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Abstract

There is a tremendous current interest in measuring multiple types of omics features (e.g., DNA 

sequences, RNA expressions, methylation profiles, metabolic profiles, protein expressions) on a 

large number of subjects. Although genotypes are typically available for all study subjects, other 

data types may be measured only on a subset of subjects due to cost or other constraints. In 

addition, quantitative omics measurements, such as metabolite levels and protein expressions, are 

subject to detection limits in that the measurements below (or above) certain thresholds are not 

detectable. In this article, we propose a rigorous and powerful approach to handle missing values 

and detection limits in integrative analysis of multi-omics data. We relate quantitative omics 

variables to genetic variants and other variables through linear regression models and relate 

phenotypes to quantitative omics variables and other variables through generalized linear models. 

We derive the joint likelihood for the two sets of models by allowing arbitrary patterns of missing 

values and detection limits for quantitative omics variables. We carry out maximum likelihood 

estimation through computationally fast and stable algorithms. The resulting estimators are 

approximately unbiased and statistically efficient. An application to a major study on chronic 

obstructive lung disease (COPD) yielded new biological insights.
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Introduction

Recent technological advances have led to a proliferation of genetics studies involving 

multiple types of omics data. For example, The Cancer Genome Atlas (TCGA) measured 

point mutation, copy number aberration, DNA methylation, and mRNA, micro RNA, and 

protein expressions on tumor tissues and matched normal tissues from >11,000 patients with 

33 forms of cancer. As a second example, the Trans-Omics for Precision Medicine 

(TOPMed) program is generating deep whole-genome sequencing (WGS) and other omics 

data (e.g., metabolic profiles, protein and RNA expression patterns) on a large number of 

human subjects with rich phenotypic characterization and environmental exposure data. 
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Such multi-omics studies provide unprecedented opportunities to explore the biological 

relationships among different types of omics variables, evaluate the direct and indirect 

effects of genetic variants on complex diseases and traits, and investigate the interplay 

between omics variables and clinical outcomes [Schadt et al., 2005; Hamid et al., 2009; 

Vaske et al., 2010; Xiong et al., 2012; Wang et al., 2012; Huang et al., 2014; Zhao et al., 

2014; Huang et al., 2016].

A major challenge in integrative analysis of multi-omics data is the problem of missing 

values. In TCGA, for instance, RNA sequencing and protein expressions are not available 

for all patients due to cost and lack of tissue samples. In TOPMed, WGS data are currently 

available for >150,000 subjects, whereas other omics data are collected on much smaller 

scales due to budget constraints. Another major challenge is that quantitative omics 

measurements, such as metabolite levels and protein expressions, are subject to detection 

limits in that measurements below (or above) certain thresholds are not detectable.

There is a large body of statistical literature on missing data [Little and Rubin, 2014]. In the 

genetics context, single imputation for untyped variants works remarkably well [Marchini et 

al., 2007; Browning and Browning, 2007; Lin et al., 2008; Li et al., 2010], but the problem 

of missing data on quantitative omics measurements has received little attention. The 

prevailing approach to the problem of detection limits is to remove the unknown values or 

replace them by the detection limit or another value [Yu et al., 2014]. This approach is 

statistically inefficient and possibly biased [Helsel, 2006; Nie et al., 2010]. Although 

statistical methods have been developed to handle cases where the variable with a detection 

limit is either a dependent variable [Epstein et al., 2003; Diao and Lin, 2006] or an 

independent variable [Cole et al., 2009; Nie et al., 2010], no methods are available to deal 

with detection limits in joint modeling of multiple data types, where the variable with a 

detection limit is an independent variable in one model and a dependent variable in another 

model, or where both the dependent and independent variables are subject to detection 

limits. In addition, the situation in which a variable is subject to both missingness and 

detection limit has not been investigated before.

In this article, we propose a valid and efficient approach to handle missing values and 

detection limits in integrative analysis of multi-omics data. We relate the quantitative omics 

variable of interest to genetic variants and other variables through a linear regression model, 

and we relate the phenotype of interest to the quantitative omics variable and other variables 

through a generalized linear model. Indeed, we consider a very general setting with multi-

dimensional quantitative omics variables and multivariate phenotypes by formulating the 

joint distribution of multi-dimensional quantitative omics variables through a multivariate 

linear regression model and the joint distribution of multiple phenotypes through a 

generalized linear mixed model. We derive the joint likelihood for the model parameters by 

allowing quantitative omics variables to be potentially missing and subject to lower or upper 

detection limits. We carry out maximum likelihood estimation through efficient expectation-

maximization (EM) algorithms [Little and Rubin, 2014]. The resulting estimators are 

approximately unbiased and statistically efficient with a readily estimated covariance matrix. 

