occupancy in either STAG1/2-common or STAG1/2-unique binding sites on the chromatin, 

suggesting that absence of STAG1/2 may have no effect on the cohesin ring occupancy on 

the chromatin but may just lack the bridge/cohesion between the cohesin rings.

By using the single-molecule imaging, the DNA loop extrusion compacted by human 

cohesin has been visualized, and two cohesin molecules were most frequently contained in 

the loop-extruding complexes (Kim et al., 2019), suggesting cohesin dimerization. With the 

chromosome regions marked, the dynamics in mitotic chromosome resolution and 

compaction have been clarified (Eykelenboom et al., 2019). With more high-throughput 

chromosome conformation capture (Hi-C) experiments, there will be more observation of 

cohesin-regulated, high-order chromatin structures at kilobase resolution, which cannot only 

elucidate the cohesin-chromatin interaction but also will reveal the true nature of the cohesin 

rings.

Despite numerous attempts using both budding yeast and human proteins, the crystal 

structure of full-length RAD21 has not been solved. However, fragments of hRAD21 protein 
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(18–87aa, 295–420aa, 321–395aa) complexed with other cohesin subunits and associated 

proteins, including SMC1a, SMC3, STAG1, STAG2, PDS5, and CTCF, have been reported 

in the literature (Deardorff et al., 2012; Kon et al., 2013; Li et al., 2013; Zhang et al., 2013b; 

Gligoris et al., 2014; Gligoris and Lowe, 2016; Li et al., 2020) and PDB database. NT 

domain of yeast Rad21 contains two alpha-helices, forming a 4-helix bundle with the coiled-

coil emerging from the adenosine triphosphatase (ATP) head of Smc3 (Gligoris et al., 2014). 

In contrast, the CT domain of yeast Rad21 contains three helices, followed by two ß strands 

(Haering et al., 2004), corresponding to the boundaries and secondary structure predictions 

for the CT domains of all Kleisins (Schleiffer et al., 2003). A crystal structure of budding 

yeast Smc1 nucleotide binding domain (NBD) bound to Rad21 CT domain shows that the 

Rad21 forms a winged-helix domain (WHD) that binds through extensive hydrophobic 

interactions to the two most CT ß strands of the Smc1 NBD (Haering et al., 2004). This 

interaction appears to alter the structure of Smc1 NBD in a manner that is essential for ATP 

binding and hydrolysis (Arumugam et al., 2006). Crystal structure of human STAG2 

complexed with RAD21 showed multiple HEAT repeats of STAG2 form a dragon-shaped 

structure, and RAD21 makes extensive contacts with STAG2 (Hara et al., 2014). Crystal 

structure of STAG2-Rad21 in complex with CTCF at a resolution of 2.7 Å has recently been 

reported, revealing that the interaction of CTCF and STAG2-RAD21 complex is specifically 

required for CTCF-anchored loops and contributes to the positioning of cohesin at CTCF 

binding sites (Li et al., 2020).

3.2. Proteolytic cleavage of RAD21 during mitosis and apoptosis

During the metaphase to anaphase transition, RAD21 is proteolytically cleaved by the CD 

clan endopeptidase, Separase (aka Separin), encoded by the ESPL1, which is required for 

the dissociation of the cohesin complex for the orderly segregation of the sister chromatids 

and completion of cytokinesis (Michaelis et al., 1997; Nasmyth et al., 2000; Zhang and Pati, 

2017). There are two mitotic cleavage sites for Separase on RAD21 (Fig. 1) reported in 

budding yeast, fission yeast, mouse, and human cells (Uhlmann et al., 1999; Uhlmann et al., 

2000; Hauf et al., 2001). The RAD21 motif cleaved by Separase in yeast is (D/E)xxR, and 

that in vertebrates is ExxR. Separase cleaves the peptidyl bond after arginine residues of the 

core motif. Interestingly, human Separase cannot cleave yeast Rad21, and vice versa 
(Waizenegger et al., 2002). It is not clear what factors determine the specificity of Separase’s 

cleavage of RAD21. According to one study, one of the determining factors is the adjacent 

amino acid residues before arginine (R) and the acidic amino acid residue aspartic acid/

glutamic acid (D/E) of the motif (D/E)xxR (Sullivan et al., 2004; Winter et al., 2015). In a 

recent study, Rosen et al. (2019) identified an LPE motif on the RAD21 (Fig. 1), which is 

distinct from the Separase cleavage site and is required for rapid and specific cleavage of 

RAD21 by Separase. Securin (Pds1), an inhibitory chaperon of Separase, also contains a 

conserved LPE motif that blocks Separase engagement of the RAD21 LPE motif, suggesting 

that rapid cohesin cleavage by Separase requires a substrate docking interaction outside the 

active site (Rosen et al., 2019).

Calcium-dependent cysteine endopeptidase Calpain-1 also has been shown to be a RAD21-

peptidase (Panigrahi et al., 2011). Calpain-1 cleaves hRAD21 at conserved L192 in a 

calcium-dependent manner (Fig. 1). RAD21 cleavage by Calpain-1 promotes the separation 
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of chromosome arms, which coincides with calcium-induced partial loss of cohesin at 

several chromosomal loci. Engineered cleavage of RAD21 at the Calpain-cleavable site 

without activation of Calpain-1 can lead to loss of sister chromatid cohesion.

In addition to the proteolytic cleavage of RAD21 during mitosis, hRAD21 is also cleaved 

during apoptosis (Chen et al., 2002; Pati et al., 2002), and the cleaved RAD21 is translocated 

from the nucleus to the cytoplasm much earlier than when chromatin condensation and 

nuclear fragmentation occur during apoptosis (Pati et al., 2002). Apoptotic cleavage site is 

mapped to the residue D279 of hRAD21, which is different from the mitotic cleavage sites 

required for chromosomal segregation (Hauf et al., 2001) (Fig. 1). In vitro cleavage assays 

indicate that Caspase-3 and −7 can cleave RAD21, but they (at least caspase-3) may not be 

essential because RAD21 can also be cleaved in MCF7 breast carcinoma cells that lack 

Caspase-3 activity (Kurokawa et al., 1999). In an in vitro cleavage assay, the use of 

apoptotic-induced Molt4 cell lysate resulted in 64 and 60 kDa hRad21 cleavage products 

(Pati et al., 2002). However, only the 64 kDa product was observed when caspase-3 and −7 

were used (Pati et al., 2002). As RAD21 is a nuclear protein and the cleavage initially occurs 

in the nucleus, the protease that cleaves RAD21 may reside inside the nucleus. These 

findings suggest the presence of a novel caspase or caspase-like molecule in the nucleus that 

cleaves RAD21 early in apoptosis (Panigrahi and Pati, 2009). However, the physiological 

protease that cleaves RAD21 during apoptosis and the mechanisms by which the apoptotic 

signal is amplified remain to be identified.

