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Abstract

Objective.—We present a framework for analyzing the intracranial pressure (ICP) morphology. 

Analyzing ICP signals is challenging due to the non-linear and non-Gaussian characteristics of the 

signal dynamics, inevitable corruption with noise and artifacts, and variations in the ICP pulse 

morphology among individuals with different neurological conditions. Existing frameworks make 

unrealistic assumptions regarding ICP dynamics and are not tuned for individual patients.

Approach.—We propose a dynamic Bayesian network (DBN) for automated detection of three 

major ICP pulsatile components. The proposed model captures the non-linear and non-Gaussian 

dynamics of the ICP morphology and further adapts to a patient as the individual’s ICP 

measurements are received. To make the approach more robust, we leverage evidence reversal and 

present an inference algorithm to obtain the posterior distribution over the locations of pulsatile 

components.

Results.—We evaluate our approach on a dataset with over 700 hours of recordings from 66 

neurological patients, where the pulsatile components have been annotated in prior studies. The 

algorithm obtains an accuracy of 96.56%, 92.39%, and 94.04% for detecting each pulsatile 

component on the test set, showing significant improvements over existing approaches.

Significance.—Continuous ICP monitoring is essential in guiding the treatment of neurological 

conditions such as traumatic brain injuries. An automated approach for ICP morphology analysis 

takes a step toward enhancing patient care with minimal supervision. Compared to previous 

methods, our framework offers several advantages. It learns the parameters that model each 

patient’s ICP in an unsupervised manner, resulting in an accurate morphology analysis. The 

Bayesian model-based framework provides uncertainty estimates and reveals interesting facts 

about ICP dynamics. The framework can be readily applied to replace existing morphological 

analysis methods and support the application of ICP pulse morphological features to aid the 
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monitoring of pathophysiological changes of relevance to the care of patients with acute brain 

injuries.
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1. Introduction

Intracranial pressure (ICP) is one of the most important physiological variables for guiding 

therapeutic decisions in the care of patients with acute brain injuries. Continuous ICP 

monitoring is warranted when treating patients with severe brain injuries in acute care 

settings and it can last several days when a patient’s status is the most fragile and dynamic. 

ICP signal contains rich information related to a patient’s pathophysiological status. The 

most straightforward use of such information is to detect and treat extremely high brain 

pressure to prevent life-threatening conditions such as brain herniation. In fact, this use of 

ICP monitoring is a prevailing one and well-established. However, considering that the 

clinically accepted practice of ICP monitoring is still highly invasive requiring surgically 

drilling the skull to place sensors, ideally more useful information for managing patients 

should be derived from ICP signals.

Physiologically speaking, ICP results from interactions among multiple physiological 

systems: cardiovascular, respiratory, cerebral vascular, cerebrospinal fluid, and brain tissues. 

ICP signal thus has a complex form and contains multiple distinct and interacting 

components (or sub-peaks). Due to its cardiovascular origin, ICP signal is pulsatile and in 

sync with heart beats. In addition, an ICP signal contains an oscillatory component that 

reflects influence from respiratory activities. At an even lower frequency spectrum, an ICP 

signal can show slow waves that exist in many other neurophysiological signals. Therefore, 

there is a need for biomedical engineers and data scientists to develop more advanced 

algorithms to extract additional information to support clinicians make the best use of ICP 

monitoring in their clinical decisions.

There are many potential routes to analyze an ICP signal as evidenced in published studies 

(Hornero et al., 2005, 2007; Hu et al., 2007; Holm and Eide, 2008; Hu et al., 2008a; Eide et 

al., 2012; Santamarta et al., 2012; Calisto et al., 2012; García et al., 2013; Xu et al., 2013; 

Lee et al., 2015; García et al., 2018; Megjhani et al., 2019; Park et al., 2019; Hüser et al., 

2020). Among these approaches, one particular area worth further investigation is 

characterization of ICP pulse waveform. Our previous works have shown that quantification 

of ICP pulse waveform morphology can predict ICP elevation (Hu et al., 2010b), detect 

distal cerebral arterial changes (Hu et al., 2009, 2010a; Asgari et al., 2011a,b,c, 2012, 2013; 

Connolly et al., 2015; Liu et al., 2019, 2020), recognize false ICP alarms (Scalzo and Hu, 

2013; Scalzo et al., 2012c), and determine the external ventricular drain (EVD) weaning 

outcome (Hu et al., 2012a; Arroyo-Palacios et al., 2016). In these studies, we developed and 

used an ICP pulse morphological analysis algorithm – called morphological clustering and 
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analysis of intracranial pressure (MOCAIP) (Hu et al., 2008c; Scalzo et al., 2009, 2010, 

2012a).