We demonstrate the advantages of the proposed methods over complete-case analysis and 

imputation methods through extensive simulation studies. Finally, we provide an application 

Lin et al. Page 2

Genet Epidemiol. Author manuscript; available in PMC 2021 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



to the SubPopulations and InteRmediate Outcome Measures In COPD Study (SPIROMICS) 

[Couper et al., 2014], which measured ∼100 blood proteins and >600,000 SNPs on ∼3,000 

patients.

Methods

Let Y denote the phenotype of interest, G the genotype of a SNP, and S the quantitative 

omics variable of interest, which is potentially missing and may have a lower or an upper 

detection limit. Investigators are typically interested in studying the effects of G on S and S 
on Y, as shown in Figure 1 (A). They may also be interested in studying the direct and 

indirect effects of G on Y, as shown in Figure 1 (B). We will refer to these two scenarios as 

the Marginal Model and the Joint Model, respectively. In either scenario, we may include 

covariates (e.g., race, gender, age, and principal components for ancestry) in the model.

We relate S (after an appropriate transformation) to a vector of independent variables X 
through the linear regression model

S = αTX + ϵ, (1)

where X typically includes G and covariates, α is a vector of regression parameters, and ϵ is 

zero-mean normal with variance σ2. In addition, we relate Y to S and a vector of 

independent variables Z through the generalized linear model with density function f(Y|

Z,S;η), where Z may overlap with X, and η is a set of unknown parameters. For a 

quantitative trait, we specify the linear regression model

Y = βTZ + γS + ε, (2)

where β and γ are regression parameters, and ϵ is zero-mean normal with variance τ2, such 

that η = (βT,γ,τ2)T; for a binary trait, we specify the logistic regression model

logit Pr(Y = 1) = βTZ + γS, (3)

such that η = (βT,γ)T. As mentioned earlier, Z excludes G under the Marginal Model and 

includes G under the Joint Model. We set the first components in both X and Z to 1, such 

that the first components of α and β are the intercepts. We denote the components of α and 

β corresponding to G as αG and βG, respectively; see Figure 1 (A) and (B). We are primarily 

interested in parameter estimation and hypothesis testing on αG, βG, and γ.

To provide a general framework for integrative analysis of multi-omics data, we consider 

multi-SNP genotypes G and multi-dimensional quantitative omics variables S, together with 

possibly multivariate traits Y. We relate S to X through the (multivariate) density function 

f(S|X;ξ) indexed by a vector of unknown parameters ξ, where X is a function of G and 

covariates. It is convenient to specify f(S|X;ξ) through the multivariate linear regression 

model

S = αTX + ϵ,

Lin et al. Page 3

Genet Epidemiol. Author manuscript; available in PMC 2021 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



where α is a matrix of regression parameters, and ϵ is a zero-mean normal random vector 

with covariance matrix Σ. That is,

f(S ∣ X; ξ) = (2π)−d/2 |Σ |−1/2exp{− S − αTX TΣ−1 S − αTX /2},

where d is the dimension of S, and ξ consists of α and the upper triangle elements of Σ. In 

addition, we relate Y to S and other independent variables Z through the generalized linear 

(mixed) model with (multivariate) density function f(Y |Z,S;η), where Z may overlap with X, 

and η is a vector of unknown parameters. If we know a priori that certain components of S 
do not directly impact Y, then we set the corresponding regression parameters to zero.

There is considerable flexibility in specifying the relationships among different components 

of S. Suppose that S consists of S1,…,SM, which may pertain to M different types of omics 

variables or M omics variables of the same type. Figure 1 (C) and (D) show two types of 

relationships among S1,…,SM. In Figure 1 (C), the M sets of omics variables are unordered. 

In Figure 1 (D), there is a directed pathway from S1 to S2, from S2 to S3, …, and from SM−1 

to SM. In the latter case, the density function f(S|X;ξ) can be specified through the sequential 

linear regression models

S1 = α1
TX + ϵ1,

S2 = δ1
TS1 + α2

TX + ϵ2,
⋮

SM = δM − 1
T SM − 1 + αM

T X + ϵM,

where (α1,…,αM) and (δ1,…,δM−1) are regression parameters, and ϵ1,… ϵM are 

independent zero-mean normal random vectors with covariance matrices Σ1,…, ΣM. That is,

f(S ∣ X; ξ) = (2π)−d/2 ∏
j = 1

M
Σj

−1/2exp{−(Sj − δj − 1
T Sj − 1 − αjTX)

T

× Σj−1(Sj − δj − 1
T Sj − 1 − αjTX)/2},

where δ0 = 0 and S0 = 0.