3.3. Rad21 interactome

A total of 285 RAD21-interactants have been reported (https://www.ncbi.nlm.nih.gov/gene/

5885). As a principal component of the cohesion complex, it is not surprising that RAD21 

physically interacts with the other cohesion structural subunits including SMC3, SMC1, and 

STAG1/2 and cohesion complex associated proteins PDS5A, PDS5b, NIPBL, WAPL, and 

cohesin protease, Separase (Fig. 3). To understand how cohesin coordinates its diverse 

functions, Panigrahi et al. (2012) used a comprehensive approach to identify RAD21-

interacting proteins that included a yeast 2-hybrid screen with hRAD21 as the bait, an 

immunoprecipitation-coupled-mass spectrometry analysis for hRAD21-bound proteins, and 

a hRAD21-affinity pull-down assay. Their analyses revealed 112 novel protein interactors of 

RAD21 that function in different cellular processes, including mitosis, regulation of 

apoptosis, chromosome dynamics, chromosomal cohesion, replication, transcription 

regulation, RNA processing, DNA damage response, protein modification and degradation, 

and cytoskeleton and cell motility (Fig. 4). Identification of cohesin interactors provides a 

framework for explaining the various non-canonical functions of the cohesin complex.

Hakimi et al. (2002), using elaborate biochemical purification methods, reported the 

isolation of a human SNF2-containing chromatin remodeling complex that encompasses 

components of the cohesin and NURD complexes. They showed that the RAD21 subunit of 

the cohesin complex directly interacts with the ATPase subunit SNF2. Mapping of RAD21, 

SNF2, and Mi2 binding sites by chromatin immunoprecipitation experiments revealed the 

specific association of these three proteins with human DNA elements containing all 

sequences. They showed that the state of DNA methylation can regulate the association of 
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the cohesin complex with chromatin, and also presented evidence pointing to a role for the 

ATPase activity of SNF2 in the loading of RAD21 on chromatin.

4. RAD21 functions

RAD21 plays multiple physiological roles in diverse cellular functions (Fig. 5). The primary 

function of RAD21 is in the repair of DNA DSBs, as well as in sister chromatid cohesion 

during mitosis. As a subunit of the cohesin complex, RAD21 is involved in sister chromatid 

cohesion from the time of DNA replication in S phase to their segregation in mitosis, a 

function that is evolutionarily conserved and essential for proper chromosome segregation, 

chromosomal architecture, post-replicative DNA repair, and the prevention of inappropriate 

recombination between repetitive regions (Hauf et al., 2001; Zhang and Pati, 2014). RAD21 

may also play a role in spindle pole assembly during mitosis (Gregson et al., 2001) and 

progression of apoptosis (Chen et al., 2002; Pati et al., 2002). In interphase, cohesin may 

function in the control of gene expression by binding to numerous sites within the genome. 

As a structural component of the cohesin complex, RAD21 also contributes to various 

chromatin-associated functions, including DNA replication (Takahashi et al., 2004; Ryu et 

al., 2006; Terret et al., 2009; Guillou et al., 2010; MacAlpine et al., 2010), DNA damage 

response (DDR) (Strom et al., 2004; Cortes-Ledesma and Aguilera, 2006; Watrin and Peters, 

2006; Unal et al., 2007; Ball and Yokomori, 2008; Heidinger-Pauli et al., 2009; Watrin and 

Peters, 2009; Kim et al., 2010; Sjogren and Strom, 2010), and, most importantly, 

transcriptional regulation (Parelho et al., 2008; Wendt et al., 2008; Liu et al., 2009; Dorsett, 

2010; Kagey et al., 2010; Pauli et al., 2010; Schmidt et al., 2010; Skibbens et al., 2010). 

Studies conducted during the past several years have demonstrated that cohesin affects: 1) 

allele-specific transcription by interacting with the boundary element CCCTC-binding factor 

(CTCF) (Parelho et al., 2008; Wendt et al., 2008; Schmidt et al., 2010; Skibbens et al., 2010; 

Degner et al., 2011; Guo et al., 2012), 2) tissue-specific transcription by interacting with 

tissue-specific transcription factors (Hadjur et al., 2009; Schmidt et al., 2010; Seitan et al., 

2011; Faure et al., 2012; Yan et al., 2013; Zhang et al., 2013a), 3) general progression of 

transcription by communicating with the basal transcription machinery (Kagey et al., 2010; 

Fay et al., 2011; Schaaf et al., 2013; Yan et al., 2013), and 4) RAD21 co-localization with 

CTCF-independent pluripotency factors (Oct4, Nanog, Sox4, and KLF2). RAD21 

cooperates with CTCF (Rubio et al., 2008), tissue-specific transcription factors, and basal 

transcription machinery to regulate transcription dynamically (Dorsett and Merkenschlager, 

2013). Also, to effectuate proper transcription activation, cohesin loops chromatin to bring 

two distant regions together (Guo et al., 2012; Zhang et al., 2013a). Cohesin may also act as 

a transcription insulator to ensure repression (Wendt et al., 2008). Thus, RAD21 can affect 

both activation and repression of transcription. Enhancers that promote transcription and 

insulators that block transcription are located in conserved regulatory elements (CREs) on 

chromosomes, and cohesins are thought to physically connect distant CREs with gene 

promoters in a cell-type specific manner to modulate transcriptional outcome (Leeke et al., 

2014). Therefore, alterations in RAD21 or other cohesin components could affect cohesin 

binding to CREs, thereby altering their interaction with promoters and, subsequently, gene 

activity. Although only a modest reduction in chromatin-bound cohesin is sufficient to cause 
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changes in expression of numerous genes, still little is known about how cohesin and 

RAD21 is recruited and removed from transcription sites to regulate transcription.