MOCAIP proceeds by first detecting individual ICP pulses, clustering them to find a 

representative pulse from the largest cluster, detecting a combination of landmarks of this 

representative ICP pulse (local optima and inflection points), and then designating the 

locations of up to three sub-peaks. Through this process, metrics that quantify the 

morphology of the pulse can be systematically computed. However, our experience has 

revealed weaknesses of the algorithm that result in sometime excessive needs of manually 

correcting the positions as returned by MOCAIP. To further translate the past discoveries 

enabled by MOCAIP through a more automated process to enable its practice in a real-world 

setting, it is imperative to address weaknesses of MOCAIP and this is the objective of this 

study.

In this work, we propose a framework based on dynamic Bayesian networks (DBNs) for ICP 

morphology analysis. Our framework adopts the first stages of MOCAIP as the data 

preprocessing step and offers several improvements: (1) it uses a principled way for 

modeling the distribution of ICP components based on data instead of simply making a 

Gaussian assumption, (2) it models the dynamics and temporal changes of ICP which were 

not considered in the MOCAIP framework, (3) it allows the ICP components not to 

necessarily be in the major ICP pulse landmarks, improving over possible missed detections, 

(4) it deploys a statistically principled optimization objective for finding the maximum a 

posteriori locations of ICP components, and (5) it allows the framework parameters to adapt 

for individual patients.

The paper is organized as follows. We begin by reviewing some preliminary concepts and 

notation in Section 2 on dynamic Bayesian networks and inference of state variables in 

DBNs using particle filtering and motivate the use of evidence reversal for the problem 

considered in this work. In Section 2, the modules of the proposed framework including data 

pre-processing steps and development of the temporal model are described. The framework 

is then tested on more than 700 hours of data and the performance is compared with 

MOCAIP as well as a clustering approach inspired by the work of (Lee et al., 2015). The 

experimental results are presented in Section 4, followed by careful evaluation of the 

advantages and shortcomings of the proposed approach. We conclude the paper by 

summarizing the framework and discussing several directions for future work.

2 Preliminaries

2.1 Dynamic Bayesian networks

A dynamic Bayesian network, or DBN, is a temporal probabilistic model that is used to 

represent a complex model of sequential data. DBNs are used in a wide range of applications 

such as finance (Giudici and Spelta, 2016), seismic monitoring (Riggelsen et al., 2007; 

Moore and Russell, 2017), and physiological monitoring (Yang et al., 2010). To construct a 

DBN, one must specify a set of variables, the conditional dependencies between them, and 

their evolution over time. In particular, a DBN models a partially observed Markov process 
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with hidden variables {Xn}n≥1, observed variables {Yn}n≥1, and parameters θ across steps n 
using a probabilistic model defined as follows

X1 p(X1; θ),

Xn Xn − 1 p(Xn Xn − 1; θ),

Yn Xn p(Yn Xn; θ),

where p(X1; θ ) is the prior distribution over the hidden (state) variables, p(Xn|Xn−1; θ) is 

the transition (propagation) model, and p(Yn|Xn; θ) is the sensor (observation) model.1 The 

transition model represents the temporal evolution of hidden variables by specifying the 

conditional dependencies between hidden variables across time steps. The sensor model 

defines the conditional probability of receiving a particular observation given a certain 

hidden variable.

The success of probabilistic model-based approaches has been established in several areas of 

healthcare (Williams et al., 2006; Heldt et al., 2006). Model-based methods have shown to 

be more robust in the presence of noise and artifacts, which are common in physiological 

applications, compared to model-free methods (Aleks et al., 2009; Chen et al., 2016). 

Furthermore, model-based methods are generally more data-efficient making them well-

suited for physiological applications where data are often scarce.

In this work, we use a DBN to specify a dynamical model of the ICP pulsatile components 

that captures the uncertainty due to temporal evolution and observation noise and adapts the 

model for individuals through learning the static variables in an unsupervised manner. We 

choose a DBN since it can represent non-linear and non-Gaussian dynamics compared to 

alternative dynamical models such as linear dynamical systems with Gaussian noise. After 

specifying the model, the three major pulsatile components are identified by solving a 

statistical inference problem described in the following section. The experimental results 

presented in Section 4 demonstrate improved performance compared to previous model-free 

methods.

