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Abstract

An inhomogeneous anisotropic physical model of the brain cortex is presented that predicts the 

emergence of non–evanescent (weakly damped) wave–like modes propagating in the thin cortex 

layers transverse to both the mean neural fiber direction and to the cortex spatial gradient. 

Although the amplitude of these modes stays below the typically observed axon spiking potential, 

the lifetime of these modes may significantly exceed the spiking potential inverse decay constant. 

Full brain numerical simulations based on parameters extracted from diffusion and structural MRI 

confirm the existence and extended duration of these wave modes. Contrary to the standard 

paradigm that the neural fibers determine the pathways for signal propagation in the brain, the 

signal propagation due to the cortex wave modes in highly folded areas will exhibit no apparent 

correlation with the fiber directions. The results are consistent with numerous recent experimental 

animal and human brain studies demonstrating the existence of electrostatic field activity in the 

form of traveling waves (including studies where neuronal connections were severed) and with 

wave loop induced peaks observed in EEG spectra. In addition, we demonstrate that the resonant 

and non-resonant terms of the nonlinear coupling between multiple modes produce both 

synchronous spiking-like high frequency wave activity as well as low frequency wave rhythms as a 

result of their unique dispersion properties. Numerical simulation of forced multiple mode 

dynamics shows that as forcing increases there is a transition from damped to oscillatory regime 

that subsequently decays away as over-excitation is reached. The resonant nonlinear coupling 

results in the emergence of low frequency rhythms with frequencies that are several orders of 

magnitude below the linear frequencies of modes taking part in the coupling. The localization and 

persistence of these cortical wave modes, and this new mechanism for understanding the nature of 

spiking behavior, have significant implications in particular for neuroimaging methods that detect 

electromagnetic physiological activity, such as EEG and MEG, and in general for the 

understanding of brain activity, including mechanisms of memory.
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I. INTRODUCTION

The majority of approaches to characterizing brain dynamical behavior are based on the 

assumption that signal propagation along well known anatomically defined pathways, such 

as major neural fiber bundles, tracts or groups of axons (down to a single axon connectivity) 

should be sufficient to deduce the dynamical characteristics of brain activity at different 

spatiotemporal scales. Experimentally, data on which this assumption is employed range 

from high temporal resolution neural oscillations detected at low spatial resolution by 

EEG/MEG [1] to high spatial resolution functional MRI resting state modes oscillation 

detected at low temporal resolution [2] . As a consequence, a great deal of research activity 

is directed at the construction of connectivity maps between different brain regions (e.g., the 

Human Connectome Project [3]), and using those maps to study dynamical network 

properties with the help of different models of signal communication through this network 

along structurally aligned pathways [4], i.e. by allowing input from different scales or 

introducing axon propagation delays [5].

However, recent detection [6] of cortical wave activity spatiotemporally organized into 

circular wave-like patterns on the cortical surface, spanning the area not directly related to 

any of the structurally aligned pathways, but nevertheless persistent over hours of sleep with 

millisecond temporal precision, presents a formidable challenge for network theories to 

explain such a remarkable synchronization across a multitude of different local networks. 

Additionally, many studies show evidence that electrostatic field activity in animal or human 

hippocampus (as well as cortex) are traveling waves [7] that can affect neuronal activity by 

modulating the firing rates [7] and may possibly play an important functional role in diverse 

brain structures [8]. And perhaps more importantly it has been experimentally shown [9] that 

periodic activity can self-propagate by endogenous electric fields even through a physical 

cut in vitro that destroys all mechanisms of neuron to neuron communication.

In this paper we investigate a more general physical wave mechanism that allows cortical 

surface wave propagation in the cross fiber directions due to the interplay between tissue 

inhomogeneity and anisotropy in the thin surface cortex layer. This new mechanism has 

been overlooked by previous models of brain wave characterization and thus is absent from 

current network pathway reconstruction and analysis approaches.

The abundance of oscillatory patterns across a wide range of spatial and temporal scales of 

brain electromagnetic activity has generated much discussion and debate in the literature on 

their interaction [10]. The standard approach involves representing the brain as a large 

network of coupled oscillators [11] and using this as a testbed for the study of network wave 

propagation, mechanisms of synchrony, possibly deriving some mean field equations and 

properties, etc. However, such models are necessarily descriptive and their relationship to 

actual physical properties of actual brain tissue or the electromagnetic waves they support is 

tenuous.

The main claim of this paper is that there is a simple and elegant physical mechanism behind 

the existence of these cross-fiber waves that can explain the emergence and persistence of 

wave loops and wave propagation along the highly folded cortical regions with a relatively 
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slow damping. The lifetime of these wave–like cortex activity events can significantly 

exceed the decay time of the typical axon action potential spikes and thus can provide 

“memory-like” response in the cortical areas generated as a result of “along–the–axon” 

spiky activations. This new mechanism may provide an alternative approach for the 

integration of microscopic brain properties and for the development of a “physical” model 

for memory.

The paper derives cortex wave dispersion relation from well known relatively basic physical 

principles and provides illustrations of why and how cortical tissue inhomogeneity and 

anisotropy influence propagation magnitude, time-scales, and directions and supports 

extended and highly structured regions of existence in dissipative media using simple 1- and 

2-D anisotropic models, as well as more realistic full brain model based on a set of 

parameters extracted from real diffusion and structural MRI acquisitions. The wave 

properties (frequency ranges, phase and group velocities, possible spectra) are then 

compared with real EEG wave acquisitions. Finally, examples of wave propagation are 

studied analytically and numerically using a simple idealized but informative spherical shell 

cortex model (i.e. thin inhomogeneous layer around a sphere with homogeneous anisotropic 

conducting medium) as well as a more realistic anisotropic inhomogeneous full brain model 

with actual cortical fold geometry that clearly shows the emergence of localized persistent 

wave loops or rotating wave patterns at various scales, including scales similar to the scales 

of global rotation recently detected experimentally [6].

An important aspect of the cortical waves model we present is that it is based on relatively 

simple but physically motivated averaged electrostatic properties of human neuronal tissue 

within realistic data-derived brain tissue distributions, geometries, and anisotropy. While the 

source of these averaged tissue properties includes the extraordinarily complex network of 

neuronal fiber connections supporting a multitude of underlying cellular, subcellular and 

extracellular processes, we demonstrate that the inclusion of such details for the activation/

excitation process is not necessary to produce coherent, stable, macroscopic cortical waves. 

Instead, a simple and elegant physical model for wave propagation in a thin dissipative 

inhomogeneous and anisotropic cortical layer of these averaged properties is sufficient to 

predict the emergence of coherent, localized, and persistent wave loop patterns in the brain.

In addition, we demonstrate that the wave linear dispersion combined with nonlinear 

resonant and non–resonant coupling of multiple wave modes produces a remarkably feature 

rich nonlinear system that is able to reproduce many seemingly unrelated regimes that have 

been observed experimentally throughout a wide range of scales of brain activity. The 

different regimes include high frequency spiking-like activity occurring near the critical 

point of the equation that integrates multiple non-resonant wave modes and low frequency 

oscillations that emerge when weak resonant coupling is present in the vicinity of the critical 

point. The strongly nonlinear regime exists sufficiently close to the critical point where the 

solution bifurcates from oscillatory to non-oscillatory behavior. The weak resonant coupling 

then demonstrates a mechanism that constantly moves the system back and forth from 

subcritical to supercritical domains turning the spiking on and off with low frequency 

quasiperiodicity. This provides a novel physical mechanism to explain the flexibility and 

adaptability of the human brain across a wide range of tasks.

Galinsky and Frank Page 3

Phys Rev Res. Author manuscript; available in PMC 2021 March 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In order to describe this complex behavior we show for the first time that the inverse 

proportionality of frequency and wavenumber in brain wave dispersion relation permits the 

characterization of a limiting form for the signals in terms of a large number of wavemodes 

as a summation of non-resonant wave harmonics, thus allowing a closed analytical form of a 

nonlinear equation that integrates and includes the collective non-resonant input from 

multiple wave modes. This general mechanism explains the emergence of synchronized 

spiking from an elegant perspective of nonlinear wave physics, rather than relying on 

empirical fitting of a single measured quantity to a set of ad-hoc multi-parametric 

differential equations using 20+ dimensional and dimensionless fitting parameters, as is 

typically employed by a multitude of single neuron spiking models [10, 12]. Following the 

ideas of wave turbulence [13] we also show that the resonant coupling between those high 

frequency nonlinear wave modes can provide an effective universal mechanism for the 

emergence of low frequency wave rhythms. In Section II below we present the linear theory 

that explains the existence of evanescent wave-loops. In Section III we extend this to the 

nonlinear regime and demonstrate the emergence of spiking behavior and its interaction with 

the cortical loops of the linear theory.

II. LINEAR THEORY

A. Wave dispersion

We start with the most general form of brain electromagnetic activity using Maxwell 

equations in a general (i.e., inhomogeneous and anisotropic) medium

∇ ⋅ D = ρ, ∇ × H = J + ∂D
∂t

∂ρ
∂t + ∇ ⋅ J = 0.