Suppose that the study contains n unrelated subjects. For i = 1,…,n, let Y i, Si, Xi, and Zi 

denote the values of Y, S, X, and Z for the ith subject. In addition, let Rij indicate, by the 

values 1 versus 0, whether or not Sij, the jth quantitative omics variable for the ith subject, is 

observed. When Rij = 0, the measurement on Sij belongs to the interval Cij, where 

Cij = (−∞, Lij) if Sij is below the lower detection limit Lij, Cij = (Uij, ∞) if Sij is above the 

upper detection limit Uij, and Cij = (−∞, ∞) if Sij is not measured at all. The observed data 

consist of {Y i, Xi, Zi, RijSij + (1 − Rij)Cij} (j = 1,…,d;i = 1,…,n).

Under the missing-at-random assumption [Little and Rubin, 2014], the observed-data 

likelihood for the vector of parameters θ = (ηT,ξT)T is
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∏
i = 1

n
∏

j = 1

d ∫Sij ∈ Cij

1 − Rij
f(Y i ∣ Zi, Si; η)f(Si ∣ Xi; ξ) ∏

j = 1

d
(dSij)1 − Rij ,

where the integration is taken over the unknown Sij. To maximize this likelihood, we adopt 

the EM algorithm by treating the Si as potentially missing data. The log-likelihood function 

with the complete data (Y i,Xi,Zi,Si) (i = 1,…,n) is

∑
i = 1

n
{logf(Y i ∣ Zi, Si; η) + logf(Si ∣ Xi; ξ)} .

In the M-step of the EM algorithm, we set the conditional expectation of the complete-data 

score function given the observed data to zero; in the E-step, we calculate the conditional 

expectation.

To be specific, let g1(Y i|Zi,Si;η) and g2(Y i|Zi,Si;η) denote, respectively, the first and second 

derivatives of log f(Y i|Zi,Si;η) with respect to η, and let h1(Si|Xi;ξ) and h2(Si|Xi;ξ) denote, 

respectively, the first and second derivatives of log f(Si|Xi;ξ) with respect to ξ. In the E-step, 

we evaluate the conditional expectations of gk(Y i|Zi,Si;η) and hk(Si|Xi;ξ) (k = 1,2) given the 

observed data and current parameter values, which are denoted by E{gk(Y i ∣ Zi, Si; η)} and 

E{hk(Si ∣ Xi; ξ)} (k = 1,2). For any function g(Si), the conditional expectation takes the form

E{g(Si)} =
∏j = 1

d ∫Sij ∈ Cij
1 − Rij

g(Si)f(Y i ∣ Zi, Si; η)f(Si ∣ Xi; ξ)∏j = 1
d (dSij)1 − Rij

∏j = 1
d ∫Sij ∈ Cij

1 − Rij
f(Y i ∣ Zi, Si; η)f(Si ∣ Xi; ξ)∏j = 1

d (dSij)1 − Rij
.

Both the numerator and denominator on the right side can be evaluated through numerical 

integration. In the special case of Ri1 = ⋯ = Rip = 1, E{gk(Y i ∣ Zi, Si; η)} = gk(Y i ∣ Zi, Si; η)
and E{hk(Si ∣ Xi; ξ)} = hk(Si ∣ Xi; ξ) (k = 1, 2).

In the M-step, we obtain the conditional expectation of the complete-data score equation 

given the observed data

∑
i = 1

n
E{g1(Y i ∣ Zi, Si; η)} = 0,

and

∑
i = 1

n
E{h1(Si ∣ Xi; ξ)} = 0 .

We update η and ξ through the one-step Newton-Raphson algorithm
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ηnew = ηold − ∑
i = 1

n
E{g2(Y i ∣ Zi, Si; ηold )}

−1
∑

i = 1

n
E{g1(Y i ∣ Zi, Si; ηold )},

and

ξnew = ξold − ∑
i = 1

n
E{h2(Si ∣ Xi; ξold )}

−1
∑

i = 1

n
E{h1(Si ∣ Xi; ξold )} .

We iterate between the above E-step and M-step until convergence, i.e., the change of the 

parameter values at two successive iterations is less than 10−4. We denote the estimator of θ 

as θ = (ηT, ξT)T, which is consistent and asymptotically multivariate normal.

We use the Louis-formula [Little and Rubin, 2014] to estimate the covariance matrix of θ. 

Specifically, we compute the complete-data information matrix

Q = −
∑i = 1

n E{g2(Y i ∣ Zi, Si; η)} 0

0 ∑
i = 1

n
E{h2(Si ∣ Xi; ξ )}

.