2.2 Latent variable inference via particle filtering

We are interested in computing the filtering distribution p(Xn|Y1:n), i.e. the posterior 

distribution of the current hidden variables given all the information provided by the 

observed variables up to the present. Exact filtering in complex systems with non-linear and 

non-Gaussian dynamics is generally intractable. Particle filtering methods, introduced by 

Gordon et al. 1993, are a popular class of algorithms used to obtain a numerical 

approximation of the posterior distribution using weighted samples, or particles. More 

1Throughout the paper, we use capital letters to denote random variables and small letters to denote the realizations of random 
variables.
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specifically, particle filter first samples K particles {x1
k}k = 1

K
 from the prior distribution and 

initiates particle weights to be identical. Then the following update cycle is repeated for each 

time step:

1. Particle propagation: Each particle k is propagated to the following time step by 

sampling the next particle xn + 1
k  conditioned on the current particle xnk using the 

transition model, i.e. xn + 1
k p( . |xnk; θ).2

2. Weight assignment: Each particle k is weighted by the likelihood it assigns to the 

new evidence p(yn |xnk; θ).

3. Resampling: Particles are resampled proportional to their weights and new 

particles with identical weights are generated.

Without the resampling step, particle filter will generate a set of particles where only a few 

retain significant weights. As a result, the effective sample size (ESS) for representing the 

posterior distribution dramatically drops. Conventionally, particles are resampled 

proportional to their weights only at time steps where ESS falls below a certain threshold. 

Subsequently, samples with negligible weights are likely to be discarded and particles with 

large weights are likely to be duplicated, resulting in more samples in high probability 

regions. More advanced resampling techniques have been extensively researched, see (Li et 

al., 2015) for an overview.

2.3 Evidence reversal

Although sequential Monte Carlo algorithms such as particle filtering often provide accurate 

approximations to the posterior distribution, if the DBN has certain characteristics the 

samples may diverge from the reality as more observations are received. For example, 

consider the case where the observation model p(Yn|Xn) is fairly accurate, i.e. any realized 

observation Yn = yn has high probabilities for some values of Xn and very low probabilities 

for the others. If the transition model is fairly inaccurate, the weighting process assigns 

extremely low weights to most particles which are incompatible with the observations. In 

this scenario, only a few samples approximate the posterior distribution approximation 

resulting in large approximation error. This happens despite the fact the sensor is accurately 

providing observations (Figure 1(a)).

Evidence reversal (ER), proposed by Kanazawa et al. 1995, addresses this problem by 

reconstructing the DBN so that the observation Yn becomes the ancestor of Xn. ER ensures 

samples to be compatible with the observations in every time step. Figure 2 illustrates an 

schematic diagram of the ER transformation on a DBN. We can easily see that the two 

networks are equivalent by writing the joint distribution of Xn and Yn conditioned on Xn−1 

in both networks:

p(Xn, Yn Xn − 1) = p(Xn Xn − 1)p(Yn Xn) = p(Yn Xn − 1)p(Xn Xn − 1, Yn) .

2In general, particles may be sampled from a simpler proposal distribution when direct sampling from the transition distribution is 
difficult.
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Under ER, the particle filtering assigns weights according to p(Yn|Xn−1) and propagates 

samples by sampling from p(Xn|Xn−1, Yn). Figure 1(b) illustrates an example where 

evidence reversal overcomes sample impoverishment.

3 Intracranial pressure morphology analysis framework

Figure 3 illustrates the block diagram of the ICP monitoring framework. This framework 

includes three major components: (1) a pre-processing block that cleans the ICP signals and 

extracts a set of candidate locations for pulsatile components, (2) a training block that 

computes the model parameters, and (3) a dynamic Bayesian network that returns the three 

major pulsatile components.

3.1 Dataset

The dataset includes ICP and ECG signals acquired from 66 patients who were admitted to 

the UCLA Adult Hydrocephalus Center for assessment of normal pressure hydrocephalus 

(NPH) using the overnight ICP monitoring technique. ICP of these patients was 

continuously monitored for up to 24 hours using Codman intraparenchymal microsensors 

(Codman and Schurtleff, Raynaud, MA) placed in the right frontal lobe. Simultaneously, 

ECGs of the patients were continuously measured using GE bedside monitors. The signals 

were recorded either using a data acquisition system placed on a wheel (PowerLab TM 

SP-16) or using an enterprise-wide data acquisition software solution (BedMasterTM ) at a 

sampling frequency of 400Hz and 240Hz, respectively. The use of this dataset to develop a 

set of rules to predict the outcome of cerebrospinal fluid shunt procedures for these NPH 

patients was reported in a prior work (Hu et al., 2012b). These rules were based on 

MOCAIP metrics that were obtained by first applying the MOCAIP algorithm to analyze 

30-second of ICP and then by manual review and correction of any incorrectly designated 

ICP sub-peaks. For the purpose of the present study, the manually corrected detections of 

ICP sub-peaks are then used as ground truth to assess the accuracy of the proposed 

algorithm.