Using the electrostatic potential E = −∇ϕ, Ohm’s law J = σ · E (where σ ≡ {σij} is an 

anisotropic conductivity tensor), a linear electrostatic property for brain tissue D = εE, 

assuming that the scalar permittivity ε is a “good” function (i.e. it does not go to zero or 

infinity everywhere) and taking the change of variables ∂x → ε∂x′, the charge continuity 

equation for the spatial-temporal evolution of the potential ϕ can be written in terms of a 

permittivity scaled conductivity tensor Σ = {σij/ε} as

∂
∂t ∇2ϕ = − ∇ ⋅ Σ ⋅ ∇ϕ + ℱ, (1)

where we have included a possible external source (or forcing) term ℱ. For brain fiber 

tissues the conductivity tensor Σ might have significantly larger values along the fiber 

direction than across them. The charge continuity without forcing i.e., (ℱ = 0) can be written 

in tensor notation as

∂t ∂i
2ϕ + Σij∂i ∂jϕ + ∂iΣij ∂jϕ = 0, (2)

where repeating indices denote summation. Simple linear wave analysis, i.e. substitution of 

ϕ ~ exp (−i(k · r − Ωt)), where k is the wavenumber, r is the coordinate, Ω is the frequency 

and t is the time, gives the following complex dispersion relation:

Galinsky and Frank Page 4

Phys Rev Res. Author manuscript; available in PMC 2021 March 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



D Ω, k = − iΩki
2 − Σijkikj − i∂iΣijkj = 0, (3)

which is composed of the real and imaginary components:

γ ≡ ℑΩ = Σij
kikj
k2 ω ≡ ℜΩ = − ∂iΣijkj

k2 (4)

The condition for non– (or weak–) evanescence is that the oscillatory (i.e., imaginary) 

component of ϕ, characterized by the frequency ω, is much larger than the decaying (i.e., 

real) component, characterized by the damping γ: i.e. that the condition |γ/ω| ≪ 1 must be 

satisfied. This requirement is clearly not satisfied if reported average isotropic and 

homogeneous parameters are used to describe brain tissues. For typical low frequency (≲ 
10Hz) white and gray matter conductivity and permittivity (i.e. from [14]) εGM = 4.07 · 

107ε0, εW M = 2.76 · 107ε0, σGM = 2.75 · 10−2 S/m, σW M = 2.77 · 10−2 S/m, where ε0 = 

8.854187817·10−12 F/m is the vacuum permittivity) the damping rate γ is in the range of 

75–115 s−1 which would be expected to give strong wave damping.

B. Effects of anisotropy

In order to better understand the effects of brain tissue micro- and macro-structure on the 

manifestation of propagating brain waves, it is instructive to consider two idealized tissue 

models. In the first model (Fig. 1a) all brain fibers are packed in a half space aligned in z 
direction and their number decreases in x direction in a relatively thin layer at the boundary. 

We assume that small cross fiber currents can be characterized by a small parameter e and 

introduce the conductivity tensor as

Σ =
ϵυ ϵυ ϵυ
ϵυ ϵυ 0
ϵυ 0 υ

. (5)

where υ ≡ υ(x). For the υ(x) dependence we will assume that the conductivity is changing 

only through a relatively narrow layer at the boundary (as illustrated in Fig. 1a) and the 

conductivity gradient is directed along x axis. Then we will look for a solution for the 

potential ϕ located in the thin layer of inhomogeneity (that is we substitute x → ϵx) that 

depends on z and y only as ϕ = ϕ‖(z) + ϵϕ⊥ (y).

ϵ0: ∂
∂t

∂2ϕ
∂z2 + υ∂2ϕ

∂z2 + ∂υ
∂x

∂ϕ
∂z = 0 (6)

ϵ1: ∂
∂t

∂2ϕ⊥
∂y2 + ∂υ

∂x
∂ϕ⊥
∂y + O ϵ = 0 (7)

where ϵ0 and ϵ1 denote the zeroth and the first orders of ϵ power.
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The first equation (6) describes a potential along the fiber direction and is a damped 

oscillator equation that has a decaying solution. But the second equation (7) describes a 

potential perpendicular to the fiber direction and does not include a damping term, hence it 

describes a pure wave-like solution that propagates in the thin layer transverse to the main 

fiber direction. Thus although this wave-like solution ϕ⊥ has a smaller amplitude than along 

the fiber action potential ϕ‖, it can nevertheless have a much longer lifetime.

We would like to stress that the equations (6) and (7) are here only for illustrative purposes 

to emphasize a relatively obvious but often overlooked consideration that under anisotropic 

inhomogeneous conditions some directions may happen to be better suited for wave 

propagation than the others, and, in particular, those directions are not necessarily along the 
direction of the fibers. Below we will develop the more complete theory of brain wave 

propagation using the more general dispersion relation (3).

In order to account for geometric variations, we construct a slightly more complex two 

dimensional model that can be viewed as a very crude approximation of a cortical fold (Fig. 

1b). It is easy to derive an analogue of the equation (7) for the ϕ⊥(y) in the case when υ ≡ 
υ(x, z). This new equation for the ϕ⊥(y) will again be of a wave type, similar to (7), with the 

addition of a z component of the conductivity gradient and with a similar wave–like solution 

that will include an additional term induced by the inhomogeneity in z.

The sole purpose of those examples is to provide illustrations that dissipative media with 

complex structure may show surface wave–like solutions. Surface waves at the boundary of 

various elastic media have been extensively studied and used in various areas of science 

(including acoustics, hydrodynamics, plasma physics, etc.) since the work of Lord Rayleigh 

[15]. The existence of surface waves at the dissipative medium boundary is also known [16].

C. Effects of brain composition and architecture

In order to extend the above analysis to a more realistic model of brain tissue architecture we 

extracted volumetric structural brain parameters from high resolution anatomical MRI 

datasets as well as brain fiber anisotropy from diffusion weighted MRI datasets. All 

anatomical and diffusion MRI datasets are from the Human Connectome Project [3]. The 

details for all of the processing steps can be found in [17–19]. More refined procedures for 

constructing the conductivity tensor and anisotropy in different brain regions, cortical areas 

in particular, would clearly be beneficial and will be addressed in the future.

To provide an illustration of where the conductivity anisotropy and inhomogeneity can form 

appropriate conditions for cortex surface waves generation we created plots that can be used 

to characterize the ratio |γ/ω|. To construct the ratio we calculated two vectors, ∂iΣij and Σjjki 

and compared their norms. For wave vector k we used a vector with the same direction as in 

∂iΣij vector and magnitude |k| = |∇Σ|/|Σ|, i.e. our intention is to compare norms of dissipative 

and wave-like terms at kh ≈ 1 where h is the cortical thickness. Fig.2 shows plot of the ratio 

of |Σijki| and |∂iΣij| at two different depths inside the brain with dissipative regime in the 

inner cortex (a) and wave–like conditions in the outer cortex (b).
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Both anisotropy and inhomogeneity are important for the existence of the cortex surface 

waves. For example for inhomogeneous but isotropic tissue the conductivity tensor Σij will 

simply be Sδij, where S is a scalar inhomogeneous conductivity. Therefore both the phase 

velocity

υpℎ = ω
k

k
k = − ∇ ⋅ Σ ⋅ k

k4 k = − ∇ S ⋅ k
k4 k

and the group velocity

υgr = ∂ω
∂k = − ∇ ⋅ Σ

k2 + 2∇ ⋅ Σ ⋅ k
k4 k = − ∇S

k2 + 2∇S ⋅ k
k4 k

will include terms ∇S and ∇S · k, meaning that those waves are not able to propagate 

normally to the local conductivity gradient ∇S. This restriction is absent in cortex areas 

when both anisotropy and inhomogeneity are present (due to tensor products in ∇ · Σ and ∇ · 

Σ · k).

D. Spherical cortex shell model

To provide some (possibly overly optimistic) estimates based on a typical human brain 

dimensions we can consider a simple spherical cortex shell model with a cortical layer of 

fixed thickness h ≈ 1.5–3mm spread over a hemisphere of radius R ≈ 75mm, with all 

parameters kept constant inside the hemisphere (for r < R) and changing as a function of 

radius r in a cortical layer. Even without taking into account the known strong anisotropy of 

neural tissue, these simple geometric considerations provides from (4) for the longest waves 

(with the smallest amount of damping) with

γ
ω =

Σijkikj
∂iΣijkj

≈ Sk2
S /ℎk ≈ kℎ 0.02 − 0.04.

Anisotropy (Σ⊥ < Σ‖) will reduce this estimate even further,

γ
ω =

Σijkikj
∂iΣijkj

≈
Σ⊥k⊥

2

Σ /ℎk⊥
≈

Σ⊥
Σ kℎ < kℎ,

thus further strengthening the condition necessary to support stable waves. This simple 

spherical shell model can be used to illustrate the natural appearance of loop-type cortical 

waves, which can be easily understood from simple geometrical optics arguments. Using the 

dispersion relation (3) with only single component of the conductivity tensor Σzz = S(r), the 

wave frequency ω can be expressed as

ω = − 1
r

dS
dr

kzz
k2 ; (8)
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where we have neglected the term Skz
2 because kh ≪ 1. Then from the geometrical optics 

ray equations

drl
dt = ∂ω

∂kl
, dkl

dt = − ∂ω
∂rl

, (9)

where rl and kl are l component of the coordinate r and wavenumber k vectors respectively, 

we can get

dx
dt = − 2ωkx

k2 , dkx
dt = − dω

dr
x
r ,

dy
dt = − 2ω ky

k2 , dky
dt = − dω

dr
y
r ,

dz
dt = − ω2kz

2 − k2

k2kz
, dkz

dt = − 1
z

dω
dr

z2

r + ω .

(10)

These equations will generate rays inside the spherical cortex shell showing wave 

propagation across both the fibers and the conductivity gradient in the cortex subregion 

where ω dω / dr < 0. For kz = k/ 2 and z = −ωr/ dω/dr  the wave path has the simplest 

form – the wave follows the same loop through the cortex over and over again. Different 

families of frequencies ω and wavevectors k will result in the appearance of cortical wave 

loops at different cortex locations (more details of spherical shell model are available in 

Appendix A).

E. Brain waves power spectra

In order to determine a possible energy distribution across different frequencies for these 

cortical waves some knowledge about the forcing term ℱ in (1) is required. A rough 

estimate for this distribution in the form of a power spectra scaling can be carried out using 

some simple assumptions. Assuming that the forcing consists of spiking input localized at 

random locations and times, it can be described as a sum of delta functions, 

ℱ = iAiδ t ti δ r ri , corresponding to a flat forcing frequency spectrum in the Fourier 

domain. Then, from the last term in (2) |(∂i Σij )(∂jϕ) | ω |ϕω|2 const, we can estimate the 

exponent α = 2 in a power law scaling of the potential ϕ frequency spectrum (i.e. for |ϕω|2 ~ 

ω−α).