4.1. Role in sister chromatid cohesion and separation

Studies in yeast and higher eukaryotes including humans have indicated that RAD21 is 

required for appropriate arrangement of chromosomes during normal cell division (Guacci et 

al., 1997; Michaelis et al., 1997; Uhlmann and Nasmyth, 1998; Hartman et al., 2000; 

Nasmyth et al., 2000; Nasmyth, 2001; Nasmyth, 2002). Analyses of rad21 function in fission 

yeast, S. pombe, and Scc1/Mcd1 function in budding yeast, S. cerevisiae, demonstrate that 

this nuclear phosphoprotein is required for appropriate chromosomal cohesion during the 

mitotic cell cycle and DSB repair after DNA damage occurs (Biggins and Murray, 1999; 

Nasmyth et al., 2000). RAD21 mRNA is cell-cycle regulated in human cells, increasing in 

the late S phase to a peak in the G2 phase (McKay et al., 1996). Biochemical analysis of 

cohesin indicates that RAD21 acts as a molecular glue, and human cohesin can promote 

intermolecular DNA catenation, a mechanism that links two sister chromatids together 

(Losada and Hirano, 2001). In budding yeast as well as in higher organisms including 

humans, loss of cohesion at the metaphase-anaphase transition is accompanied by 

proteolytic cleavage of the RAD21 protein (Uhlmann et al., 1999; Uhlmann et al., 2000; 

Waizenegger et al., 2000) followed by its dissociation from the chromatids (Nasmyth et al., 

2000; Tomonaga et al., 2000; Waizenegger et al., 2000; Hauf et al., 2001). The cleavage 

depends on Separase (Ciosk et al., 1998; Uhlmann et al., 1999; Uhlmann et al., 2000), which 

is complexed with its inhibitor Securin prior to anaphase (Ciosk et al., 1998; Zou et al., 

1999; Leismann et al., 2000). In metaphase, ubiquitin-mediated degradation of the Securin 

protein by APC/C-Cdc20 ubiquitin-ligase releases Separase protein, which proteolytically 

cleaves cohesin RAD21, thereby releasing the sister chromatids (Cohen-Fix et al., 1996; 

Funabiki et al., 1996; Ciosk et al., 1998; Jallepalli et al., 2001). In budding yeast, fission 

yeast, and human and mouse cells, RAD21 has two mitotic cleavage sites for Separase (Fig. 

1) (Uhlmann et al., 1999; Uhlmann et al., 2000; Hauf et al., 2001), and cleavage by Separase 

appears to be essential for sister chromatid separation and the completion of cytokinesis 

(Hauf et al., 2001). In contrast to the simultaneous release of cohesin from the chromosome 

arms and centromere region in budding yeast by Separase cleavage, in metazoans, most 

cohesin is removed in early prophase from chromosome arms by a cleavage-independent 

mechanism (Waizenegger et al., 2000; Hauf et al., 2001). Only residual amounts of cohesin 

are cleaved at the onset of anaphase, coinciding with its disappearance from centromeres. 

Thus, RAD21 plays a critical role in the eukaryotic cell division cycle by regulating sister 

chromatid cohesion and separation at the metaphase-to-anaphase transition.

4.2. Role in centrosome cycles

Cohesin is required for the engagement of centrioles (Nakamura et al., 2009; Tsou et al., 

2009; Liu et al., 2011; Schockel et al., 2011). Along with RAD21, cohesin core subunits 

(SMC1 and SMC3) have been found in centrosomes (Guan et al., 2008; Kong et al., 2009; 

Nakamura et al., 2009; Beauchene et al., 2010; Gimenez-Abian et al., 2010). RAD21 is 

recruited at the centrosomes by associating with AKI1 during mitosis to promote centriole 

cohesion to inhibit the premature centriole splitting in HeLa cells (Nakamura et al., 2009). 

Depletion of RAD21 not only causes the aberrant sister chromatid cohesion (Losada et al., 
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2005) but also the formation of multipolar spindles (Losada et al., 2005; Nakamura et al., 

2009), and, importantly, centriole splitting (Nakamura et al., 2009; Beauchene et al., 2010). 

RAD21 plays a vital role in the maintenance of centrosomes’ integrity by preventing 

gamma-tubulin overexpression (Beauchene et al., 2010).

Two cohesin regulatory enzymes, Plk1 and RAD21-protease Separase, also have been found 

to play a role in the centrosome cycle. Recent studies report that at the late G2 and early M 

phases (before the onset of anaphase) Plk1 regulates mitotic licensing of centriole 

duplication in the following S phase (Tsou et al., 2009). Plk1 also promotes Separase-

dependent centriole disengagement by phosphorylating RAD21, which is proteolytically 

cleaved by Separase in the late M phase (Schockel et al., 2011). That Separase inhibitors, 

Securin and Cyclin B (Tsou and Stearns, 2006), and the depletion of Separase itself (Thein 

et al., 2007) inhibit centriole disengagement underscores the importance of Separase and 

cleavage of its substrate, RAD21, in the centrosome cycle. The function and regulation of 

cohesin in the centrosome cycle appear to mirror those in the chromosome cycle. However, 

the mechanism that governs the function and regulation of cohesin in the centrosome cycle 

is less understood compared to that of the chromosome cycle.

4.3. Role in DNA double strand break (DSB) repair

RAD21 plays an essential role in DNA DSB repair, which was first reported in the fission 

yeast S. pombe (Birkenbihl and Subramani, 1992), and later in C. elegans and humans 

(McKay et al., 1996). The requirement of RAD21 in DSB repair is conserved from yeast to 

humans. As indicated earlier, rad21 was cloned originally by complementing the radiation 

sensitivity in fission yeast with a function in DNA-DSB repair, before its role in sister 

chromatid cohesion was identified. The mutant rad21 in fission yeast exhibited 

hypersensitivity to radiation owing to its impaired DNA DSB repair (Birkenbihl and 

Subramani, 1992).