3.2 Data pre-processing

We adopt similar data pre-processing steps as the MOCAIP framework, which is briefly 

described here. We refer the reader to the original MOCAIP paper for a more detailed 

explanation (Hu et al., 2008c). The data pre-processing block admits a raw ICP signal, 

obtains a sequence of dominant pulses, and extracts a set of candidate points for each 

dominant ICP pulse according to the following steps.

1. ICP pulse detection: The ICP signals are first segmented into a sequence of 

pulses using the ICP pulse detection method presented in our previous work (Hu 

et al., 2008b). This algorithm leverages a robust ECG beat detection as well as 

interval constrains to aid ICP pulse segmentation.

2. ICP pulse clustering: ICP signals can be contaminated by various types of noise 

and artifacts including high-frequency noise from the measurement devices, 

movement artifacts, and sensor detachments. To obtain clean pulses, a 

hierarchical clustering algorithm is used to cluster sub-sequences of raw ICP 
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pulses and the average pulse of the largest cluster is taken as the representative 

(dominant) pulse of each sub-sequence.

3. Non-artifactual pulse recognition: Occasionally when large signal segments are 

corrupted with noise, dominant pulses obtained from pulse clustering become 

artifactual. The non-artifactual pulses are identified using a reference library of 

validated pulses created during training.

4. Candidate detection: Candidate locations for major pulsatile components are 

identified by obtaining certain landmarks on each ICP pulse. These landmarks 

are identified by merging the intersections of concave and convex regions and 

maximum curvature points.

3.3 Detection of major pulsatile components

Our framework relies on constructing a DBN that corresponds to a simplified model of the 

ICP evolution over time. The latent and observed variables of this model are listed below.

1. Latent variables Xn = {Xn(1), Xn(2), Xn(3)} denote the arrival time of three 

major components of pulse n with respect to the arrival time of the most recent 

heartbeat. Xn
i  takes values in ℝ+ ∪ {m}, with Xn

i = m when component i is not 

recognizable (missing). A sub-peak can be missing because of poor signal 

quality or pathological reasons. Based on our experience, the likelihood of 

missing a sub-peak is less than 10%. The fact that any of the three target sub-

peaks can be missing in a given ICP pulse makes the process of sub-peak 

designation more challenging.

2. Observed variables Yn = {Yn(1), …, Yn(Cn)} are candidate locations for major 

components of pulse n that are extracted during the pre-processing stage. Cn is a 

random variable denoting the number of candidates the algorithm has detected 

for pulse n.

Transition model.—First, we specify the transition model for the instances where all three 

components are present. We model the evolution of ICP pulsatile components as a Markov 

process according to the following:

p(Xn X1:n − 1 = p(Xn Xn − 1) = p(Xn(1), Xn(2), Xn(3) Xn − 1(1), Xn − 1(2), Xn − 1(3))
= p(Xn(1) Xn − 1(1))p(Xn(2) Xn − 1(2), Xn(2) > Xn(1))
× p(Xn(3) Xn − 1(3), Xn(3) > Xn(2)) .

Motivated by the histograms of the locations of major pulsatile components in the training 

data, we adopt the following model for evolution of Xn(i)

Xn(i) = Xn − 1(i) + ηn(i) for i = {1, 2, 3}, (1)

where ηn(i) ~ Laplace(0, b(i)), where b(i) is the Laplace distribution scale parameter. Figure 

4 presents the histogram of ηn(i) for three patients demonstrating that the concentration of 

ηn(i) around zero is not well-described by a Gaussian distribution. Due the symmetry and 

high concentration of histograms around zero, we choose to model ηn(i) according to a 
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Laplace distribution. Furthermore, the histograms suggest that the scale parameters b(i) vary 

across patients. Thus, We take b(i) to be a static hidden variable, i.e. bn(i) = bn−1(i) = b(i), 
and infer it as the ICP observations are received for each patient. Taking b(i) as a latent 

variable as opposed to a constant parameter allows the model to adapt for an individual 

patient’s physiology and neurological condition.

We allow Xn(i) to be missing with a constant probability pm(i) that is learned during 

training. For the cases where Xn−1(i) is missing, we take the temporal evolution of Xn(i) to 

be

Xn(i) = Xn − k(i) +
j = n − k + 1

n
ηj(i), (2)

where n − k is the last pulse whose component i was present. Note that Equation (2) is 

equivalent to Equation (1) when k = 1.