We also compute

Ui(Si) =
g1(Y i ∣ Zi, Si; η)

h1(Si ∣ Xi; ξ )
.

In addition, we evaluate E{Ui(Si)} and E{Ui(Si)Ui(Si)T}. Finally, we calculate the observed-

data information matrix

Ω = Q − ∑
i = 1

n
E{Ui(Si)Ui(Si)T} − E{Ui(Si)}E{Ui(Si)}T .

Then the covariance matrix of θ is estimated by Ω−1.

The above description is very general. Working out the details of the EM algorithm is not a 

trivial matter. We show how to implement the EM algorithm efficiently for the combination 

of models (1) and (2) and models (1) and (3) in Appendices A and B, respectively. We also 

show how to calculate Q, Ui(Si), E{Ui(Si)}, and E{Ui(Si)Ui(Si)T} efficiently in those two 

situations. The results in the next section are based on the algorithm given in Appendix A.
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Results

Simulation Studies

We conducted extensive simulation studies to evaluate the performance of the proposed and 

existing methods. We generated a quantitative omics variable S from equation (1), in which 

X consists of five components: X1 = 1; X2 = 0, 1, and 2 with probabilities p2, 2p(1−p), and 

(1−p)2, respectively; X3 is standard normal; X4 is Bernoulli with 0.5 success probability; and 

X5 is Uniform(0,1). In this set-up, X2 represents the genotype of a SNP (i.e., G) with minor 

allele frequency (MAF) p under the Hardy-Weinberg equilibrium, X3 represents the first 

principal component for ancestry, X4 represents gender, and X5 represents (normalized) age. 

To create population stratification, we let p = e0.5X3/(1 + e0.5X3). We generated a quantitative 

trait Y from equation (2), in which Z is X minus X2 under the Marginal Model and is the 

same as X under the Joint Model. We set the two intercepts to 1 and also the two error 

variances, σ2 and τ2, to 1. In addition, we set αG = 0.25, γ = 0.15, and βG = 0 or 0.2. 

Finally, we set all other regression parameters to 0.5.

We considered n = 1,000 and set the values of S to be missing (i.e., not measured at all) in a 

completely random manner for half of the subjects. For the remaining 500 subjects, we 

varied the lower detection limit from −1 to 1 (with 0.1 increment), such that the proportion 

of the omics measurements below the detection limit varied from 6.3% to 58.7%, and the 

number of subjects with detectable values of S (i.e., complete observations) decreased from 

468 to 207. We set the nominal significance level at 10−3. We simulated 10,000 replicates 

under the Marginal Model and under the Joint Model with βG = 0.2, and we simulated 100 

million replicates under the Joint Model with βG = 0.

In addition to the proposed method, we evaluated “complete-case analysis”, which removes 

subjects with missing or non-detectable values, as well as the imputation approach, which 

removes subjects with missing values and replaces the measurement below the detection 

limit by the detection limit L or the mid-point L − log2. We will refer to these two 

imputation methods as “imputation at limit” and “imputation at mid-point”, respectively. 

(We have implicitly assumed that S is the log-transformation of the original omics 

measurement. On the original measurement scale, the detection limit is eL, such that the 

mid-point between 0 and the detection limit is eL/2, which becomes L – log 2 after the log 

transformation.)

The results under the Marginal Model are shown in Figure 2. The proposed estimators for 

αG and γ are virtually unbiased, and the corresponding standard error estimators are 

accurate. Complete-case analysis yields a severely biased estimator of αG and much lower 

power for testing αG than the proposed method. It yields an approximately unbiased 

estimator of γ; however, it has a much higher standard error, and thus much lower power for 

testing γ, than the proposed method. Note that complete-case analysis should yield a biased 

estimator of αG and an approximately unbiased estimator of γ because S is the dependent 

variable under model (1) and an independent variable under model (2). (Complete-case 

analysis removes not only the subjects with missing values but also those with non-

detectable values. Although data are missing completely at random, only the values below 

the detection limit are non-detectable, such that complete-case analysis is biased when S is 
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the dependent variable in the model.) Imputation at limit yields a negatively biased estimator 

of αG and a positively biased estimator of γ, and it is substantially less powerful than the 

proposed method in testing αG and γ; the bias and power loss become more severe as the 

detection limit increases. (The power differences are approximately 0.13 when the detection 

limit is 1.) Imputation at mid-point also yields seriously biased estimators of αG and γ, with 

much lower power than the proposed method, although the bias and power loss are less 

severe than in the case of imputation at limit.