The presence of the cortical wave loops described above can modify this ω−2 dependence 

and thus modify the spectrum in such a way that spectrum peaks are generated that 

correspond to these loop wave currents. From (8) we can estimate the range of frequencies 

where those loops can possibly be present. Taking 1/r ~ 1/R, 

dS /dr Σzz/ℎ, z = −ωr/(dω/dr) Rℎ gives a frequency estimate as 

f = ω/2 π Σzz/(2 π k 2Rℎ), hence for the largest and smallest wavenumbers defined by the 

smallest (1.5mm) and largest (75mm) loop radii, the frequency f spans the range 1.2–92Hz 

(υph ≈ 0.002–7m/s). The large scale circular cortical waves of [6] (9–18Hz, 2–5m/s) are 

clearly inside this range. The above spherical shell wave propagation example (as well as 
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wave simulations presented below) are not able to predict the exact values for wave 

amplitude as it requires calculation of the balance between excitation and dissipation of 

these waves at various frequency ranges and the simple estimates using amplitudes of 

spiking are not that particularly informative as they simply predict the values that are in the 

range of typically observed field potentials. Nevertheless, even without the amplitude 

estimation our analysis is able to predict the preferred directions of wave propagation and 

loop pattern formation based on geometrical and tissue properties. Moreover, this framework 

provides the mechanisms to incorporate a more complete quantitative description of axonal 

spiking which we address in the next section.

Evidence for the existence of these wave loop induced spectral peaks is shown in Fig.3, 

which shows the spectral power of the EEG signal for six subjects [20], averaged over all 

sensors. The dashed lines outline the predicted f−2 in the lower (f ≲ 1.2Hz) and higher (f ≳ 
92Hz) parts of the spectra. The dashed-dotted vertical lines denote the frequency range 

where the cortical loops may exist, agreeing very well with typically observed EEG 

excessive activity range, from low frequency delta (0.5–4Hz) to high frequency gamma (25–

100Hz) bands.

F. Linear brain wave propagation

The effect described theoretically above can be demonstrated through numerical simulation 

of wave propagation in a thin dissipative inhomogeneous and anisotropic cortical layer. As a 

starting point for numerical study we included Fig. 4, that shows spatial snapshots of the 

dynamical behavior of randomly generated wave trajectories (the movies are in [21] and in 

Appendix G with additional technical details) in a regime with γeff
Lloop/υgr ≤ 1 (where γeff 

is an effective wave dissipation rate, i.e. a difference between average dissipation and spiky 

activations rates for a wave packet propagating with group velocity υgr along some 

characteristic loop of Lloop length. Wave packets are simulated using the ray equations (9) 

where the general form of anisotropic dispersion relation (3) and (4) is used.

In the idealized spherical model some of the emergent persistent localized cortical wave 

patterns are precisely the simple loop pattern predicted by (10), despite the complex initial 

spatiotemporal pattern of the initial wave trajectory. As further predicted, the simulations 

informed by the real human data with the same cortex fold geometry as in Fig.2 (middle and 

bottom panels) also produce stable loop structures, now embedded within the complex 

geometry of the cortical folds.

All wave simulations were initialized with wave packets of random parameters (frequency, 

wave number, location, etc), but clearly show an emergence of localized persistent closed 

loop patterns at different spatial and temporal scales, from scales as large as the whole brain 

where rotational wave activity has been experimentally detected in [6] to as small as the 

resolution used for the cortical layer thickness detection (more details of cortical fold model 

and wave integration are available in Appendices B to D).
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III. NONLINEAR THEORY

A. Reduced equation

The above linear analysis can be extended to include nonlinear effects resulting from a more 

complex description of the physical processes involving the tissue properties. We assume for 

simplicity a two dimensional symmetric form of the conductivity tensor with constant 

diagonal terms Σxx and Σyy (where Σyy is along the fibers conductivity, Σxx < Σyy) and 

position dependent off–diagonal terms Σxy that are changing linearly with y through a 

relatively narrow layer at the boundary so that the conductivity gradient exists only inside 

this layer and is directed along the y axis. We will only be interested in a one dimensional 

solution for the potential ϕ(x) located in this thin layer of inhomogeneity that can be 

described by the reduced equation

∂t ∂x
2ϕ + γd∂x

2ϕ + Ω∂xϕ = ℱ, (11)

where γd = Σxx and Ω = ∂y Σxy.

The source term ℱ can be assumed to have a frequency independent forcing part with a 

linear growth rate γe representing some averaged input from random spiking activity and an 

additional term that describes the nonlinear amplitude/phase coupling of the firing rate to the 

wave field itself [7, 22],

ℱ = − γeϕ − N ϕ . (12)

The solution ϕ can be sought as a Fourier integral expansion

ϕ x, t =
∞

∞

a k t ei kx ωkt dk c c (13)

for wave modes with frequencies ωk and wave numbers k (where “c.c.” denotes complex 

conjugate), that results in a set of coupled equations for time dependent complex amplitudes 

ak (t) ≡ a(k, t)

dak
dt = γe

k2 − γd ak + 1
k2Nk, (14)

where from (3) the wave mode frequencies are inversely proportional to the wave number

ωk = Ω/k (15)

and

Nk = 1
2π

∞

∞

N ϕ e−i kx + ωkt dx, (16)
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where all spectral and spatial integrals are assumed to be taken on the infinite domain [−∞, 

∞], the spectral integrals are actually converted to the half infinite domain [0, ∞] as a 

consequence of the symmetry of ak due to ϕ(x, t) being real (from this point we will omit 

repeating explicit limits of integration where it does not create ambiguity).

The condition of wave propagation (ω/γ > 1), corresponding to small wave growth or 

damping during a single wave period, provides natural limits for the spectral (k0, k∞) or 

spatial (l, L) domains to be taken as cutoffs in a case of presence of large or small scale 

divergences, i.e.

ωkk2

γe
= Ωk

γe
> 1, k > k0 ≡ γe

Ω ≡ 2π
L , (17)

ωk
γd

= Ω
kγd

> 1, k < k∞ ≡ Ω
γd

≡ 2π
l . (18)

The existence of spatial scales L ≡ 2πΩ/γe and l ≡ 2πγd/Ω does not mean that the waves 

only propagate inside some fixed [l, L] domain that requires additional boundary conditions. 

Both the spectral (k0, k∞) and the spatial (l, L) scales simply emphasize the fact that for any 

frequency it is the combination of the excitation γe and the damping γd that defines an 

extent where any disturbance of the scalar potential ϕ may be assumed to have wave 

properties.

B. Resonant coupling of wave modes

The nonlinear terms Nk will include a sum of inputs from multiple waves, i.e., k = i
nki

where n is the order of the non-linearity. Those resonant conditions will give rise to coupling 

terms that includes various combinations of exp i ωk − i
n ωki t . Additional requirements 

for frequency resonances ωk = i
n ωki  produces wave turbulence-like [13] selection rules 

for the coupling terms that are similar to phase coupling terms in a ring of connected 

oscillators [23].

For waves having typical dispersion properties, that is with the frequencies directly 

proportional to the wave numbers (ωk ~ kα α > 0), the maximum oscillatory frequency is 

increasing and going to infinity with the increase of wave numbers. In this case the nonlinear 

terms produce a direct cascade of wave energy [13] constantly generating larger and larger 

frequencies. For the inversely proportional wave dispersion, like the waves considered in this 

paper, the wave energy will be cascaded into smaller frequencies, thus providing a natural 

mechanism for synchronization of high frequency spiking input and emergence of low 

frequency rhythms.

This model is also able to characterize another important phenomenon whose existence is 

supported by an abundance of experimental data – feedback between field potential and 

firing rate [7, 22]. The feedback can be represented through nonlinear coupling. This will be 

demonstrated using the simplest quadratic form N(ϕ) = ϕ(x, t)2 for the coupling which can 
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arise through many different processes. More complex feedback can be generated by higher 

order coupling terms of course but that discussion is beyond the scope of this current paper. 

The quadratic form of coupling results in

Nk = δ k k k e i(ωk ωk ωk )tak ak dk′dk″ . (19)

Using symmetry conditions a−k = ak* and ω−k = −ωk (a consequence of ϕ*(x) = ϕ(x)) this 

can be rewritten as

Nk = e i(ωk ωk ωk k )tak ak k e i(ωk ωk ωk k )tak ak k

e i(ωk ωk ωk k )tak ak k e i(ωk ωk ωk k )tak ak k dk
(20)

The corresponding conditions for the frequency resonances ωk = ±ωk′ ± ωk″ allow the 

expression of the non-linear resonant coupling Nk
R by extraction of only the relevant terms 

as

Nk
R ak − 2ak − 1* + ak − 1ak1 + ak1* ak2 , (21)

where only three out of four wave number resonances appear, as the resonance k + k′ + k″ = 

0 is not possible [13], and k−2 = k(3 − 5)/2, k−1 = k(1 − 5)/2, k1 = k( − 1 − 5)/2, and 

k2 = k(3 + 5)/2, are the real solutions of quadratic equations 1/k±1/k′±1/|k−k′| = 0.

C. Non–resonant coupling of wave modes

An important addition to these coupling terms arises from the inverse proportionality of 

frequency and wave number in the dispersion relation (15). The difference of frequencies of 

nonlinear non-resonant harmonics is decreasing and going to zero with increasing wave 

number, thus effectively allowing a closed form expression for the limit of k → ∞, an effect 

that is absent for coupling of waves with directly proportional dispersion. To illustrate this, 

we will estimate the non-resonant nonlinear input Nk0
nR to the k0 wave mode.