Prior distribution.—We specify prior distributions for the latent variables b(i) and Xn(i). 
Since b(i) is a scale parameter, we use a wide uniform distribution and we take X0(i) ~ 

Laplace(μ(i), b(i)), where μ(i) is computed using a maximum likelihood estimate on training 

set.

Observation model.—In our setup, since the three major pulsatile components are often 

visually distinguishable landmarks, they tend to be included in or very close to the candidate 

points with high probability even though candidate points often include several spurious 

points as well. Given a set of candidate points Yn = yn(1), … yn(cn) the observation model 

p(Yn|Xn) assigns high weights to some values of Xn and extremely low weights to most 

values of Xn. Thus, the proposed DBN is an example where the standard particle filtering 

works poorly due to sample impoverishment as explained in Section 2.3. We address this 

problem by using evidence reversal.

Model under evidence reversal—Recall from Section 2.3 that for an ER 

transformation, the transition distribution p(Xn|Xn−1, Yn) and the likelihood distribution 

p(Yn|Xn−1) should be specified. We design p(Xn|Xn−1, Yn; b) to be a hybrid —mixture of 

discrete and continuous— distribution where Xn takes values in Yn with high probability. 

Denote by pc(i) the probability that Xn(i) is equal to one of the candidates. Let αj(i) be the 

value of the Laplace probability density function at Yn(j) = yn(j) with mean xn−1(i) and scale 

parameter b(i), i.e.

αj(k) = Laplace(yn(j); xn − 1(i), b(i)) .

Let L(i) = 0 for i = 1 and L(i) = Xn(i – 1) for i = 2, 3, be the minimum value that Xn(i) can 

take. The transition distribution is defined as
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p(Xn(i) |Xn − 1(i), L(i), Yn) =
Xn(i) = Yn(j), for {j:Yn(j) > L(i)} w . p . pc(i)

αj(i)
jαj(i)

Xn(i) = m w . p . pm(i)
Xn(i) Laplace(Xn − 1(i − 1), b(i) Xn(i) > L(i)) w . p . 1 − pc(i) − pm(i)

The above distribution states that Xn(i) is equal to candidate Yn(j) with probability 

pc(i)
αj(i)

∑jαj(i)  if Yn(j) > L(i). The total probability that Xn(i) is one of the candidates is pc(i) 

and the probability that Xn(i) is missing is pm(i). Finally, with probability 1 − pc(i) − pm(i), 
Xn(i) is present but is not equal to any of the candidate points. In this case, Xn(i) has a 

(truncated) Laplace distribution satisfying Xn(i) > L(i). Using lower bounds L(i) ensure that 

0 < Xn(1) < Xn(2) < Xn(3). In Figure 5, the left plot illustrates an example on the 

probabilities assigned to each candidate points. The right plot presents the hybrid transition 

distribution.

The likelihood distribution p(Yn|Xn−1) is computed by considering all valid assignments of 

candidates to ICP components. In particular, candidates Yn can be assigned to either of the 

three components or none of them. An assignment is considered valid if it satisfies Xn(1) < 

Xn(2) < Xn(3). For example, for candidates Yn = {150, 200, 230, 320, 500}, assignments {1, 

none, 2, 3, none} and {none, 1, none, 3, none} are valid which are equivalent to {Xn(1) = 

150, Xn(2) = 230, Xn(3) = 320} and {Xn(1) = 200, Xn(2) = m, Xn(3) = 320}, respectively. 

Let A be the set of all valid assignments. The likelihood distribution can be written as

p(Yn Xn − 1) =
a ∈ A

p(a)p(Yn Xn − 1, a) .

Probability of each assignment p(a) is computed using pc(i). For instance, if the assignment 

only selects components two and three from the candidates, p(a) = (1 − pc(1))pc(2)pc(3), 

which is th probability that component one is not in the candidates but components two and 

three are. Conditioned on an assignment, the likelihood p(Yn|Xn−1, a) using the Laplace pdfs 

with expected values Xn−1(1), Xn−1(2), Xn−1(3) assuming that spurious observations can 

appear anywhere in the ICP pulse uniformly at random. For example, for the assignment a = 

{1, none, 2, 3, none}, we have the following likelihood

p(Yn Xn − 1, a) = Laplace(Yn(1) Xn − 1(1))Uniform(Yn(2))Laplace(Yn(3) Xn − 1(2)) × Laplace(Yn(4) Xn − 1(3
))Uniform(Yn(5)) .

Computing this likelihood is essential for tuning parameters b(i).

4 Results

We implement the ER transformation of the proposed DBN and use particle filtering with 

1000 samples as the inference algorithm. We run the framework on more than 700 hours of 

data collected from 66 patients and measure the performance of the algorithm for detecting 
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sub-peaks against expert reviewed and corrected sub-peak annotations. A sub-peak detected 

by the algorithm is accepted as correct if it is within 50ms of the annotations.