The results for the scenarios of βG = 0 and 0.2 under the Joint Model are displayed in 

Figures 3 and 4, respectively. The conclusions regarding the bias and power for αG and γ 
are the same as in the case of the Marginal Model. With regard to the inference on βG, the 

proposed method yields a virtually unbiased estimator of βG, an accurate standard error 

estimator, and correct type I error. Complete-case analysis also yields an approximately 

unbiased estimator of βG, but it has a much larger standard error and thus much lower power 

than the proposed method. The imputation approach, especially imputation at limit, yields 

severe bias of the parameter estimator for βG, serious inflation of the type I error (under the 

null hypothesis), and drastic loss of power (under the alternative hypothesis). The quantile-

quantile plots in Figure S1 of the Supplementary Material show the patterns of the type I 

error inflation for the imputation methods on a broader scale. The poor performance of the 

imputation approach for making inference about βG is attributed to the bias in the estimation 

of γ and the correlation between S and G.

To assess the robustness of the proposed method to the non-normal distributions of 

quantitative omics measurements, we conducted additional simulation studies under the 

Joint Model in which the error term of model (1) has a t-distribution with 5 degrees of 

freedom or is the logarithm of a standard exponential random variable. The rest of the 

simulation set-up was unchanged. As the lower detection limit varied from −1 to 1, the 

proportion of the omics measurements below the detection limit decreased from 8.9% to 

58.1% for the t-distribution and from 17.8% to 70.8% for the logarithm of the exponential 

variable. In both situations, we performed the inverse-normal transformation on the observed 

values of S, such that the values above the detection limit follow approximately a truncated 

normal distribution. The results on the type I error and power are shown in Figures S2 and 

S3 of the Supplementary Material. The proposed method continues to have proper type I 

error and tends to be more powerful than complete-case analysis and imputation methods. 

We also performed the inverse-normal transformation in the original simulation set-up, 

where is standard normal. As shown in Figure S4, the use of the inverse-normal 

transformation does not affect the type I error or power of the proposed method when the 

omics measurements are normally distributed. Thus, we recommend the use of the inverse-

normal transformation on the omics measurements.

In the above simulation studies, 50% of S were missing. We conducted another simulation 

study by setting only 30% of S to be missing. As shown in Figures S5 and S6, the relative 

performance of various methods remains the same. Finally, we conducted a simulation study 

by adding a SNP with MAF of 0.4. As shown in Figure S7, the basic conclusions are 

unchanged.
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SPIROMICS

SPIROMICS is a multi-center observational study of COPD designed to guide future 

development of therapies by providing robust criteria for classification of COPD patients 

into groups that are most likely to benefit from a certain therapy and identification of 

biomarkers that can be used as intermediate outcomes to reliably predict clinical benefits 

[Couper et al., 2014]. The study enrolled 2,974 subjects in four strata (severe COPD, mild/

moderate COPD, smokers without airflow obstruction, and non-smoking controls) between 

November 2011 and January 2015. Participants underwent a baseline visit that included 

morphometric measures, spirometry, six-minute walk, inspiratory and expiratory chest 

computed tomography, and standardized questionnaires. Biospecimens, including plasma, 

serum, DNA, urine, and induced sputum, were collected and stored.

A custom biomarker panel assay was created for 114 blood proteins using 13 Myriad-RBM 

multiplex assays. The biomarkers were selected on the basis of known or putative links to 

COPD pathophysiology [O’Neal et al., 2014; Sun et al., 2016]. The assays produced varying 

levels of missing and non-detectable values among the 114 biomarkers; see Figure 5. For 

104 of the biomarkers, 1,280 (43%) subjects have missing values; for the remaining 10 

biomarkers, the number of subjects with missing values ranges from 1,281 to 1,763. Out of 

the 114 biomarkers, 24 have no measurements that are beyond detection limits, 85 have 

measurements that are below lower detection limits, and 8 have measurements that are above 

upper detection limits. (Three of the biomarkers have both lower and upper detection limits.) 

We removed 24 biomarkers with an excessive number of missing or non-detectable values. 

Each of the remaining 90 biomarkers has over 500 observed values. (Our simulation studies 

showed that the proposed method is highly reliable with such proportions of observed 

values.) We performed the inverse-normal transformation on all 90 biomarkers.

Genotype data on 2,714 participants were derived from Illumina OmniExpress plus Exome 

GeneChip. There are a total of 673,688 SNPs. After removing those with missing rates > 

10% or MAFs < 0.01, we were left with 615,535 autosomal SNPs. Principal component 

analysis was conducted using common SNPs to identify subjects of divergent ancestry.