A number of more recent studies implicate cohesin in the DNA damage response and repair 

in eukaryotic cells (Darwiche et al., 1999; Dorsett, 2011; Deardorff et al., 2012; Ding et al., 

2012). In addition to the sister chromatid cohesion generated in the S phase during DNA 

replication, additional cohesins must be recruited to a DSB, and a new cohesion is created de 

novo in response to the damage for repair (Kim et al., 2010). This newly created cohesion is 

called damage-induced cohesion (DI-cohesion). DSB in the G2 phase causes genome-wide 

DI-cohesion in both yeast and human cells (Strom et al., 2007; Unal et al., 2007; Kim et al., 

2010). Besides cohesin itself, factors that are required to load cohesin onto chromatin, to 

establish cohesion, and to maintain cohesion are needed for repair of the damaged DNA 

(Sjogren and Nasmyth, 2001; Strom et al., 2004; Unal et al., 2004; Schmitz et al., 2007; 

Strom et al., 2007; Unal et al., 2007; Unal et al., 2008). How does DSB cause de novo 

cohesion establishment? DSB has been shown to activate Chk1 that phosphorylates Rad21 at 

the conserved serine residue (S83) in yeast (Heidinger-Pauli et al., 2008). S83 

phosphorylation facilitates the acetylation of K84 and K210 residues in Rad21 by Eco1, 

which in turn antagonizes Wpl1/Rad21 to establish DI-cohesion (Heidinger-Pauli et al., 

2009). DI-cohesion is different from the sister chromatid cohesion generated during the S 

phase, in which Smc3 is acetylated by Eco1 to counteract the anti-establishment activity of 
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Wpl1 (Rolef Ben-Shahar et al., 2008; Unal et al., 2008; Zhang et al., 2008a; Rowland et al., 

2009; Sutani et al., 2009). Interestingly, the DNA damage-induced phosphorylation and 

acetylation on RAD21 in human cells have not been observed. Instead, the DNA damage-

induced phosphorylation and acetylation on SMC3 were found to be important for the 

genome-wide DI-cohesion and DNA DSB repair (Kim et al., 2010).

4.4. Role in gene expression and chromatin architecture

The evidence for a role of RAD21 and cohesin complex in gene expression first came from 

the studies in zebrafish, in which Horsfield et al. (2007) demonstrated that monoallelic loss 

of rad21 resulted in a reduction in the transcription of runx1 and the proneural genes ascl1a 

and ascl1b, indicating that downstream genes are sensitive to rad21 dose. In fruit fly 

mutations in Rad21 and Nipped B, a subunit of cohesin loading complex, suppressed 

polycomb-group genes and hedgehog gene (Hallson et al., 2008). Fay et al. (2011) showed 

that Drosophila Rad21 interfered with the transition of paused RNA polymerase to 

elongation to repress the gene expression. A number of independent studies have shown that 

global gene expression is more sensitive to cohesin changes than to their effect on sister 

chromatid cohesion and DNA repair (Krantz et al., 2004; Tonkin et al., 2004; Schaaf et al., 

2009; Heidinger-Pauli et al., 2010).

Cohesin-regulated gene expression is independent of its role in cell division because it can 

influence gene expression in non-dividing cells (Pauli et al., 2008; Schuldiner et al., 2008; 

Seitan et al., 2011). The expression of cohesin-regulated genes can be affected by a change 

of the cohesin level within a few hours (Liu et al., 2009; Schaaf et al., 2009; Kagey et al., 

2010; Pauli et al., 2010), suggesting that cohesin regulates gene expression directly and 

rapidly. Although binding of RAD21 and other cohesin subunits to genes seems different 

among organisms, the common point that cohesins associate with transcriptionally active 

genes indicate a conserved cohesin-mediated, gene expression mechanism. In zebrafish, 

rad21-regulated genes include proto-oncogene myca (c-Myc in human), tumor suppressor 

p53, and mdm2 (Rhodes et al., 2010). rad21 is found at transcription start sites of p53 and 

mdm2, expression of which is enhanced by the depletion of either rad21 or CTCF. In 

contrast, loss of rad21 decreases myca expression. Positive transcriptional regulation of the 

c-Myc gene by cohesin is evolutionally conserved as loss of Rad21 or Nipped-B in 

Drosophila decreases the expression of both myc and its target genes (Rhodes et al., 2010). 

RAD21 also binds to and represses the apolipoprotein B (APOB) gene promoter (Bonora et 

al., 2015). Mutations of Rad21 in patients with chronic intestinal pseudo-obstruction (CIPO) 

interrupt the ability of Rad21 to regulate genes such as RUNX1 and APOB. Reduced 

expression of rad21 in zebrafish and dysregulation of RAD21 target genes, including APOB, 

disrupt intestinal transit and the development of enteric neurons (Bonora et al., 2015).

Although it is evident that cohesins are involved in gene transcription, how they are 

regulated during this process remains unclear. Do cohesins have only a passive role as a 

component of transcriptional factors or an active role in recruiting other factors and 

remodeling chromatin structure? Do cohesins associate with chromatin in the same fashion 

in gene expression regulation and sister chromatid cohesion? It seems that cohesins are 

loaded to specific sites by cohesin-loading complex in order to function. However, it is not 
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known whether cohesins are required to be unloaded after their missions are accomplished, 

and if so, how cohesins are removed.

Cohesin-mediated chromatin organization plays an important role in the formation and 

stabilization of chromosome architecture and gene regulation. Cohesin RAD21 interacts 

with CTCF and other cohesin-associated proteins to maintain and stabilize multidimensional 

organizations of topologically associating domains (TADS) and chromatin loops by 

entrapping two segments of chromatin in cis. Depletion of CTCF, RAD21, or cohesin-

associated proteins was shown to affect the majority of domains and loops in a manner that 

is consistent with a model of DNA folding through the extrusion of chromatin loops (Rhodes 

et al., 2010). Degradation of CTCF or cohesin resulted in a genome-wide loss of loops at 

individual loci (Rao et al., 2017; Wutz et al., 2017). The removal of CTCF resulted in a 

substantial loss of insulation between many neighboring TADs (Nora et al., 2017). Many 

TADs were also lost upon removal of cohesin (Rao et al., 2017; Wutz et al., 2017). Loops 

and TADs were reestablished after the restoration of CTCF (Nora et al., 2017) or cohesin 

(Rao et al., 2017). However, the mechanisms by which cohesin shapes chromosomes and 

regulates gene expression remains unclear and an area of active research.

4.5. Role in hematopoiesis

In 2012, Panigrahi and Pati suggested that cohesin and its associated proteins may play a 

central role in the orchestration of hematopoiesis and may serve as a master transcriptional 

regulator of hematopoietic genes. As indicated above, Rad21 regulates the expression of 

hematopoiesis regulator, Runx1, during zebrafish development (Horsfield et al., 2007; 

Rhodes et al., 2010). In this model, loss of cohesin rad21 represses runx1, and the bone 

marrow cells fail to develop differentiated blood cells (Horsfield et al., 2007). In mice, 

haploinsufficiency in Rad21 causes impaired clonogenic regeneration of the bone marrow 

stem cells (Xu et al., 2010), and RAD21 plays a critical role in T-cell-receptor 

rearrangement and thymocyte differentiation (Seitan et al., 2011). Numerous recent 

functional and genomic studies have implicated chromosomal cohesin proteins as critical 

regulators of hematopoiesis (Mazumdar et al., 2015; Mullenders et al., 2015; Viny et al., 

2015; Fisher et al., 2017a; Rao, 2019).