We compare the performance of our framework to the MOCAIP framework. The MOCAIP 

framework has a similar pre-processing method as explained earlier but uses a different 

method for designating the three major components given the candidates. In particular, 

MOCAIP models the locations of each three components as a Gaussian distribution 

Xn(i) N(μ(i), σ2(i)) for i ∈ {1, 2, 3}. Note that the component location distributions in 

MOCAIP are the same for every pulse whereas in this work the distributions change 

dynamically for different pulses. The parameters of the three Gaussian distributions are 

computed by fitting the training data that were used in the original publication (Hu et al., 

2008c). The distributions thus learned using this approach remain the same for all patients. 

Then, the following score function is computed for all valid assignments J(i1, i2, i3) = 

p(Xn(1) = Yn(i1))+p(Xn(2) = Yn(i2))+p(Xn(3) = Yn(i3)). Furthermore, component i is 

considered missing if p(Xn(j) ≥ Yn(ij)) < ρ, for a pre-specified value ρ.

Advantages of an individualized framework.

Figure 6 compares the performance of DBN with ER transformation (DBN-ER) with the 

MOCAIP framework for a patient. In Figure 6(b), the MOCAIP framework uses component 

location densities obtained from a group of patients in for the component designation 

process. As a result, MOCAIP is prone to errors for patients whose component locations are 

not described well by the location densities computed during training. This is despite the fact 

that all three major components are included in the candidates. The DBN-ER framework, 

however, has the advantage of adapting component location distribution to each individual 

patients by: (I) modeling the evolution of Xn(i) − Xn−1(i) resulting in a lower variance 

distribution, and (II) adapting distribution parameters as more data is received for each 

patient.

Advantages of a dynamical model.

Another advantage of the DBN-ER framework is that the dynamical model allows for the 

correction of potential errors occurred during candidate detection step. Figure 7 shows an 

example where the first component location is missing in the candidates. Since the MOCAIP 

framework only allows the components to be selected from the candidates or be declared as 

missing, it does not detect the first component. On the other hand, in DBN-ER, components 

can take values that are not necessarily equal to candidates. In addition, DBN-ER leverages 

the dynamic model to reliably estimate the location of Xn(1) given Xn−1(1).

Failure cases.

We present two cases where the proposed method fails to identify the components correctly. 

Figure 8 shows a corrupted ICP pulse that was not correctly classified during the pre-

processing step of non-artifactual pulse recognition. An ICP pulse is considered corrupted 

when an expert classifies it as too noisy that reliable sub-peak assignment is not possible. 

Despite the fact that this pulse is visually corrupted, the algorithm detects one component. 

Although the proposed method improves over MOCAIP by not heavily relying on the 

candidate detections, the quality of the pulse and candidates still affect the performance. 
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This issue can be addressed by improving the non-artifactual pulse detection and candidate 

point detection modules.

Figure 9 shows an example where the algorithm correctly detects the third components in 

the first three pulses despite the fact that they are not included in the candidate peaks. 

However, after receiving observations for a few pulses, the algorithm wrongly concludes that 

the third component is not present as it is not detected in the candidate peaks for a while. 

This example shows that the algorithm is somewhat vulnerable to persistent errors in the 

observations. This problem can be addressed by improving the quality of component 

detection step. In addition, including more information from the ICP pulse besides the 

component location such as curvature and amplitude alleviates this problem and is left for 

future work.

Overall performance.

We compare the overall performance of our framework to the MOCAIP framework as well 

as another method based on clustering inspired by (Lee et al., 2015). For the clustering 

approach, we use the same pre-processing and candidate detection steps as in MOCAIP and 

apply the clustering method described in (Lee et al., 2015) for the final step of designating 

the three major components. Table 1 compares the accuracy of algorithms in detecting the 

three components over the test set in addition to the standard deviation of detection accuracy 

among the patients. DBN-ER significantly improves the detection accuracy of each 

component and obtains a more robust performance across patients owing to parameter 

adaptation.

As an additional performance measure, we compute a displacement error: the averaged 

difference between the detected sub-peaks {xn(1), xn(2), xn(3)} and the expert labels 

{xn*(1), xn*(2), xn*(3)}

Δi = 1
ni n = 1

ni
|xn(i) − xn*(i) | ,

where ni denotes the number of true detections of component i. Table 2 shows that DBN-ER 

achieves a smaller average displacement error. As discussed before, in some ICP pulses one 

or more components may be missing. In Table 2, we also compare the performance of the 

algorithms in their ability to correctly detect a missing sub-peak by obtaining true negative 

rate (TNR). Overall, DBN-ER performs well in identifying missing sub-peaks. The 

clustering method yields the best TNR for component 1. However, this score is due to the 

interval constraints of the clustering method that results in assigning missing value to many 

first sub-peaks despite their existence. Note that since the chance of missing sub-peaks is 

relatively small, true positive rates are close to the accuracies reported in Table 1.