We focused on the phenotype emphysema, which is quantified by the percentage of lung 

voxels ≤ 950 Hounsfield Units on the full inspiratory CT scans. A total of 2,672 subjects 

have both the phenotype and genotype information. We used the proposed method to handle 

the missing and non-detectable values in the biomarkers. For comparisons, we also adopted 

imputation at mid-point (i.e., removing subjects with missing biomarker values and 

replacing the value below the detection limit by half of the detection limit on the original 

measurement scale), which was shown in our simulations studies to perform the best among 

all existing methods. We included age, gender, body mass index, smoking pack years, and 

current smoking status, together with the top 5 principal components, as covariates in all the 

models.

We first fit the Marginal Model; the main results are displayed in Figure 6(A). The quantile-

quantile plots (not shown) are well behaved, indicating that the proposed method (with the 

inverse-normal transformation) is robust to non-normality of biomarker measurements. The 
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combined Manhattan plots in Figure 6(A) show the locations of the SNPs that affect protein 

variation, which are referred to as protein quantitative trait loci (pQTLs). For the pQTL 

analysis, the genomewide significance threshold based on the Bonferroni correction for 

multiple testing of 615,535 SNPs and 90 biomarkers is approximately 9.03 × 10−10. A total 

of 493 pQTL SNPs in 42 (47%) of the biomarkers achieved the genomewide significance. 

The most significant pQTL SNPs are rs222047 and rs705120 in GC (vitamin D binding 

protein) on chromosome 4, with p-values < 10−250. The next most significant pQTL SNPs 

are rs8192284 and rs4129267 in IL6R (interleukin 6 receptor) on chromosome 1, with p-

values of 1.02 × 10−244 and 6.83 × 10−242, respectively.

The pQTL analysis results based on the imputation method are displayed in Figure 6(B). 

The imputation method also identified pQTL SNPs in GC and IL6R, but with less extreme 

p-values. Indeed, for most of the top pQTL SNPs, the proposed method yielded stronger 

evidence of association than the imputation method, reflecting the fact that the proposed 

method makes more efficient use of the data. On the other hand, the imputation method 

identified pQTL SNPs in CCL11 (chemokin c-c motif ligand 11), CCL20, and KLK3-F 

(kallikrein 3-F), whereas the proposed method did not. The fact that the same two SNPs are 

highly significant for three different biomarkers makes the findings of the imputation 

method dubious. Each of the three biomarkers has a relatively large number of 

measurements below detection limits (with 881, 1,103, and 895 non-detectable values for 

CCL11, CCL20, and KLK3-F, respectively).

Figure 7 (A) compares the results between the proposed and imputation methods for 

estimation of the effects of the biomarkers on emphysema under the Marginal Model. For 

the proposed method, the EM algorithm was applied to the combination of models (1) and 

(2) for each biomarker, where X contains the genotype of the top pQTL SNP for that 

biomarker. For the imputation method, standard linear regression was performed on model 

(2) for each biomarker after mid-point imputation. There are noticeable differences between 

the effect-size estimates of the two methods. Compared to the imputation method, the 

proposed method yielded substantially smaller standard errors for the biomarkers with a 

small number of observed values and more extreme p-values for some of those biomarkers. 

Specifically, there are 1,351 missing values and 17 non-detectable values for AGER 

(advanced glycosylation end product-specific receptor); and there are 519 and 881 non-

detectable values for CCL3 and CCL11, respectively, along with 1,280 missing values each. 

For these three biomarkers, the effect size estimates are similar between the two methods, 

but the proposed method yielded smaller standard errors and thus more extreme p-values.

We also fit the Joint Model for each biomarker by adding the top pQTL SNP for that 

biomarker to equation (2). Figure 7 (B) and (C) compare the results between the proposed 

and imputation methods: 7 (B) pertains to the effects of the biomarkers on emphysema; 7 

(C) pertains to the effects of the corresponding top pQTL SNPs on emphysema. The results 

for the effects of the biomarkers on emphysema are fairly similar to those of the Marginal 

Model. For AGER, the difference between the p-values of the proposed and imputation 

methods is more profound than before.
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As shown in Figure 7 (C), the proposed and imputation methods produced appreciably 

different estimates for the effects of the top pQTL SNPs on emphysema. The proposed 

method yielded much smaller standard errors for all SNPs and smaller p-values for some 

SNPs than the imputation method. Specifically, the p-values for the top pQTL SNPs of 

AGER, HGF (hepatocyte growth factor), and TNFRSF10C (tumor necrosis factor receptor 

superfamily member 10C) are 3.92 × 10−6, 0.0025, and 0.0071, respectively, according to 

the proposed method, whereas the corresponding p-values from the imputation method are 

6.3 × 10−5, 0.019, and 0.35. The pQTL SNPs associated with AGER, HGF, and 

TNFRSF10C are rs2070600, rs505922, and rs4760, respectively.