Nk0
nR = e iδω1 k takak k0 e iδω2 k takak k0 e iδω3 k takak k0
e iδω4 k takak k0 dk,

(22)

where

δω1 k = ωk0 − ωk + ωk − k0,

δω2 k = ωk0 − ωk − ωk − k0,

δω3 k = ωk0 − ωk + ωk + k0,

δω4 k = ωk0 − ωk − ωk + k0 .
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The approximate expression for the forced oscillations solution can be obtained assuming 

that all the forcing input originates from the scales of k = k0 (the forcing term γe/k2 in (14) 

is largest when k = k0). Therefore we will derive the non–resonant input term Nk0
nR only for 

k = k0, thus neglecting nonlinear and damping terms for any k > k0 (more correctly, for any 

k that are not in resonance with k0 or for k > k2 = k0(3 + 5/2) ≈ 2.618k0). At the limit k → 

∞ all frequency deltas δω1−4(k) → ωk0 ≡ ω0 and k − k0 ≈ k, hence approximately we can 

estimate the non–resonant term Nk0
nR as

Nk0
n R ≈ 2e−iωk0t akak ak

2 dk

≈ e−iωk0t ak ak
2

dk .
(23)

To estimate forced oscillations terms required in evaluation of the integral (23), one can 

write from (14), (20) and (22) that

dak
dt = 1

k2 eiδω1 k tak0ak − k0 + eiδω2 k tak0ak − k0* + eiδω3 k tak0ak + k0

+ eiδω4 k tak0ak + k0* .
(24)

Looking again for an approximate large k solution (ak−k0 ≈ ak for k ≫ k0) and keeping only 

terms that include ak0 (assuming that the amplitude ak0 is small and can be considered 

constant relative to any of the δω(k) terms), we can approximately write that

ak ≈
−iak0

k2 j 1

4 Cj k eiδωj k t

δωj k (25)

≈
−iC k ak0

k2ωk0
eiωk0t, (26)

where C1…4(k) and C(k) = Σ Ci(k) are some complex integration constants that we assume 

to have random phases with the amplitude independent of k, hence, we can use that 

C(k)C*(k) = C.

Therefore, the non-resonant input term Nk0
nR (23) depends on ak0 and t as

Nk0
nR ≈ 2C

3ωk0
2 k0

3e−iωk0tak0ak0* , (27)

where terms with C(k)C(k) and its complex conjugate vanish because of the randomness of 

the phases.
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More accurate estimation of Nk0
nR will require evaluation of integrals similar to

InR = e i δωi1 k δωi2 k δωi3 k k0 t

k2 k k0
2δωi2 k δωi3 k k0

dk

= 1
ωk0

2 k0
3

e iωk0 1 1 k 1 k 1 t

k2 k 1 2 1 1 k 1 k 1 2dk,
(28)

that, although resulting in more complex expressions, nevertheless have the same e−iωk0t 

asymptotic behavior for t → ∞ to (the details of the derivation of InR and an evaluation of 

the asymptotic limit t → ∞ are presented in Appendices E and F).

Because the exact numeric coefficients that appear in (27) (or the exact form of algebraic 

time dependence in (F8) to (F11) for the leading asymptotic terms) may depend on some 

arbitrary initial background wave spectra, in the following analysis we will introduce some 

free parameters that can be used to study and characterize possible effects of various linear 

and nonlinear (e.g. resonant and non-resonant) terms.

Therefore, an equation for the longest wave length brain mode ak0 that integrates the 

nonlinear nonresonant input from smaller spatial scales can be written as

dak0
dt =

ak0
k0

2 γ + βe−iωk0t

Ω2 k0
ak0

∗ − 2α ak0 ak0, (29)

where γ describes the excitation strength and β is the strength of non-resonant coupling. The 

last term (with the parameter α) was included to ensure that coupling does not produce an 

overall mean field excitation, as well as to ensure that in the limit of vanishing coupling (β = 

0) the solution of (29)

ak0 t = γ
C0γ exp −γt/k0

2 + 2αk0
2 , (30)

(where C0 is a constant) has the same 1/k0
2 asymptotic behavior for t → ∞ as the solution of 

(11) obtained with time and space scale independent forcing.

The equation (29) can be converted to a system of equations for the amplitude A and phase 

B (ak0 = AeiB) as

dA
dt = A

k0
2 γ +

βA cos B + ωk0t − δA

Ω2 k0
− 2αA2, (31)

dB
dt = − βA

Ω2 k0
3sin B + ωk0t − δB , (32)

where δA and δB were added to introduce tunable phase delays [24].
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D. Solution for non-resonant coupling

The system of equations (31) and (32) includes nonresonant input from all wave modes, but 

the resonant term (21) should also be added together with additional equations for resonant 

wave amplitudes that participate in resonant coupling. We will consider this complete 

system later, but first we will investigate the behavior of the nonlinear non–resonant part 

only.

Fig. 5 shows the results of numerical solution of the system (31) and (32) for several 

different sets of parameters. The time evolution of the highest frequency, longest wave 

length mode exhibits a variety of types of oscillatory behavior, ranging from slightly 

nonlinear modified sinusoidal shapes to more nonlinear looking shapes similar to network 

attributed alpha waves or μ-shaped oscillations [10]. Increase in the level of activation γ 
produces nonlinear signal with the spike–like shape of a single neuron firing.

E. Critical point and synchronized spiking

It is interesting that this spiking-like solution of system (31) and (32) appears near the 

critical point, and the oscillatory state undergoes bifurcation and transitions to non-

oscillatory regime as γ reaches the value above some critical point. To illustrate the reason 

for this transition we will consider the simplest case of δA = 0 and δB = π/2 (although 

different δA,B values can be used for a similar analysis as well). The non–oscillatory regime 

can be reached if dA/dt → 0 and dB/dt → −ωk0 as t → ∞. Then from (31) and (32) one can 

write that at t → ∞

γA − ωk0A − 2αA2 = 0, βA cos B0 = − ωk0,

where B0 is some arbitrary constant phase. Therefore, the non–oscillatory state requires that 

γ satisfies to

γ = ωk0 1 − 2α
β cos B0

. (33)

Hence for

ωk0 1 − 2α
β < γ < ωk0 1 + 2α

β , (34)

the non-oscillatory solution is not possible. The simulations shown in the bottom panels of 

Fig. 5 confirm that the critical γ value is indeed 3 when ωk0 = α = β = 1. Similar analysis 

when δA = δB gives the critical γ value equals to (2 − cos (π/3))/sin(π/3) ≈ 1.732.

We would like to emphasize that all variety of models used for a description of action 

potential neuron spikes, starting from the seminal model by Hodgkin and Huxley [12], and 

finishing with many dynamical integrate-and-fire models of neuron [10], are based on an 

approximation of several local neuron variables, e.g. membrane currents, gate voltages, etc., 

and defining the relations between these local properties. Contrary to this and rather 

unexpectedly, the equation (29) is obtained through an integration of a large number of 
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oscillatory brain wave modes non-resonantly interacting in an inhomogeneous anisotropic 

media and shows spiking pattern solutions emerging as a result of this non–resonant multi–

mode interaction rather than as a consequence of empirical fitting of nonlinear model to 

several locally measured parameters. It is also important that the equation (29) can not be 

separated into “fast” and “slow” parts as typically required for functioning of “traditional” 

neuron models. Because of this we would like to reiterate that this equation should not be 

viewed as a single neuron model and should not be considered as an alternative to any of the 

single neuron models [25]. It describes a mechanism for generation of synchronous spiking 

activity as a result of a collective input from many non-resonant wave modes. The transition 

to the synchronous spiking activity occurs in the vicinity of the critical point where a 

bifurcation from oscillatory to non-oscillatory state happens, thus indirectly supporting the 

sub-criticality hypothesis [26] of brain activity.

F. Bursting activity

As a next step we employed a more complex expression for the total input from the non-

resonant terms by including a sum of all InR integrals (28) instead of a single e−iωk0t 

exponent input. Fig. 6 shows simulation results for several parameter sets with the same 

values as were used for plots of Fig. 5 (wk0 = β = k0 = 1, δA = 0). The numerical solution 

shows more complex behavior that now includes modulation of the spiking rate with lower 

frequency and emergence of burst-like train of spikes, effects often observed in different 

types of neuronal activity [10].

G. Emergence of low frequency brain rhythms

And finally, we considered a model that combines a chain of inputs from nonlinear modes 

generated due to resonant terms (21) into a set of non-resonant mode equations (29), that 

results in a system of equations for mode amplitudes ak for k = k0 … kN

dak0
dt =

ak0
k0

2 γ + β
Ω k0

e−iωk0t + δak0
∗ − 2α ak0 ak0 + λ

k0
2ak1* ak2,

dak1
dt =

ak1
k1

2 γ + β
Ω k1

e−iωk1t + δak1
∗ − 2α ak1 ak1 + λ

k1
2 ak0ak2 + ak2* ak3 ,

⋯
dakn
dt =

akn
kn

2 γ + β
Ω kn

e−iωknt + δakn
∗ − 2α akn akn + λ

kn
2 akn − 2akn − 1* + akn − 1akn + 1 + akn + 1* akn + 2 ,

⋯
dakN

dt =
akN
kN

2 γ + β
Ω kN

e−iωkNt + δakN
∗ − 2α akN akN + λ

kN
2 akN − 2akN − 1* ,

(35)

where the parameter λ describes the strength of resonant coupling between modes.

We would like to mention two new, rather important, and not entirely obvious features that 

appear in the nonlinear system (35), but are absent for phase coupled oscillator models (e.g. 

[23]). First, the system (35) may show multiple critical point transitions corresponding to 

multiple linear resonant frequencies ωki as activation level γ increases. Second, sufficiently 

close to the critical point the strong modification of an effective wave mode frequency by the 

non–resonant input from multiple wave modes may result in nonlinear resonances with 
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different modes that are not possible for linear waves, thus providing a mechanism for 

emergence of unexpected oscillations difficult to explain by more simplistic models.