5 Discussion

In this paper, we presented a fully automated and patient-adaptable framework based on a 

probabilistic dynamic model for the identification of pulsatile components from continuous 
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ICP signals. The efficacy of the proposed framework was evaluated by conducting 

experiments over more than 700 hours of ICP recordings. We compared our results with 

those yielded by the MOCAIP framework (Hu et al., 2008c) as well as a clustering approach 

inspired by (Lee et al., 2015), demonstrating significant improvements. The temporal feature 

of our framework enables recalling necessary information regarding the locations of 

components from previous pulses. This information in addition to the observations results in 

making more confident and robust decisions during the component designation step. The 

proposed framework deploys a probabilistic generative model which can also be used to 

make predictions on the arrival times of upcoming pulsatile components and provide 

uncertainty estimates for the predictions. We included static hidden variables in the DBN 

that are tuned for each patient as more data are received in an unsupervised manner, which 

allows for improved performance by making the detection mechanism individualized. The 

approach presented here is theoretically guaranteed, data-efficient, and interpretable.

In addition to MOCAIP, several other approaches are proposed for ICP sub-peak detection 

such as (Lee et al., 2015; Calisto et al., 2012). Since the implementation and specific details 

of these approaches are not publicly available, we implemented an algorithm inspired by the 

clustering approach of Lee et al. 2015 and compared the performance to our approach in the 

previous section. We now highlight the algorithmic and conceptual differences between 

these works and our work.

The method presented by Calisto et al. 2012 is not fully automated and cannot be used for 

real-time patient monitoring. For each patient, this method requires an expert to annotate the 

three pulsatile components of ten randomly-selected pulses and the annotations are later 

used for component identification. Furthermore, the non-artifactual pulses are recognized by 

comparing the current pulse with three preceding and three succeeding pulses, which 

performs poorly in case of a relatively persistent artifact. Similar to MOCAIP, Lee et al. 

2015 also first finds a set of candidate locations. It then applies k-means on the candidates to 

assign three pulsatile components, unlike the method presented in this paper which finds the 

most likely location of pulsatile components using a Bayesian model-based approach. A 

main limitation of (Lee et al., 2015) is the preliminary step of manual removal of artifactual 

recordings by an expert which limits the use of the framework for fully automated patient 

monitoring. The above frameworks do not consider the dynamics of pulsatile components, 

the uncertain nature of the problem, and adaptability to individual patients, which are 

addressed in this paper. Our framework based on DBN-ER offers additional advantages such 

as flexibility in admitting more complex models and providing insights on the temporal 

model of the ICP.

6 Future work

The model-based framework for ICP morphology analysis elicits several interesting 

extensions and directions for future work. Possible directions for technical improvements are 

described below.
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The transition model.

The dynamical model presented in this paper is developed by analyzing the dynamics of ICP 

sub-peaks from annotated data and a simple understanding of human physiology. This 

results in a relatively simple model that admits only a few parameters, making it less prone 

to overfitting in clinical applications when data are relatively scarce. However, if more data 

are available, using a more complex model of the dynamics would greatly improve the 

performance. This goal can be achieved in several ways. For example, while we only 

considered the arrival time of ICP components, one can increase the modeling power by 

considering both the arrival time and signal amplitude of each component. Introducing 

hierarchical structures and incorporating the temporal and static effects of different 

neurological conditions on the pulsatile components are other ways of improving the model. 

Alternatively, one can deploy expert knowledge for designing a more complex model; an 

example of such a method is the recent work of Wang et al. 2019 that presents a lumped 

parameter network for modeling the ICP signal by leveraging mechanistic understanding of 

physiology. Finally, the current model only considers short-term temporal dependencies. 

Designing a framework that handles a long-term memory, a difficult challenge in machine 

learning, is a direction worth pursuing.

The pre-processing step.

We used MOCAIP’s pre-processing approach to obtain a sequence of dominant ICP pulses 

and eliminate noise followed by a candidate detection step. Improving non-artifactual pulse 

recognition and candidate detection modules is expected to increase the final accuracy. 

Furthermore, in the current implementation, the dominant pulse represents a short segment 

of the ICP recording. An interesting future direction is analyzing the morphology of 

individual pulses by combining the proposed DBN with alternative methods of handling 

noise and artifacts.