As mentioned previously, the top pQTL for AGER is rs2070600, which has an MAF of 

3.9%, with G as the reference allele and A as the alternate allele. Under the Joint Model, the 

proposed method estimated the direct effect of this SNP on emphysema at −0.412, with 

standard error of 0.089 and 95% confidence interval of (−0.586, −0.238). The effect of this 

SNP on AGER was estimated at −0.659, with standard error of 0.084, and the effect of 

AGER on emphysema was estimated at −0.420, with standard error of 0.031, such that the 

indirect effect of rs2070600 SNP on emphysema was estimated at 0.277, with standard error 

of 0.041 and 95% confidence interval of (0.197,0.357).

Discussion

There is a worldwide proliferation of multi-omics studies, which provide unparalleled 

opportunities to understand the biological processes that underlie complex diseases and 

traits. It is economically impossible to measure all types of omics features on a large number 

of subjects and technically infeasible to detect quantitative values below (or above) certain 

thresholds. Thus, incompleteness of data is inevitable in any multi-omics study.

We have presented a very general approach for integrative analysis of multi-omics data with 

missing values and detection limits and implemented it through computationally efficient 

algorithms. The novelty of our work lies not only in the creation of the statistical framework 

but also in the construction of the EM algorithms. We note that genomewide analysis for one 

biomarker in the SPIROMICS data (containing 615,535 SNPs on 2,672 subjects) took ∼ 16 

hours on an IBM Blade HS20 processor. We have posted our code at http://dlin.web.unc.edu/

software/iMODA/.

The current approach to analysis of incomplete multi-omics data is to fit each model 

separately after removing subjects with missing values and imputing values below or above 

detection limits. This strategy is highly inefficient and potentially biased, and it may yield 

qualitatively different results than the proposed method, as shown with the SPIROMICS 

data. Specifically, removing subjects with missing values is inefficient, and it will also bias 

the analysis if the data are not missing completely at random. The imputation approach 

biases parameter estimation and reduces statistical power; it can also inflate the type I error. 

We note that unbiased parameter estimation is of great importance in integrative analysis of 

multi-omics data, especially when quantifying direct and indirect effects.
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Recently, several authors [Cai et al., 2016; Lin et al., 2016; Voillet et al., 2016] proposed 

imputation methods for incomplete multi-omics data. In general, the imputation approach 

does not provide unbiased estimation of regression parameters. In addition, the recently 

proposed imputation methods [Cai et al., 2016; Lin et al., 2016; Voillet et al., 2016] deal 

with missing data only and do not allow non-detectable values. By contrast, our framework 

accommodates both missing and non-detectable values.

We have derived the covariance matrix for all model parameters, making it possible to make 

joint inference on multiple parameters. However, joint inference may require special care. 

Suppose, for example, that we are interested in estimating the indirect effect of a SNP on a 

phenotype, i.e., the product of αG and γ. Although the estimators for αG and γ are 

asymptotically normal, the normal approximation to the product of the two estimators is 

inaccurate unless the sample size is very large. We are currently exploring a resampling 

approach to construct confidence intervals for indirect effects. We should also note that 

standard statistical methods cannot be used to test the null hypothesis of no indirect effect, 

i.e., αGγ = 0, because the asymptotic null distribution of αGγ  depends on whether both αG 

and γ are zero or only one of them is zero. We are currently developing proper tests for 

indirect effects.

Our current framework formulates the conditional distribution of Y given S. Some omics 

measurements may be influenced by diseases. In that case, the regression parameters in our 

phenotype models do not have causal interpretations. However, our likelihood approach can 

be applied to other formulations of the relationships between Y and S.

A previous meta-analysis of the SPIROMICS and COPDGene [Regan et al., 2011] data 

identified 527 pQTLs in 38 blood proteins [Sun et al., 2016]. Our analysis of the (new) 

SPIROMICS data confirmed pQTLs in 34 of those 38 blood proteins. In addition, we 

identified novel pQTLs in 9 blood proteins: A2M (alpha-2-macroglobulin), CCL13, CCL3, 

CDH13 (Cadherin-13), CEACAM1 (Carcinoembryonic antigen-related cell adhesion 

molecule 1), CRP (C-reactive protein), FABP3 (fatty acid binding protein 3), IL15, and 

IL1RN. Most of those biomarkers had relatively large detection limits, such that the 

proposed method was particularly effective.