Figs.7 and 8 show results of numerical simulation of the system (35), clearly indicating that 

weak nonlinear resonant coupling between just three modes with frequencies of ωk0, 

2ωk0/(1 + 5) and 2ωk0/(3 + 5) is capable of explaining an emergence of periodic activity 

with frequencies up to 100–1000 times lower then the linear frequencies of participating 

modes. We would like to emphasize again that the system (35) can not be separated into 

traditional “slow” and “fast” subsystems, hence the low frequency component can not be 

explained by a modulation [27] of the “fast” subsystem with oscillations of the “slow” part.

In Fig. 7 the high frequency spiking is generated with the level of activation γ = 1.535. This 

activation level is still relatively far from criticality but produces spikes with an effective rate 

that is close to the next linear resonance frequency. The first, second and third rows clearly 

show that small increase of the resonant coupling (0.001, 0.01 and 0.05 respectively) results 

in appearance of component with significantly lower frequency.

Fig. 8 shows several simulations with the level of activation that is close to criticality for the 

selected set of parameters in each column. The small resonant coupling λ = 0.05 in this case 

results in more profound effect of quasiperiodic shift of oscillations back and forth from 

subcritical to supercritical regimes effectively turning spiking on and off with low frequency. 

Prediction of the actual period of nonlinear low frequency oscillations from the model 

parameters, e.g. distances from the critical points and other resonances, phase delays, etc., is 

an interesting open question that will be considered in future work.

IV. DISCUSSION AND CONCLUSIONS

In conclusion, in this paper we have presented an inhomogeneous anisotropic physical 

model of wave propagation in the brain cortex. The model predicts that in addition to the 

well-known damped oscillator-like wave activity in brain fibers, there is another class of 

brain waves that are not directly related to major fibers, but instead propagate perpendicular 

to the fibers along the highly folded cortical regions in a weakly–evanescent manner that 

results in their persistence on time scales long compared to waves along brain fibers. The 

waves can potentially propagate in any direction, including the direction along the fibers or 

in the direction of the inhomogeneity gradient. However, the dissipation of the waves is 

smallest when they propagate cross fibers, therefore, on average the cross fiber direction of 

propagation should be seen more often. For the first time, we have obtained the dispersion 

relation for those surface cortex waves, and have shown, both analytically and numerically, a 

plausible argument for their existence. Through numerical analysis we have developed a 

procedure to generate an inhomogeneous and anisotropic distribution of conductivity tensors 

using anatomical and diffusion brain MRI data. While the detailed numerical studies of 

effects and importance of these waves and their possible biological role are beyond the scope 

of this paper, we have presented preliminary results that suggest that the time of life for 

these wave–like cortex activity events may significantly exceed the decay time of the typical 

axon action potential spikes. Thus, they can provide an persistent neuronal response in the 

cortical areas generated as a result of “along–the–axon” spiky activations.
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The ranges of parameters for the waves produced by our model are in agreement with those 

presented by several studies [7] that show evidence that electrostatic field activity in several 

areas of animal and human brains are traveling waves that can affect neuronal activity by 

modulating the firing rates [7] and may possibly play an important functional role in diverse 

brain structures [8]. The natural self organization of these traveling waves into loop–like 

structures that our model produces agrees well with recently detected [6] cortical wave 

activity spatiotemporally organized into circular wave-like patterns on the cortical surface. 

Self-propagation of endogenous electric fields through a physical cut in vitro when all 

mechanisms of neuron to neuron communication has been destroyed [9] can potentially be 

attributed to these waves as well. We have also demonstrated that the peaks these wave loops 

would induce in EEG spectra are consistent with those typically observed EEG data.

Direct experimental results have shown that even despite the small amplitudes of the 

external field potentials relative to the threshold of a spiking neuron, external fields can play 

a substantial role in the spiking activity and “even very small and slowly changing fields that 

triggered Ve changes under 0.2 mV led to phase locking of spikes to the external field and to 

a greatly enhanced spike-field synchrony” [28]. Therefore our models ability to predict 

regions of cortex where external wave activity can emerge and form a sustained loop pattern 

has the potential to be important for understanding where the neuron spiking 

synchronization will have better chances to be achieved, hence it can provide substantial 

input in understanding effects on neural information processing and plasticity.

The unusual dispersion properties of those waves provide a universal physical mechanism 

for emergence of low frequencies from high frequency oscillations. The simple quadratic 

nonlinearity introduced as a coupling source for the wave model allowed the derivation of an 

equation for a nonlinear form of those waves by taking a limit for a large number of non-

resonantly interacting wave modes, which we emphasize is a limit that exists only due to the 

unusual dispersion properties of the waves. The collective input from those non–resonant 

modes results in nonlinear spiking–like solutions of this equation and an existence of a 

bifurcation point from oscillatory to non–oscillatory regime. The multi–mode nonlinear 

system that includes both non-resonant and resonant coupling between multiple modes 

shows emergence of low frequency modulations as well as strongly nonlinear low frequency 

quasiperiodic oscillations from subcritical to supercritical regimes. This theory thus provides 

a basis for relating quantitative tissue microstructural properties (such as anisotropy and 

inhomogeneity) and measurable larger scale architectural features (e.g, cortical thickness) 

directly to electrophysiological measurements being performed with increasingly sensitive 

techniques (such as EEG) within a wide range of important basic and clinical research 

programs. The ability of this new physical model for the generation, propagation, and 

maintenance of brain waves may have significant implications for the analysis of 

electrophysiological brain recording and for current theories about human brain function. 

Furthermore, the dependence of these waves on brain geometry, such as cortical thickness, 

has potentially significant implications for understanding brain function in abnormal states, 

such as Alzheimer’s Disease, where cortical thickness changes are evident, and the 

dependence on tissue status may be important in conditions such as Traumatic Brain Injury, 

where tissue damage may alter its anisotropic and inhomogeneous properties.
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Appendix A:: Spherical shell cortex model

We first provide details about the procedures used for generating inhomogeneous and 

anisotropic components of the permittivity scaled conductivity tensor Σ.

Spherical shell cortex model is represented by fixed anisotropy tensor σij(r) ≡ σij scaled by a 

radial inhomogeneous density ρ(r) ≡ ρ(r), such that the total conductivity tensor Σij(r) is 

defined by

ij r = ρ r σij r (A1)

where σij is a constant, anisotropic, positive semidefinite symmetric tensor and ρ(r) is 

piecewise continuous function of radius r (0 ≤ r ≤ 1)

ρ r =

1

1 + arctan α∞ 1 − 2
r − r0
r1 − r0

2n + 1

2 arctan α∞ 2n + 1

0

r ≤ r0
r0 < r < r1
r ≥ r1
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FIG. 9. 
Plot of ρ(r) for different n

The spherical shell cortex wave simulations include three different anisotropic tensor σij 

choices,

σ 1 =
ε 0 0
0 ε 0
0 0 1

σ 2 = 1
3

1 + 2ε 1 − ε 1 − ε
1 − ε 1 + 2ε 1 − ε
1 − ε 1 − ε 1 + 2ε

σ 3 =
1 0 0
0 ε 0
0 0 1

(A2)

where (for ε = 0) σ(1) represents the conductivity tensor used in analytical solution of 

equations (10) of the paper, i.e. currents only in z direction, σ(2) represents different 

orientation, where currents are allowed in the direction of 45° relative to all axis, and σ(3) 

represents more complicated current anisotropy, with crossing currents flowing in x and z 
direction, but with no currents in y direction.

Parameters n, r0 and r1 used to control the thickness of the inhomogeneous “cortical” layer 

(r0=0.5, r1=0.9, α∞=500 and n =0,2,14 and 25 used for Figs. 10 to 13).
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Appendix B:: Cortical fold model

For cortical fold model the conductivity tensor Σij(r) is again defined as a product of 

inhomogeneous ρ(r) and anisotropic σij(r) parts (A1), but both parts are now functions of 

brain locations.

1. Inhomogeneity estimation

The inhomogeneous density function ρ(r) is estimated from high resolution anatomical MRI 

data by processing it with SWD [17] (skull stripping, field of view normalization, noise 

filtering) and then registering to MNI152 space [29, 30] with SYM-REG [19]. The final 

1mm3 182x218x182 volume is used as the inhomogeneous density ρ(r).

2. Anisotropy estimation

For the anisotropy tensor σij(r) several different test cases were employed.

a. Fixed anisotropy orientation and value

The same σ(1), σ(2) and σ(3) fixed (location independent) anisotropic tensors as in the 

spherical shell cortex model (A2) were assigned to every location in the brain. This is the 

simplest case that may allow to separate the effects of inhomogeneity and anisotropy on loop 

pattern formation.

b. Varying anisotropy orientation and fixed anisotropy value

Multiple diffusion direction and diffusion gradient strength MRI data were used to estimate 

diffusion tensor Dij [31].

The anisotropy orientation was estimated using eigenvector d(1) of the diffusion tensor Dij 

with the largest eigenvalue λd
(1). The anisotropy tensor σij(r) was defined as

σ r = RTσ 1 R (B1)

where the value of anisotropy is constant across the volume (ε = 0, 0.01 and 0.1 were used 

for different test examples). R is a rotation matrix between directions (0,0,1) and d(1) ≡ (x, y, 
z) that can be expressed as

R =

1 − x2

1 + z − xy
1 + z x

− xy
1 + z 1 − y2

1 + z y

−x −y 1 − x2 + y2

1 + z

(B2)
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c. Varying anisotropy orientation and value

Similarly to the previous case the diffusion tensor Dij was estimated for each voxel and 

eigenvector d(1) with the largest eigenvalue λd
(1) was used to define the anisotropy tensor 

major axis. The position dependent anisotropy value was defined by intoducing parameter ε 
as either λd

(2)/λd
(1) or (λd

(2) + λd
(3))/2/λd

(1) (in both cases resulting in axisymmetric form of the 

conductivity tensor) and also using two different values λd
(2)/λd

(1) and λd
(3)/λd

(1) for σ22 and 

σ11.

d. Varying anisotropy orientation and value estimated from microstructure fiber 
anisotropy

The microstructure anisotropy at the level of a single cell and its extracellular vicinity may 

be significantly higher than detected by diffusion MRI estimates. Recent measurements of 

effective impedance that involve both intercellular and extracellular electrodes [32] show 

significantly lower conductivity (by orders of magnitude) than conductivity obtained by 

measurements between extracellular electrodes only. Although attributing this to lower than 

typically assumed conductivity (or higher impedance) of extracellular medium may be 

questionable [33], this clearly confirms high anisotropy for the effective conductivity that 

should be used for analysis of effects of intercellular and membrane sources (and these are 

the most important type of sources for generation of surface brain waves considered in this 

paper). This may be important for future generation and refinement of the macroscopic 

conductivity estimates from microstructure data.