The observations.

In the current framework, we only considered candidate locations as DBN observations. 

Including more observations could improve the performance of the framework at the cost of 

making the system more complex and perhaps, adding a requirement for using more 

advanced inference techniques. For instance, to alleviate the problem with detecting ICP 

components in corrupted pulses that are not removed in the pre-processing step, additional 

observations such as signal quality indices can be considered. Recent works demonstrated 

that DBNs that include raw signals as observations without a pre-processing or feature 

extraction step are highly effective. An example is a signal-based DBN presented in (Moore 

and Russell, 2017) where raw seismic signals are used as observations to achieve state-of-

the-art performance in seismic monitoring.

In addition to technical improvements, research venues that have demonstrated the potential 

clinical values of quantitative ICP pulse morphological analysis (Hu et al., 2010b,a; 

Kasprowicz et al., 2010; Asgari et al., 2012; Scalzo et al., 2012b,c; Scalzo and Hu, 2013; Hu 

et al., 2012a; Liu et al., 2019, 2020) can readily benefit from a more accurate delineation of 

ICP pulse morphological features.
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Figure 1: 
An example demonstrating sample impoverishment when the transition model exhibits high 

uncertainty but the observation model is fairly accurate. The particle filtering steps of 

propagation, weight assignment, and resampling, applied to a standard DBN, are shown in 

(a). As a result of the inaccurate transition model, most particles are far from the observation 

and are assigned small weights. During resampling, the particles with small weights are 

naturally eliminated resulting in a reduction in sample diversity. Particle filtering applied to a 

DBN with evidence reversal is shown in (b). Here, particles are sampled after the 

observation is received and therefore, more diverse particles compatible with the observation 

are generated.
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Figure 2: 
The left figure shows the standard DBN and the right figure shows the ER transformation. 

The shaded nodes represent the observations.
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Figure 3: 
Flow chart of the proposed framework for ICP morphology analysis which includes data 

pre-processing, training, and inference over a dynamic Bayesian model. In the model, the 

latent variables are the ICP major pulsatile components Xn = {Xn
1, Xn

2, Xn
3} and observed 

variables are the candidate locations Y n = {Y n
1, …, Y n

Cn}, where Cn is a random variable 

representing the number of candidates obtained for pulse n.
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Figure 4: 
Histogram of ηn(i) = Xn(i) − Xn−1(i) for three different patients and fitted Laplace and 

Gaussian distributions.
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Figure 5: 
Left: The probability density function (pdf) of Laplace(Xn−1(i), b(i)) at candidate locations. 

Xn(i) can take values only in the candidates that are greater than L(i). Right: Hybrid 

probability distribution of Xn(i) over the candidates, missing value, and a truncated Laplace 

distribution.
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Figure 6: 
The top plots show two consecutive ICP pulses for a patient and the performance of DBN-

ER (left) and MOCAIP (right). The expert annotations are denoted by 1, 2, and 3. The 

bottom plots show the distributions over the locations of each components which are 

modeled by Laplace distributions Xn(i) = Laplace(Xn−1(i), b(i)) in DBN-ER and Gaussian 

distributions Xn(i) = Normal(μ(i), σ2(i)) in MOCAIP.
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Figure 7: 
Performance of MOCAIP (top) compared to DBN-ER (bottom) where a candidate is 

missing. The ability of DBN-ER to use the information from previous pulses and to detect 

components outside candidates reduces missed detections.
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Figure 8: 
An example where the DBN-ER algorithm fails to detect a corrupted ICP pulse.
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Figure 9: 
An example where existence of a persistent error in the observations results in missing the 

third component.
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Table 1:

Accuracy of detecting three major ICP pulsatile components and the standard deviation of the detection 

accuracy among patients.

Component 1 Component 2 Component 3

accuracy s.d. accuracy s.d. accuracy s.d.

Clustering 71.57% 0.36 89.76% 0.16 83.41% 0.21

MOCAIP 90.17% 0.17 87.56% 0.25 86.53% 0.24

DBN-ER (ours) 96.56% 0.07 92.39% 0.18 94.04% 0.12
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Table 2:

Average displacement errors Δi and true negative rates of difference algorithms.

Component 1 Component 2 Component 3

Δ1(ms) TNR Δ2(ms) TNR Δ3(ms) TNR

Clustering 21.6 0.954 15.4 0.844 29.3 0.912

MOCAIP 24.8 0.876 12.9 0.877 24.8 0.835

DBN-ER (ours) 19.0 0.912 10.8 0.908 19.7 0.923
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