In the SPIROMICS data, there was only one type of quantitative omics variables, namely 

blood proteins, and we considered one protein at a time, such that the analysis was 

straightforward. Because X and Z can be any vectors, the inclusion of multiple SNPs in the 

analysis is as easy as the use of a single SNP. Indeed, we considered multiple SNPs in our 

analysis of the SPIROMICS data, although the results were not shown. Our framework can 

be applied to multiple types of quantitative omics variables. However, modeling their 

relationships requires considerable biological expertise.

The TOPMed program has generated WGS data for >150,000 subjects. Other omics data 

(e.g., methylation profiles, metabolic profiles, RNA expression patterns) are being collected 

through TOPMed and ancillary studies, but for only a few thousand subjects. We are 

currently applying the proposed methodology to those data, and the results will be 

communicated in separate reports.
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We have implicitly assumed that multi-omics data are collected from cohort studies and thus 

used the standard prospective likelihood. If the data are collected from case-control studies 

and there are missing and non-detectable values, then the retrospective likelihood 

conditional on the case-control status should be used instead. The corresponding EM 

algorithms can be constructed by combining the ideas of this article with those of Lin and 

Zeng [2006].

In microbiome studies, the abundance of the bacteria may be truly zero rather than below a 

detection limit. Then it is sensible to use a mixture distribution allowing a proportion of 

measurements to be zero. In addition, the relative microbiomial abundance pertains to 

compositional data, which require special treatments. It would be worthwhile to extend our 

framework to incorporate microbiome data.

We have assumed that investigators are interested in analyzing a small subset of multi-omics 

features at a time, such that the dimension of S is fixed and relatively small. We are currently 

exploring a penalized-likelhood approach to variable selection with multiple types of 

potentially missing features. The results will be communicated in due course.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Statistical models for integrative analysis of multi-omics data: (A) Marginal Model relating 

genotypes to quantitative omics variables and relating quantitative omics variables to 

phenotypes; (B) Joint Model relating genotypes to quantitative omics variables and relating 

genotypes and quantitative omics variables to phenotypes; (C) unordered relationships 

among M sets of quantitative omics variables; and (D) ordered relationships among M sets 

of quantitative omics variables.
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Figure 2. 
Simulation results under the Marginal Model: (A) effect of the SNP genotype on the 

quantitative omics variable (i.e., αG); and (B) effect of the quantitative omics variable on the 

phenotype (i.e., γ). The bias and standard error of the parameter estimator and the power of 

the association test are plotted against the detection limit of the quantitative omics variable. 

The red, black, green, and blue curves pertain to the proposed method, complete-case 

analysis, imputation at limit, and imputation at mid-point, respectively. The silver curve 

pertains to the mean of the standard error estimator for the proposed method.
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Figure 3. 
Simulation results under the Joint Model with β = 0: (A) effect of the SNP genotype on the 

quantitative omics variable (i.e., αG); (B) effect of the quantitative omics variable on the 

phenotype (i.e., γ); and (C) effect of the genotype on the phenotype (i.e., βG). The bias and 

standard error of the parameter estimator and the power or type I error of the association test 

are plotted against the detection limit of the quantitative omics variable. The red, black, 

green, and blue curves pertain to the proposed method, complete-case analysis, imputation at 

limit, and imputation at mid-point, respectively. The silver curve pertains to the mean of the 

standard error estimator for the proposed method.
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Figure 4. 
Simulation results under the Joint Model with β = 0.2: (A) effect of the SNP genotype on the 

quantitative omics variable (i.e., αG); (B) effect of the quantitative omics variable on the 

phenotype (i.e., γ); and (C) effect of the genotype on the phenotype (i.e., β). The bias and 

standard error of the parameter estimator and the power of the association test are plotted 

against the lower detection limit of the quantitative omics variable. The red, black, green, 

and blue curves pertain to the proposed method, complete-case analysis, imputation at limit, 

and imputation at mid-point, respectively. The silver curve pertains to the mean of the 

standard error estimator for the proposed method.
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Figure 5. 
Frequencies of missing values, non-detectable values, and observed values for 114 

biomarkers among 2,794 patients in SPIROMICS.
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Figure 6. 
Combined Manhattan plots for the associations between SNPs and blood biomarkers in 

SPIROMICS according to the proposed and imputation methods. The biomarkers with at 

least one SNP passing the genomewide significance threshold (red line) are marked at the 

chromosome locations of the top pQTLs. The −log10(p-values) >250 are truncated at 250.
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Figure 7. 
Results from the analysis of the SPIROMICS data by the proposed versus imputation 

methods: (A) effects of biomarkers on emphysema under the Marginal Model; (B) effects of 

biomarkers on emphysema under the Joint Model; and (C) effects of top pQTL SNPs on 

emphysema under the Joint Model. Biomarkers with major differences between the 

proposed and imputation methods are shown in red.
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