We assumed here that anisotropic form of σij
(1) with ε = 0.001, 0.01 or 0.1 can be used to 

describe different levels of intercellular conductivity as well as microstructure extracellular 

conductivity in the vicinity of cell membranes (where z-direction corresponds to the 

direction of the fiber). Using full brain tractography results [34] we generated the anisotropic 

part of the conductivity tensor σ(r) in voxel at r location as an average over all fiber 

orientations assuming N fibers inside the voxel with Rk orientation matrix for every fiber k, 

i.e.

σ r = 1
N k

N
Rk

Tσ 1 Rk, (B3)

with the complete form of the conductivity tensor Σ again given by (A1).

Appendix C:: Wave trajectory integration

To obtain the trajectory of a brain wave with frequency ω emitted at a point r0 with an initial 

wave vector k0 we substitute the inhomogeneous anisotropic conductivity tensor Σ in the 

wave dispersion relation (imaginary part of eq. (3) of the paper)

D ω, k = ωk2 + ∂i ijkj = 0, (C1)

and obtain wave ray equations as
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dt
dτ = ∂D ω, k

∂ω = k2, t =
0

k2dτ (C2)

dω
dτ = − ∂D ω, k

∂t = 0, ω = const (C3)

drl
dτ = ∂D ω, k

∂kl
= 2ωkl + ∂i∑il , (C4)

dkl
dτ = − ∂D ω, k

∂rl
= − ∂l ∂i∑ijkj . (C5)

We integrate these equations starting at τ=0, t = 0, r = r0 and k = k0 to trace the wave 

trajectory t(τ), r(τ), and k(τ).

For numerical integration it is beneficial to split k into magnitude k and direction k parts 

(k = kk, and |k|2 = 1), rewrite the last two equations as

drl
dτ = − 2∂i∑ijkjkl + ∂i∑il , (C6)

dkl
dτ = − ∂l ∂i∑ijkj + ∂m ∂i∑ijkjkmkl, (C7)

where in the last equation the right hand side is orthogonal to k to guarantee that |k|2 = 1, and 

the algebraic expression (C1) was substituted for the differential equation for wave vector 

magnitude k.

Appendix D:: Wave dissipation and excitation

An integral along the wave trajectory t(τ), r(τ) and k(τ)

W = W 0 exp −
0

γdis r τ γexc r τ dt

= W 0 exp −
0

ij r τ ki τ kj τ γexc r τ k2 τ dτ
(D1)

with any appropriate model form of wave excitation γexc describes a change of wave energy 

W along its path. This may allow the study of many interesting questions of brain wave 

dynamics, i.e. to identify potential active area where wave intensity may grow as a result of 

certain frequency and/or spatial distributions of neuronal spiky activation, or to estimate the 

spatial extent of coherent activation area as a result of some particular point sources, or to 
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find when and/or how these waves may potentially become important in triggering neuronal 

firing, that is to study possible mechanisms of synchronization and feedback, etc.

Appendix E:: Derivation of InR integral

We assume that the initial amplitude values for all wave modes are set at some random level 

ϵ(k) and we can write for ak(0)

ak 0 = ak
0 ϵ k exp iψ k , (E1)

where for the initial phase ψ(k) we assume that it is a continuously differentiable function 

up to at least the second derivative with dψ(k)/dk → 0 at both k → 0 and k → ∞ and with 

the derivatives bounded for any k (including at k → ∞ and k → 0), i.e. |dψ(k)/dk| < M and |

d2ψ(k)/dk2| < M, where M is a constant. For the initial amplitude ϵ(k) will assume a power 

law type dependence ϵ(k) ~ kν.

The linear solution ak
l t  of (14) then will be

ak
l t = ϵ k exp iψ k − γdt + γe/k2t . (E2)

As the fastest growing linear solution for any k∞ ≥ k ≥ k0 corresponds to k = k0, we will 

derive a nonlinear equation for ak0 evaluating Nk0
nR (23) and including only input from this 

ak0 mode in the evaluation of nonlinear terms for the rest of ak modes, hence for k = k0

dak0
dt = γe

k0
2 − γd ak0 + 1

k0
2 e iδω1 k takak k0 e iδω2 k takak k0

e iδω3 k takak k0 e iδω4 k takak k0 dk,
(E3)

and for k > k0

dak
dt = γe

k2 − γd ak + 1
k2 e iδω1 k tak0ak k0 e iδω2 k tak0ak k0

e iδω3 k tak0ak k0 e iδω4 k tak0ak k0 dk,
(E4)

where in (E4) we don’t need to keep linear terms as they either result in decaying solution or 

their linear growth is exponentially slower than the linear growth due to forcing by the ak0 

term (ak
l (t)/ak0

l (t) ϵ(k)/ϵ(k0) exp( − γe/k0
2t + γe/k2t) < 1 when k > k0 and 

t > ln (ϵ(k0)/(ϵ(k))k0
2k2/γe (k2 − k0

2), therefore we ignored the linear terms obtaining (24). We 

also don’t need to keep them in nonlinear parts as, due to our propagating waves 

requirements (17) and (18), they only result in the appearance of a small imaginary 

components of frequencies ωk.

Therefore we can write an approximate forced solution for (E4) (without using the k ≫ k0 

condition this time) as
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ak t ≈
−iak0

k2
ϵ k − k0 eiδω1 k t + iψk − k0

δω1 k + ϵ k − k0 eiδω2 k t − iψk − k0

δω2 k

+ ϵ k + k0 eiδω3 k t + iψk + k0

δω3 k + ϵ k + k0 eiδω4 k t − iψk + k0

δω4 k .
(E5)

Now we can substitute (E5) into akak±k0 and akak ± k0
*  products of (E3) to obtain the 

nonlinear equation for ak0. Substituting it only into a single part of the products and using 

(E1) for the second part will result in a set of integrals

Ij
lR = − i

ak0
k0

2
ϵ k ϵ k k0

k2δωj k
dk (E6)

that may be divergent at k → 0 or k → ∞ (therefore the k = k0 and/or k = k∞ cutoffs should 

be used) and with any possible resonances in δωj(k) ignored (i.e. taken as a principal value 

integrals). The obvious results of those integrals is just a small nonlinear modification of ωk0 
frequency (a nonlinear frequency shift).

If we substitute (E5) into both parts of akak ± k0
, *  products we will obtain expressions similar 

to (28) integrals where we now also included initial amplitudes ϵ(k) and phases ψ(k)

InR = ϵ k ϵ k k0 e i δωi1 k δωi2 k δωi3 k k0 t i ψ k ψ k k0

k2 k k0
2δωi2 k δωi3 k k0

dk

= 1
ωk0

2 k0
3 − 2v

e iωk0 1 1 k 1 k 1 t iΨ k

k2 v k 1 2 v 1 1 k 1 k 1 2dk
(E7)

where a Taylor expansion was used to replace ± ψ k − ψ k ± k0  with Ψ k ≡ k0dψ /dk and 

the variable of integration for the second expression has been changed to k/k0. The integral 

limits are not shown (assumed to be from 0 to ∞), but as the integrals may be divergent at k 
= 0 and/or k = ∞, the cutoffs at k = k0 and/or k = k∞ may be applied if needed.

Appendix F:: Evaluation of InR asymptotic at t → ∞

Different signs in (E7) can result in different asymptotic expressions at t → ∞ therefore we 

will independently evaluate two expressions that have different leading terms in the 

expansion. First, we will consider an integral

I1
nR = 1

ωk0
2 k0

3 − 2v
e iωk0 1 1 k 1 k 1 t iΨ

k2 v k 1 2 v 1 1 k 1 k 1 2dk, (F1)

and then we will do the evaluation for the integral with a different sign in the integrand 

expression
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I2
nR = 1

ωk0
2 k0

3 − 2v
e iωk0 1 1 k 1 k 1 t iΨ

k2 v k 1 2 v 1 1 k 1 k 1 2dk . (F2)

The signs in k ± 1 and ±dψ/dk are not important for evaluation of the leading expansion 

term, hence we have chosen the plus sign for simplicity.

We will first introduce a change of variables

x k = 1
k + 1

k + 1, k x = 2 − x + x2 + 4
2x , (F3)

selecting from two possible solutions k(x) the one that corresponds to 0 < k < ∞ domain. 