Several groups (Mazumdar et al., 2015; Mullenders et al., 2015; Viny et al., 2015; Fisher et 

al., 2017a) reported the phenotype induced by cohesin haploinsufficiency with an agreement 

that loss of cohesin enhances hematopoietic stem and progenitor cell (HSPC) self-renewal, a 

critical first step in the development myeloid malignancies. These studies also revealed that 

altered chromatin accessibility (Mazumdar et al., 2015; Mullenders et al., 2015; Viny et al., 

2015) and/or elevated expression of the transcription factor HOXA9 (Fisher et al., 2017b) 

were key drivers of this abnormal HSPC self-renewal. However, in a recent study, Sasca et 

al. (2019) has identified a specific defect in erythroid lineage commitment as a potential 

consequence of cohesin mutations in myeloid leukemia. Depletion of cohesin severely 

impairs erythroid differentiation, particularly at Etv6-prebound loci, but augments self-

renewal programs. In cohesin haploinsufficient cells, cohesin levels cannot increase during 

erythroid commitment, which prevents the eviction of Etv6 and induction of genes required 

for erythroid differentiation.
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Using conditional knockout (cKO) mouse models to target cohesin subunit Rad21 alleles in 

hematopoietic stem and progenitor cells (HSPC), we have examined the physiological 

consequences of cohesin-Rad21 perturbation on normal hematopoiesis. Although there is an 

absolute requirement for cohesin in hematopoietic stem cell (HSC) function, Rad21 
haploinsufficiency has distinct hematopoietic phenotypes contrasting other cohesin subunits 

cKO models (e.g. Smc3) (Kumar et al, unpublished). Overall, our results demonstrate that 

Rad21 haploinsufficiency leads to impaired hematopoietic differentiation and increased HSC 

self-renewal. It has also been suggested that Rad21 acts as a negative regulator of 

hematopoietic self-renewal through epigenetic repression of HoxA7 and HoxA9, indicating 

its possible implication in leukemogenesis (Fisher et al., 2017b).

4.6. Role in apoptosis

In addition to playing roles in the normal cell cycle and DNA DSB repair, human RAD21 is 

also linked to the apoptotic pathways, a surprising finding demonstrated by our and other 

laboratories (Chen et al., 2002; Pati et al., 2002). Cleavage of RAD21 can be induced in a 

number of leukemia cells such as Molt4 and Jurkat, by a broad spectrum of apoptotic stimuli 

(Pati et al., 2002). The apoptotic cleavage site is at residue D279, which is different from the 

mitotic cleavage sites required for chromosomal segregation (Hauf et al., 2001) (Fig. 1). In 

an in vitro cleavage assay, use of apoptotic-induced cell lysates resulted in 64 and 60 kDa 

RAD21 cleavage products (Pati et al., 2002). Although Caspase-3 and −7 can cleave RAD21 

in vitro, the physiological protease that cleaves RAD21 during apoptosis and the 

mechanisms by which the apoptotic signal is amplified remain to be identified (Panigrahi 

and Pati, 2009).

Transfection experiments indicate that CT RAD21 (280–631aa) can induce apoptosis in 

many cell lines that are sensitive or resistant to apoptosis, but full-length RAD21 and NT 

RAD21 (1–279aa) have little or no apoptotic effect (Chen et al., 2002; Pati et al., 2002). 

Apoptosis induced by CT RAD21 and the tumor necrosis factor (TNF) receptor superfamily 

may share part of a common pathway. Blast search indicates that a region of 104 amino acid 

residues in CT RAD21 has high consensus (26% identities, 43% positives) with the 

sequence upstream of the death domain (DD) of several apoptosis-related proteins 

(Panigrahi and Pati, 2009). TNF receptor superfamily members have DDs, and their 

involvement in apoptosis requires TNF signaling from outside of the cell. CT RAD21 does 

not have a DD. It is currently not known whether CT RAD21-induced apoptosis requires 

extracellular signals, such as those in the TNF superfamily. Interestingly, as mentioned 

earlier, cleavage of cohesin RAD21 is carried out by a Separase in mitosis and by a caspase-

like molecule in apoptosis at different sites in the protein. Both of these proteases belong to 

the distantly related CD-clan protease family (Uhlmann et al., 2000), suggesting an 

evolutionarily conserved mechanism shared by the mitotic and apoptotic machinery. RAD21 

may serve as the link between the two key cellular processes of mitosis and apoptosis 

(Panigrahi and Pati, 2009).

4.7. Role in meiosis

Meiosis occurs in two sequential cell divisions and produces four haploid cells. Most of the 

events that differentiate meiosis from mitosis occur in prophase I, when homologous 
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chromosomes form bivalents (or tetrads) and cross over/recombine between non-sister 

chromatids. Cohesin complexes specific to meiosis are required to mediate homologous 

chromosome pairing, synapsis, recombination, and segregation (Ishiguro et al., 2011; Lee 

and Hirano, 2011; Llano et al., 2012; Fukuda et al., 2014; Ishiguro et al., 2014; Llano et al., 

2014; Winters et al., 2014; Ward et al., 2016).

In most organisms, the Rad21 cohesin subunit is replaced by a meiotic-specific isoform, 

called Rec8, during meiosis. There are two paralogs of Rad21 – Rec8 and Rad21L – in 

vertebrates, which are expressed in cells undergoing meiosis and form a complex with the 

other meiosis-specific cohesin subunits (McKay et al., 1996; Parisi et al., 1999; Ishiguro et 

al., 2011; Lee and Hirano, 2011; Ishiguro, 2019). In mouse, both Rec8 and Rad21L appear 

on chromosomes at pre-meiotic S-phase (Ishiguro et al., 2011; Lee and Hirano, 2011), and 

they are critical for the formation of chromosomal axes during the meiotic prophase (Ward 

et al., 2016). Rec8/Rad21L double mutants show an earlier “leptotene-like” arrest with 

complete absence of STAG3 on chromosomes. Both Stag3/Rad21L and Stag3/Rec8 double 

mutants can progress further into prophase I than can the Rec8/Rad21L double mutant 

(Ward et al., 2016), suggesting Rec8 and Rad21L cohesin complexes can partially 

compensate each other. Rad21L, but not Rec8 or Rad21, was found to interact biochemically 

with the synaptonemal-complex protein SYCP1 (Lee and Hirano, 2011). Interestingly, 

Rad21L disappears from chromosomes once recombination is complete, whereas 

homologues remain juxtaposed by the synaptonemal complex, and Rec8 persists along 

chromosome axes. The early dissociation of Rad21L complexes from chromosomes, 

promoting by Polo kinase (Ishiguro et al., 2011), is possible to facilitate synaptonemal-

complex disassembly. It also suggests that the major role of Rad21L cohesin complex is in 

homologue pairing and synapsis, not in sister chromatid cohesion, whereas Rec8 most likely 

functions in sister chromatid cohesion. Intriguingly, concomitantly with the disappearance of 

RAD21L, Rad21 appears on the chromosomes in late pachytene and mostly dissociates after 

diplotene onward (Ishiguro et al., 2011; Lee and Hirano, 2011). The function of Rad21 

cohesin that transiently appears in late prophase I is unclear.

5. RAD21 animal models

Mutant mouse and zebrafish models of Rad21 have been reported (Seitan et al., 2011; 

Bonora et al., 2015). Biallelic deletion of cohesin subunits results in cell death (Guacci et al., 

1997; Michaelis et al., 1997; Heo et al., 1998). As in yeast, the homozygous deletion of 

Rad21 in mice is embryonically lethal, but heterozygous animals are viable with no 

significant phenotypes. Using a tissue-specific Cre-recombinase (CD4-Cre), Seitan et al. 

(2011) have generated a thymocyte-specific deletion of the Rad21 locus in mouse at a time 

in development when these cells stop cycling and rearranging their T-cell receptor alpha 

locus (TCRA). CD4–Cre-mediated deletion of Rad21 generates thymocytes that die when 

forced to divide yet have an average lifespan as non-dividing cells in vivo. This feature 

allows the interrogation of cohesin functions in interphase, independent of essential cohesin 

functions during cell division. Rad21-deficient thymocytes had an average life span and 

retained the ability to differentiate, but with reduced efficiency. The loss of Rad21 in this 

model led to defective chromatin architecture at the Tcra locus, which has now been 

confirmed using Hi-C, a method to study the three-dimensional architecture of genomes 

Cheng et al. Page 13

Gene. Author manuscript; available in PMC 2021 October 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(Seitan et al., 2013). A distinct role of Rad21 in hematopoiesis has been studied using this 

conditional knockout model of Rad21 (Kumar et al., in revision).

Mutant rad21 zebrafish provides a model for Mungan syndrome. Injecting zebrafish 

embryos with a rad21a splice-blocking morpholino to suppress the expression of rad21, 

Bonora et al. (2015) observed a chronic intestinal pseudo-obstruction phenotype often seen 

in patients with Mungan syndrome. The mutants showed delayed food transit compared to 

wildtype zebrafish, and quantitative analysis of the zebrafish gut revealed marked depletion 

of enteric neurons at 4 and 5 days post fertilization in the mutants compared to controls, 

suggesting a neurogenic cause of the observed motility defects, and a role of Rad21 in this 

process.

6. Rad21 and human disease

6.1. Cohesinopathies

Cohesinopathies are a variety of rare genetic human diseases triggered by the mutations in 

the core subunits of cohesin complex or regulators that participate in cohesin complex 

dynamics. Cornelia de Lange syndrome (CdLS, OMIM 122470, 300590, 610759, 614701, 

300882) is one of the best-known cohesinopathies (Barbero, 2013). CdLS is a rare, clinically 

variable and genetically heterogeneous disorder, with an estimated occurrence in 0.5–10 

every 100,000 births (Barisic et al., 2008; Kline et al., 2018). It is characterized by mental 

retardation, facial dysmorphism, upper limb abnormalities, growth delay, and numerous 

other signs and symptoms (Jackson et al., 1993; Boyle et al., 2015; Kline et al., 2018).

CdLS is caused by variants in any one of seven genes, NIPBL, SMC1A, SMC3, RAD21, 
HDAC8, BRD4, and ANKRD11, all of which have a structural or regulatory function in the 

cohesin complex. Mutations in NIPBL can be identified in approximately 70% of CdLS 

cases (Kline et al., 2018). RAD21 variants cause a small percentage of CdLS cases, and the 

phenotype of those CdLS cases is non-classic (Kline et al., 2018). To date, 49 patients from 

33 families with 31 different RAD21 variants have been reported (Wuyts et al., 2002; 

McBrien et al., 2008; Deardorff et al., 2012; Ansari et al., 2014; Minor et al., 2014; Pereza et 

al., 2015; Boyle et al., 2017; Martinez et al., 2017; Gudmundsson et al., 2019; Dorval et al., 

2020; Krab et al., 2020). Seven of the 31 variants are unique copy number variations (CNVs) 

that RAD21 is deleted (six of which included other genes in addition to RAD21). Twenty-

four of the 31 variants are intragenic sequence variants. Of the 24 different sequence 

variants, 13 are truncated (2 nonsense, 2 splice site, and 9 frameshift variants), 3 are in-

frame deletions (2 of which affect a single amino acid, whereas the 665 bp deletion includes 

the whole exon 13), and 8 are missense mutations. Two of the 31 variants [p.C585R 

(reference SNP (rs) 387907213) and p.R586* (no rs# available)] were recurrent, and each 

was found in two families. A relatively large proportion of the cases (9 of 21) are familial. 

Interestingly, the truncated variants are scattered throughout the gene, suggesting that the 

protein either is not made or not functional. In contrast, the variants of in-frame deletion and 

missense mutation are mainly clustered on the functional domains of the RAD21 (Fig. 2) 

(i.e., N-terminal SMC3 interacting domain, middle STAG domain, and C-terminal SMC1 

binding domain) (Krab et al., 2020). Structural and functional analyses indicate that most of 

the missense mutations and in-frame deletions interrupt the interaction between RAD21 and 
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SMC1A, SMC3, or STAG1/2, implying the pathogenicity of RAD21 variants (Krab et al., 

2020).