That will result in

I1
nR = 1

ωk0
2 k0

3 − 2ve−iωk0t

0

∞
x2 1 v eiωk0tx iΨ

x 1 2 2 x2 4 1 v x2 4
dx . (F4)

Now we will introduce another change of variable

y x = − ixωk0t − iΨ , (F5)

as Ψ is bounded anywhere in the leading order of t → ∞ we can substitute x with an 

expression

x = iy − Ψ
ωk0t ≡ iz

ωk0t , (F6)

where we introduced z = y + iΨ. This change of variables results in

I1
nR = 1

ωk0
2 k0

3 − 2ve−iωk0t

0

∞
z2 1 v e y

iz ωk0t 2 2ωk0t 4ωk0
2 t2 z2 1 v 4ωk0

2 t2 z2
1

iωk0t i dΨ
dk

dk
dx

dy .
(F7)

Taking integrand expansion at t → ∞ we can find the leading order term of I1
nR expansion 

at t → ∞ as

I1
nR = i

ωk0
2 k0

3 − 2v
e−iωk0t

2ωk0t 4 − 2v
iy Ψ 4 2v

dΨ dk e−ydy + O 1
t5 − 2v . (F8)

Similarly for the I2
nR integral with a different sign in the integrand expression we obtain
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I2
nR = i

ωk0
2 k0

3 − 2v
e−iωk0t

ωk0t 2 − v
iy Ψ 2 v

dΨ dk e−ydy + O 1
t5/2 − v . (F9)

The asymptotics (F8) and (F9) are valid if dΨ
dk ≡ d2ψ

dk2  does not go to zero. When this is not 

true the expressions for I1
nR and I2

nR become

I1
nR = −i

ωk0
2 k0

3 − 2v
e−iωk0t

2ωk0t 3 − 2v iy Ψ
2 − 2v

e−ydy + O 1
t4 − 2v , (F10)

and

I2
nR = −i

2ωk0
2 k0

3 − 2v
e−iωk0t

ωk0t 3/2 − v iy Ψ
1/2 − v

e−ydy + O 1
t5/2 − v . (F11)

All the above expressions show that the oscillatory mode e−iωk0t emerges as result of 

integration of multimode nonresonant terms but the conditions on the initial amplitudes and 

phases of the modes determine if this oscillation mode slowly (algebraically not 

exponentially) grows or decays at large times.

The wavenumber spectral power |ak|2 ~ kμ can be related to the frequency spectral power |aω|
2 ~ ωτ as

ak
2dk kμdk ω μω−2dω aω

τ
dω, (F12)

therefore, τ = −μ − 2. Of course, this equality gives the exact relation between frequency and 

wavenumber spectra only if just the wave modes with ωk = Ω/k dispersion contribute to all 

temporal and spatial oscillation modes and this is not necessarily true as other propagating 

and non–propagating modes can be present. Nevertheless, it outlines the general trend that 

the spectra with a steeper frequency dependence (with smaller τ or larger μ ≡ 2ν, that is 

with a greater “energy” of lower frequency modes relatively to higher frequency modes) will 

generate asymptotically growing high frequency e−iωk0t oscillations, whereas more shallow 

frequency spectra (with large τ or smaller μ ≡ 2ν, that is with increased presence of high 

frequency modes) will show asymptotic decay of the high frequency e−iωk0t oscillations. 

Thus the asymptotic expressions show the existence of nonlinear processes that provide a 

mechanism for spectral regulation.

Appendix G:: Persistent wave loop patterns

One of the interesting questions is the possibility of persistent pattern formation/self–

organization from a randomly emitted distribution of brain waves influenced by 

inhomogeneous anisotropic structure of their dispersion. Considering a simplest case of 
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fixed difference between wave excitation and dissipation, i.e. assuming propagation of wave 

packets of fixed width (exponentially decaying) and searching for any closed parts of wave 

trajectories (loops) that are shorter than the packet width can provide a clue about possible 

answer. Fig. 4 as well as Figs. 10 to 25 (and hyperlinked movies) show formation of 

persistent loops for a variety of wave packet initial conditions as well as for different models 

of conductivity tensor inhomogeneity and anisotropy constructed from dMRI or whole brain 

tractography.

Examples of wave trajectories and emergent persistent loop patterns for the spherical shell 

cortex model with varying amounts of tensor anisotropy and inhomogeneous shell layer 

thickness (Figs. 10 to 13).

Examples of wave trajectories and emergent persistent loop patterns for cortical fold 

geometry with different approaches used for estimation of inhomogeneity and anisotropy are 

shown in Figs. 14 to 25. Among those examples are several simple cases with variable 

inhomogeneity and fixed anisotropy (similar to the above spherical shell cortex model) as 

well as with more complex estimates of anisotropy based on multiple diffusion gradients 

MRI (dMRI) acquisitions. Assuming a linear dependence between diffusion and 

conductivity tensors [35] several combinations of the diffusion tensor eigenvectors were 

used to describe the conductivity tensor anisotropy. In a more complex approach, the full 

brain tractography [18] generated fiber distributions [34] were used to infer anisotropy 

through direct integration of single fiber anisotropy parameters in each voxel.

All wave trajectory figures are hyperlinked and include references to location of movies 

showing dynamical development of wave trajectories.

Galinsky and Frank Page 28

Phys Rev Res. Author manuscript; available in PMC 2021 March 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIG. 10. 
An example of complete wave trajectory (a) and emergent loop pattern (b) for the spherical 

shell cortex model with crossing fibers anisotropy tensor σ(3) and narrow inhomogeneity 

layer (n=0, r0=0.5 and r1=0.9). The trajectory was initialized with wave vector 

k = ( − 0.1/ 2, 0.1/ 2, − 0.1) inside the inhomogeneous layer with voxel coordinates 

r=(142,142,142). High resolution movie links: S1-H1/S1-H1, S1-H2/S1-H2. Low resolution 

movie links: S1-L1/S1-L1, S1-L2/S1-L2.
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FIG. 11. 
An example of complete wave trajectory (a) and emergent loop pattern (b) for the spherical 

shell cortex model with crossing fibers anisotropy tensor σ(3) and slightly wider 

inhomogeneity layer (n=2, r0=0.5 and r1=0.9). The trajectory was initialized with wave 

vector k = ( − 0.1/ 2, 0.1/ 2, − 0.1) inside the inhomogeneous layer with voxel coordinates 

r=(80,33,100). High resolution movie links: S2-H1/S2-H1, S2-H2/S2-H2. Low resolution 

movie links: S2-L1/S2-L1, S2-L2/S2-L2.
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FIG. 12. 
An example of complete wave trajectory (a) and emergent loop pattern (b) for the spherical 

shell cortex model with 45° orientation single fiber anisotropy tensor σ(2) and wide 

inhomogeneity layer (n=25, r0=0.5 and r1=0.9). The trajectory was initialized with wave 

vector k = ( − 0.1/ 2, 0.1/ 2, − 0.1) inside the inhomogeneous layer with voxel coordinates 

r=(145,145,145). High resolution movie links: S3-H1/S3-H1, S3-H2/S3-H2. Low resolution 

movie links: S3-L1/S3-L1, S3-L2/S3-L2.
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FIG. 13. 
An example of complete wave trajectory (a) and emergent loop pattern (b) for the spherical 

shell cortex model with 45° orientation single fiber anisotropy tensor σ(2) and intermediately 

wide inhomogeneity layer (n=14, r0=0.5 and r1=0.9). The trajectory was initialized with 

wave vector k = ( − 0.1/ 2, 0.1/ 2, − 0.1) inside the inhomogeneous layer with voxel 

coordinates r=(141,141,141). High resolution movie links: S4-H1/S4-H1, S4-H2/S4-H2. 

Low resolution movie links: S4-L1/S4-L1, S4-L2/S4-L2.
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FIG. 14. 
An example of randomly initialized complete wave trajectory (a) and emergent loop pattern 

(b) for the cortical fold model with inhomogeneity extracted from HRA volume registered to 

MNI152 space and with diffusion MRI derived position dependent anisotropy tensor 

RTσ(1) R (ε = (λd
(2) + λd

(3))/2/λd
(1)). The trajectory was initialized with wave vector k=(−0.75, 

0.23, −0.62) inside the inhomogeneous layer with voxel coordinates r=(55,130,130). High 

resolution movie links: S5-H1/S5-H1, S5-H2/S5-H2, S5-H3/S5-H3. Low resolution movie 

links: S5-L1/S5-L1, S5-L2/S5-L2, S5-L3/S5-L3.
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FIG. 15. 
An example of randomly initialized complete wave trajectory (a) and emergent loop pattern 

(b) for the cortical fold model with inhomogeneity extracted from HRA volume registered to 

MNI152 space and with diffusion MRI derived position dependent anisotropy tensor 

RTσ(1) R (ε = (λd
(2)/λd

(1)). The trajectory was initialized with wave vector k=(−0.9,0.24,0.36) 

inside the inhomogeneous layer with voxel coordinates r=(66,94,126). High resolution 

movie links: S6-H1/S6-H1, S6-H2/S6-H2, S6-H3/S6-H3. Low resolution movie links: S6-

L1/S6-L1, S6-L2/S6-L2, S6-L3/S6-L3.
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FIG. 16. 
An example of randomly initialized complete wave trajectory (a) and emergent loop pattern 

(b) for the cortical fold model with inhomogeneity extracted from HRA volume registered to 

MNI152 space and with diffusion MRI derived position dependent anisotropy tensor 

RTσ(1) R (σ22
(1) = λd

(2)/λd
(1) and σ11

(1) = λd
(3)/λd

(1)). The trajectory was initialized with wave 

vector k=(−0.77,−0.63,0.11) inside the inhomogeneous layer with voxel coordinates 

r=(49,153,97). High resolution movie links: S7-H1/S7-H1, S7-H2/S7-H2, S7-H3/S7-H3. 