Because a small number of CdLS cases are caused by RAD21 mutations, it is difficult to 

link the phenotype to a genotype or compare phenotypes caused by different genotypes 

(microdeletions vs. intragenic variants, truncating vs. non-truncating sequence variants). It is 

hard even to compare the phenotypes (especially in cognition and behavior) in patients with 

an intrafamilial variation. Several families have patients with intellectual disabilities and 

those with apparently normal cognitive functioning (Krab et al., 2020).

RAD21 variants have also been associated with other diseases, such as sclerocornea (Zhang 

et al., 2019a; Zhang et al., 2019b) and Mungan syndrome (Chronic Intestinal Pseudo-

obstruction (CIPO); OMIM #611376) (Mungan et al., 2003; Bonora et al., 2015). 

Sclerocornea is a rare congenital disorder characterized by the opacification of the cornea. 

Six patients with peripheral sclerocornea in one family spanning across three generations 

were identified, and the disease was found to be inherited in an autosomal dominant manner 

(Zhang et al., 2019a). A RAD21 variant (c.C1348T, p.R450C) (rs1301282588) was 

identified cosegregating with the peripheral sclerocornea in those patients. Although this 

variant abolishes the Separase cleavage site at 447EPDR450, no mitosis and ploidy defects 

were found in cells from peripheral sclerocornea-affected family members (Zhang et al., 

2019a), suggesting that the Separase cleavage site at 169EIMR172 on RAD21 (Fig. 1) is 

sufficient for Separase to remove cohesins from sister chromatids at mitosis, while the 

function other than sister chromatid cohesion might be affected. Expression of a RAD21 

(R450C) variant in X. laevis led to disrupted eye development with disorganized corneal 

stroma and decreased diameters of collagen fibrils. These eye defects can be rescued by 

overexpression of the wildtype rad21 (Zhang et al., 2019b), supporting that the RAD21 

(R450C) variant is the cause of peripheral sclerocornea.

Mungan syndrome was identified from a large consanguineous Turkish family (Mungan et 

al., 2003). It is an autosomal recessively inherited disorder characterized by gastrointestinal 

hypomotility related to visceral neuromyopathy, which causes CIPO. The patients with 

Mungan syndrome were found to have biallelic RAD21 p.A622T variants (rs775266057), 

and the pathogenic effect of variant p.A622T is supported by studies showing decreased 

bowel transit and loss of enteric neurons in zebrafish with p.A622T variants (Bonora et al., 

2015).

Besides the non-classic CdLS features, patients with loss-of-function variants in cohesin 

genes, including RAD21, were found to have holoprosencephaly, a cephalic disorder in 

which the prosencephalon (the forebrain of the embryo) fails to develop into two 

hemispheres. (Kruszka et al., 2019).

6.2. Rad21 and cancer

According to the COSMIC database (https://cancer.sanger.ac.uk/cosmic/search?q=rad21), 

673 (~1.3%) of 53,383 human tumor specimens tested carry somatic mutations in the 

RAD21 coding region. These mutations are primarily in hematological malignancies 

compared to solid tumors. According to the TCGA PanCancer atlas studies, 7% of all 
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queried patients had alterations in RAD21 (https://www.cbioportal.org/). Most of these 

alterations include gene amplifications, particularly in ovarian and breast cancers, 

accounting for 20% and 13%, respectively. RAD21 is also overexpressed in other cancers, 

including prostate, melanoma, bladder, and liver tumors. RAD21 mutations are found to be 

mutually exclusive with other cohesin component genes, particularly SMC3 and STAG2, 

and is not associated with aneuploidy.

Although RAD21 mutations are rare occurrences in human solid tumors, expression levels 

of RAD21 have been associated with prognosis and metastatic behavior (Mintzas and 

Heuser, 2019). Overexpression of RAD21 has been linked with epithelial breast cancer and 

was correlated with poor disease outcome and resistance to chemotherapy (van ‘t Veer et al., 

2002; Xu et al., 2011), whereas low RAD21 expression characterized metastatic breast and 

oral squamous cancers (Yamamoto et al., 2006). In a large study of colorectal cancer, 50% of 

patients had positive RAD21 expression in the nucleus, which was correlated with 

metastasis and reduced disease-specific survival (Deb et al., 2014). Overexpression of 

RAD21 was also observed in cases of primary and hormone-refractory prostate carcinomas 

compared to benign prostate hyperplasia (Porkka et al., 2004) and in gastric tumors, for 

which 60% of patients had elevated levels of RAD21 (Yun et al., 2016).

RAD21 variants in cancer patients exhibiting acute radiation toxicity suggested an 

association between RAD21 gene variants and normal tissue protection that may be 

defective in some radiation-sensitive cancer patients (Severin et al., 2001). Using a Rad21+/− 

mouse model, McKay and colleagues have shown that Rad21 haploinsufficiency impedes 

DNA repair and enhances gastrointestinal radiosensitivity in mice (Xu et al., 2010) 

[dummy_incomplete para]

Although initial studies using cell lines from solid tumors suggested that the key role of 

RAD21 and other cohesin subunit inactivation was the initiation of aneuploidy, more recent 

studies have questioned this suggestion, pointing to alterations in progenitor/stem cell 

differentiation as an important phenotype of cohesin inactivation (Fisher et al., 2017b). 

Moreover, it has been found that mutant cohesins that impair HSPC differentiation by 

controlling chromatin accessibility and transcription factor activity possibly contribute to 

leukemic disease (Mazumdar et al., 2015). Recent studies have reported that RAD21 is 

somatically mutated in a wide range of hematological malignancies including acute myeloid 

leukemia (AML) and myelodysplastic syndrome (MDS) (Solomon et al., 2014; Thota et al., 

2014; Mullenders et al., 2015; Hill et al., 2016). RAD21 mutations are considered early 

events in leukemogenesis (Corces-Zimmerman et al., 2014) and cohesin appears to act as a 

tumor suppressor (Mullenders et al., 2015). Sequencing studies have shown that RAD21 
mutations are mainly heterozygous nonsense mutations that lead to premature truncation and 

a loss-of-function protein.

Approximately 12% patients with AML harbor mutations in one of the cohesin subunit 

genes, with RAD21 in 3% of patients (Cancer Genome Atlas Research et al., 2013; Kon et 

al., 2013; Thol et al., 2014; Thota et al., 2014; Lindsley et al., 2015; Tsai et al., 2017; Eisfeld 

et al., 2018; Weinberg et al., 2018). Core binding factor AML (CBF-AML), a distinct 

genetic subset of AML, follows the same pattern as other AML groups, with 9% of patients 
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carrying a cohesin mutation, with slightly increased RAD21 mutation frequency. 

Interestingly, the mutations were found exclusively in patients with translocation t(8;21) and 

not in the subset of patients with inversion of chromosome 16 (Duployez et al., 2016). 

Cohesin mutations are observed more frequently in therapy-associated AML and secondary 

AML that has evolved from myelodysplastic syndromes. Approximately 15% of therapy 

associated-AML patients carry a cohesin mutation, with RAD21 and STAG2 mutations 

being the most frequent (Lindsley et al., 2015). Cohesin mutations may also play a major 

role in the evolution of transient myeloproliferative disorder (TMD) to acute 

megakaryoblastic leukemia (AMKL) in infants with Down syndrome (DS). TMD, which 

arises from a single GATA1 mutation in trisomy 21, may evolve into AMKL with the 

acquisition of subsequent mutations. In 53% of the cases, a cohesin mutation was present in 

the DS-AMKL clones, with RAD21 and STAG2 mutations being most frequent (22 and 

18%, respectively) (Yoshida et al., 2013; Leeke et al., 2014; Solomon et al., 2014).

In addition to mutations in cohesin genes, the regulation of cohesin expression also plays a 

role in cancer. Methylation status of the RAD21 gene in patients with chronic lymphocytic 

leukemia (CLL) provides evidence for a possible pathogenetic role of RAD21 promoter 

methylation in the development of CLL, probably via self-renewal of CLL cells and not the 

formation of chromosomal abnormalities (Ioannidou et al., 2018).

7. Concluding statement

To conclude, RAD21, an important component of the cohesin complex, is an evolutionarily 

conserved protein. It is highly similar to the gene product of S. pombe rad21, a gene 

involved in the repair of DNA DSBs, as well as in chromatid cohesion during mitosis. In 

addition to playing roles in maintaining the chromatin architecture during the normal cell 

cycle and DNA DSB repair, RAD21 is also linked to an array of other functions, including 

apoptosis and hematopoiesis. Germline heterozygous or homozygous missense mutations in 

RAD21 and other cohesin component genes have been associated with human genetic 

disorders and developmental abnormalities collectively termed as cohesinopathies (Krantz et 

al., 2004; Tonkin et al., 2004; Deardorff et al., 2007; Deardorff et al., 2012; Lehalle et al., 

2017). Somatic mutations and amplification of the RAD21 have also been widely reported in 

both human solid and hematopoietic tumors. As a subunit of cohesin complex that functions 

as a suppressor of tumorigenesis, deregulation of Rad21 in human tumors is not that 

unexpected. Targeting RAD21 and other cohesin component proteins is an underexplored 

area of drug development. The high frequency of cohesin mutations in multiple cancers and 

mutual exclusivity of cohesin component genes in any particular tumor suggest that specific 

targeting strategies such as synthetic lethal interactions could potentially be efficacious. 

Although RAD21 is amplified up to 20% of human tumors, very little is known on the 

causes and consequences of RAD21 overexpression in tumorigenesis, and inhibition of 

RAD21 has not yet been considered to target RAD21 overexpressed tumors. Therefore, 

exploiting experimental strategies that correct dysfunctional RAD21 and coupling them with 

current therapeutic strategies can provide novel, innovative, and more effective treatment 

regimens. In this regard, a study finding BET inhibitor, JQ1 as a potential RAD21 inhibitor 

in Kaposi’s sarcoma cells is notable, and it would be interesting to explore the effect of JQ1 

in RAD21 overexpressing tumors (Baltz et al., 2016; Carrà et al., 2017). However, inhibition 
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of RAD21 or any cohesin subunit proteins for therapy should be considered carefully in the 

context of the diverse physiological roles these molecules have in normal cell biology.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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SA1 STAG1

SA2 STAG2

SCC1 Sister Chromatid Cohesion 1
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Fig. 1. Characteristics on human RAD21.
RAD21 has three binding domains that interact with corresponding protein: SMC3 (1–

103aa), STAG1/2 (362–403aa) and SMC1A (558–628aa); a LPE motif (255–257aa): 

required for rapid and specific cleavage of RAD21 by Separase; two bipartite nuclear 

localization signals (NLS) (317–399aa and 384–407aa) predicted by cNLS Mapper (http://

nls-mapper.iab.keio.ac.jp/); one alternating acidic-basic residues stretch (524–533aa); one 

acidic residues stretch (534–543aa); four cleavage sites: two Separase cleavage sites (ExxR), 

one Calpain-1 cleavage site (LLL) and one Caspase-3/7 site (DxxD). The numbers indicate 

the location of amino acid residue on human RAD21. The arrow shows the site where it is 

cleaved.
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Fig. 2. Cohesin complex and models.
A. Cohesin is comprised of four core structural subunits: RAD21, SMC1, SMC3, and a SA 

protein (SA1 or SA2). PDS5, WAPL, and Sororin are cohesin-associate proteins. Sororin has 

not been found in yeast (Nishiyama et al., 2010; Zhang and Pati, 2012). B. One-ring model. 

C. Handcuff model. Figure adapted with modifications from Zhang and Pati (2014).

Cheng et al. Page 32

Gene. Author manuscript; available in PMC 2021 October 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. Rad21 interaction with cohesin subunits.
Network nodes represent proteins with 3D structure known or predicted. Edges represent 

protein–protein associations. Figure adapted with modifications from String (https://string-

db.org/).
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Fig. 4. 
Functional classification of RAD21 interactors. Figure output by Cytoscape with the data 

retrieved from Panigrahi et al. (2012). Network nodes represent proteins. Edges represent 

protein–protein associations, clustered in different cellular processes.
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Fig. 5. RAD21 Functions in various cellular processes.
RAD21 forms cohesin complex with SMC1, SMC3 and STAG1/2 to function in various 

normal cellular processes (shown in blue). The canonical role of Rad21 is sister chromatid 

cohesion and separation. Other roles include DNA damage repair, transcription regulation, 

DNA replication, and centrosome biogenesis, etc. Diseases rise when mutations in RAD21 

disrupt its function (in green). Caspase-cleaved Rad21 fragment promotes apoptosis (in 

purple). REC8 and RAD21L are paralogs of RAD21 in vertebrate, which function 

specifically in meiosis (in brown).
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