Low resolution movie links: S7-L1/S7-L1, S7-L2/S7-L2, S7-L3/S7-L3.
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FIG. 17. 
An example of randomly initialized complete wave trajectory (a) and emergent loop pattern 

(b) for the cortical fold model with inhomogeneity extracted from HRA volume registered to 

MNI152 space and with fixed anisotropy tensor σ(1) (ε = 0.1). The trajectory was initialized 

with wave vector k=(0.56,0.58,−0.59) inside the inhomogeneous layer with voxel 

coordinates r=(72,156,120). High resolution movie links: S8-H1/S8-H1, S8-H2/S8-H2, S8-

H3/S8-H3. Low resolution movie links: S8-L1/S8-L1, S8-L2/S8-L2, S8-L3/S8-L3.
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FIG. 18. 
An example of randomly initialized complete wave trajectory (a) and emergent loop pattern 

(b) for the cortical fold model with inhomogeneity extracted from HRA volume registered to 

MNI152 space and with diffusion MRI derived position independent anisotropy tensor RT 

σ(1) R (ε = 0.1). The trajectory was initialized with wave vector k=(−0.13,−0.97,−0.21) 

inside the inhomogeneous layer with voxel coordinates r=(111,103,110). High resolution 

movie links: S9-H1/S9-H1, S9-H2/S9-H2, S9-H3/S9-H3. Low resolution movie links: S9-

L1/S9-L1, S9-L2/S9-L2, S9-L3/S9-L3.
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FIG. 19. 
An example of randomly initialized complete wave trajectory (a) and emergent loop pattern 

(b) for the cortical fold model with inhomogeneity extracted from HRA volume registered to 

MNI152 space and with fixed anisotropy tensor σ(1) (ε = 0.01). The trajectory was 

initialized with wave vector k=(0.42,−0.41,0.81) inside the inhomogeneous layer with voxel 

coordinates r=(114,85,22). High resolution movie links: S10-H1/S10-H1, S10-H2/S10-H2, 

S10-H3/S10-H3. Low resolution movie links: S10-L1/S10-L1, S10-L2/S10-L2, S10-L3/

S10-L3.
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FIG. 20. 
An example of randomly initialized complete wave trajectory (a) and emergent loop pattern 

(b) for the cortical fold model with inhomogeneity extracted from HRA volume registered to 

MNI152 space and with fixed anisotropy tensor σ(2) (ε = 0.1). The trajectory was initialized 

with wave vector k=(−0.90,0.24,0.36) inside the inhomogeneous layer with voxel 

coordinates r=(66,86,126). High resolution movie links: S11-H1/S11-H1, S11-H2/S11-H2, 

S11-H3/S11-H3. Low resolution movie links: S11-L1/S11-L1, S11-L2/S11-L2, S11-L3/

S11-L3.
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FIG. 21. 
An example of randomly initialized complete wave trajectory (a) and emergent loop pattern 

(b) for the cortical fold model with inhomogeneity extracted from HRA volume registered to 

MNI152 space and with diffusion MRI derived position independent anisotropy tensor RT 

σ(1) R (ε = 0.01). The trajectory was initialized with wave vector k=(−0.90,0.24,0.36) inside 

the inhomogeneous layer with voxel coordinates r=(66,87,126). High resolution movie links: 

S12-H1/S12-H1, S12-H2/S12-H2, S12-H3/S12-H3. Low resolution movie links: S12-L1/

S12-L1, S12-L2/S12-L2, S12-L3/S12-L3.
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FIG. 22. 
An example of randomly initialized complete wave trajectory (a) and emergent loop pattern 

(b) for the cortical fold model with inhomogeneity extracted from HRA volume registered to 

MNI152 space and with tractography derived anisotropy tensor 1/NΣkRk
Tσ(1)Rk (ε = 0.001). 

The trajectory was initialized with wave vector k=(0.4,−0.83,0.4) inside the inhomogeneous 

layer with voxel coordinates r=(75,61,90). High resolution movie links: S13-H1/S13-H1, 

S13-H2/S13-H2, S13-H3/S13-H3. Low resolution movie links: S13-L1/S13-L1, S13-L2/

S13-L2, S13-L3/S13-L3.
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FIG. 23. 
An example of randomly initialized complete wave trajectory (a) and emergent loop pattern 

(b) for the cortical fold model with inhomogeneity extracted from HRA volume registered to 

MNI152 space and with tractography derived anisotropy tensor 1/NΣkRk
Tσ(1)Rk (ε = 0.01). 

The trajectory was initialized with wave vector k=(0.66,0.5,0.56) inside the inhomogeneous 

layer with voxel coordinates r=(33,77,56). High resolution movie links: S14-H1/S14-H1, 

S14-H2/S14-H2, S14-H3/S14-H3. Low resolution movie links: S14-L1/S14-L1, S14-L2/

S14-L2, S14-L3/S14-L3.
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FIG. 24. 
An example of randomly initialized complete wave trajectory (a) and emergent loop pattern 

(b) for the cortical fold model with inhomogeneity extracted from HRA volume registered to 

MNI152 space and with tractography derived anisotropy tensor 1/NΣkRk
Tσ(1)Rk (ε = 0.1). 

The trajectory was initialized with wave vector k=(0.36,0.67,−0.65) inside the 

inhomogeneous layer with voxel coordinates r=(77,123,64). High resolution movie links: 

S15-H1/S15-H1, S15-H2/S15-H2, S15-H3/S15-H3. Low resolution movie links: S15-L1/

S15-L1, S15-L2/S15-L2, S15-L3/S15-L3.
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FIG. 25. 
An example of randomly initialized complete wave trajectory (a) and emergent loop pattern 

(b) for the cortical fold model with inhomogeneity extracted from HRA volume registered to 

MNI152 space and with tractography derived anisotropy tensor 1/NΣkRk
Tσ(1)Rk (ε = 0). The 

trajectory was initialized with wave vector k=(−0.06,0.38,0.92) inside the inhomogeneous 

layer with voxel coordinates r=(132,113,96). High resolution movie links: S16-H1/S16-H1, 

S16-H2/S16-H2, S16-H3/S16-H3. Low resolution movie links: S16-L1/S16-L1, S16-L2/

S16-L2, S16-L3/S16-L3.
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FIG. 1. 
(a) Schematic picture of half-plane packing of fibers. The uniform area of fibers oriented 

along z direction (shown in green) is bounded by a thin transitional area (magenta) where 

the conductivity gradient may be important (a sketch of one possible conductivity profile is 

shown at the bottom of panel). (b) Schematic picture that can be used as a crude two 

dimensional approximation of a fold. The direction of fiber conductivity has only x and z 
components and all quantities are assumed to be uniform in y direction.
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FIG. 2. 
Isovolume maps for comparison of dissipation vs wave-like effects at different cortex layers. 

(a) The isosurface from the cortex area that may be representative of white–gray matter 

interface. (b) The isosurface that is located in the outer cortex area of gray matter. The color 

scheme uses shades of green to mark regions where dissipative term dominates, i.e. |Σijki| ≥ |

∂iΣij|, shades of red where |Σijki| < |∂iΣij| ≤ 2|Σij ki|, and shades of blue where the wave-like 

term is more than two times dominant, i.e. 2|Σijki| < |∂iΣij|. The inner cortex shown in (a) 
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clearly display prevalence of dissipation, whereas the outer cortex shown in (b) allows for 

wave–like cortex activity in a majority of the locations.
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FIG. 3. 
Spectral power of EEG signal collected with 64 sensor array and averaged over all sensors 

for six independent subjects is shown in six panels. The dashed lines outline the predicted f
−2 in the lower (f ≲ 1.2Hz) and higher (f ≳ 92Hz) parts of the spectra. The dashed-dotted 

vertical lines denote the frequency range where the cortical wave loops may be generated. 

Both the slope and the range agree very well with typically observed values.

Galinsky and Frank Page 51

Phys Rev Res. Author manuscript; available in PMC 2021 March 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIG. 4. 
Complete wave packet trajectory snapshots (left column) and emergent stable wave loop 

patterns (right column) for the thin spherical shell cortex model (a and b) and for the realistic 

cortex fold geometry (c,d,e and f). All wave packets were initialized with random parameters 

assuming the presence of spiky activation sources (not shown). Movie files for these and 

additional loop examples can be found in [21].
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FIG. 5. 
The results of numerical integration of the system (31) and (32), that is time evolution of 

potential ϕ(x, t) at x = 0 or A(t) cos(B(t) + ωk0t). For all plots the values of ωk0, k0, α and β 
were set to be equal to 1, δA = 0, and γ and δB were varied. The top,middle and bottom rows 

show plots for phase delay δB equals to 3π/4, π/2 and π/4 respectively. The left columnn 

displays transformation from weakly nonlinear oscillations shown by blue dotted lines for γ 
= 0.75 to more strongly nonlinear regime (solid line, γ = 1.5 (top and bottom) and 2.25 

(middle)). The right column shows the strongest nonlinear spiking–like time evolution of 
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potential ϕ (solid line, γ = 2.55 (top and bottom) and 2.96 (middle)) and its transformation 

to non-oscillatory (blue dotted line) regime for γ = 3 (time and amplitude units are 

arbitrary).
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FIG. 6. 
The results of numerical integration of the system (31) and (32) when exponential term was 

replaced by InR integrals (28) with the region of integration set to 50k0 < k < 1000k0. For all 

plots the values of ωk0, k0, α and β were set to be equal to 1, δA = 0, and γ and δB were 

varied. The top and bottom rows show plots for phase delay δB equals to 3π/4 and π/2 

respectively. The left column displays modulation of spiking rate for γ = 4.5. The right 

column shows the nonlinear bursting of spikes for γ = 5.1 (time and amplitude units are 

arbitrary).
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FIG. 7. 
The results of numerical integration of the system (35) for different values of weak resonant 

coupling λ = 0.001, 0.01,0.05 (top, middle and bottom rows respectively). For all plots the 

values of ωk0, k0, α and β were set to be equal to 1, and δA = δB = δ = 3π/4. The value of γ 
is 1.535, that is sufficiently far from the criticality, but nevertheless large enough to modify 

an effective period for k0 mode to be close to that of k1. The total potential ϕ is plotted with 

the black and different colors show the oscillations of the individual modes. All plots clearly 
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show emergence of low-frequency component as a result of increase of weak resonant 

coupling (time and amplitude units are arbitrary).
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FIG. 8. 
The results of numerical integration of the system (35). For all plots the values of ωk0, k0, α 
and β were set to be equal to 1 and the resonant coupling λ was 0.05. Different values of δ 
were again used in real and imaginary parts (as in (31) and (32)) with δA = 3π/4, 0, 0, δB = 

3π/4, 3π/4, π/2 and close to the critical values of γ = 1.731, 2.575, 2, 9969 for the left, 

middle and right columns respectively. The total potential ϕ is plotted with the black and 

different colors show the oscillations of the individual modes. All plots show that when γ is 

sufficiently close to criticality a week coupling produces jumps from subcritical to 

supercritical regimes with amazingly regular low–frequency quasiperiodicity (time and 

amplitude units are arbitrary).
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