
Blinded potency comparison of transthyretin kinetic stabilizers 
by subunit exchange in human plasma

Luke T. Nelson1, Ryan J. Paxman1, Jin Xu1, Bill Webb2, Evan T. Powers1,*, Jeffery W. 
Kelly1,3,*

1Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA

2Center for Metabolomics, The Scripps Research Institute, La Jolla, CA, USA

3The Skaggs Institute for Chemical Biology, The Scripps Research Institute, CA, USA

Abstract

Transthyretin (TTR) tetramer dissociation is rate limiting for aggregation and subunit exchange. 

Slowing of TTR tetramer dissociation via kinetic stabilizer binding slows cardiomyopathy 

progression. Quadruplicate subunit exchange comparisons of the drug candidate AG10, and the 

drugs tolcapone, diflunisal, and tafamidis were carried out at 1, 5, 10, 20 and 30 μM 

concentrations in 4 distinct pooled wild type TTR (TTRwt) human plasma samples. These 

experiments reveal that the concentration dependence of the efficacy of each compound at 

inhibiting TTR dissociation was primarily determined by the ratio between the stabilizer’s 

dissociation constants from TTR and albumin, which competes with TTR to bind kinetic 

stabilizers. The best stabilizers, tafamidis (80 mg QD), AG10 (800 mg BID), and tolcapone (3 × 

100 mg over 12 h), exhibit very similar kinetic stabilization at the plasma concentrations resulting 

from these doses. At a 10 μM plasma concentration, AG10 is slightly more potent as a kinetic 

stabilizer vs. tolcapone and tafamidis (which are similar), which are substantially more potent than 

diflunisal. Dissociation of TTR can be limited to 10% of its normal rate at concentrations of 5.7 

μM AG10, 10.3 μM tolcapone, 12.0 μM tafamidis, and 188 μM diflunisal. The potency similarities 

revealed by our study suggest that differences in safety, adsorption and metabolism, 

pharmacokinetics, and tissue distribution become important for kinetic stabilizer clinical use 

decisions.
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Introduction

Wild type (wt) transthyretin (TTR) aggregation causes the disease wild type TTR amyloid 

cardiomyopathy (wtATTR-CM), previously called Senile Systemic Amyloidosis [1]. 

Patients with ATTRwt-CM present with a principal cardiomyopathy, along with 

compromised autonomic nervous system function [1, 2]. ATTRwt-CM is the most common 

of the transthyretin amyloidoses, affecting approximately 10% of the elderly male 

population [3, 4]. Hence, kinetic stabilizers—small molecules that bind to the native 

tetrameric structure of TTR preferably over the dissociative transition state, slowing 

dissociation and inhibiting aggregation—were compared herein in the context of wt TTR.

Rate-limiting dissociation of the native TTR tetramer, followed by monomer misfolding [5] 

enables formation of transthyretin aggregate structures [6–9]. Compelling genetic and 

pharmacologic evidence support the hypothesis that TTR aggregation into a spectrum of 

aggregate structures [10] drives the cardiomyopathy degenerative phenotypes, especially 

early in the disease course [9, 11–20].

The kinetic stabilizer tafamidis is the only drug approved by the regulatory agencies to slow 

the progression of the TTR cardiomyopathies (ATTRwt-CM and ATTRv-CM) [18]. Two 

other TTR kinetic stabilizers—the drug candidate, AG10, and the Parkinson’s disease drug, 

tolcapone, are currently under consideration for treating the ATTR amyloidoses [21–27]. 

There are reports suggesting that AG10 and tolcapone are superior to tafamidis as TTR 

kinetic stabilizers [21, 26, 27]. Notably, these assessments are based on comparisons made 

under denaturing conditions, which can differentially reduce the binding affinity of the 

kinetic stabilizers to tetrameric TTR, making extrapolations to physiological conditions 

difficult. AG10 was assessed under acidic conditions in human plasma [21], whereas 

tolcapone was analyzed in human plasma to which urea was added [26]. In these assays, in 

the presence of a kinetic stabilizer candidate or just vehicle, and after an incubation period in 

plasma under denaturing conditions, TTR is subjected to glutaraldehyde cross-linking. The 

TTR tetramer preserved by kinetic stabilizer binding is then quantified either by SDS-

PAGE / Western blot or by immunoturbidity (the basis for the clinical laboratory test for 

measuring TTR blood levels). The more tetramer present, the better the stabilizer 

performance under denaturing conditions [28].

Pharmacologic kinetic stabilization is defined by the decrease in the rate of TTR tetramer 

dissociation in human plasma in the presence of the kinetic stabilizer [29–32]. Wild type 

TTR subunit exchange in plasma allows for a direct comparison of different kinetic 

stabilizers under physiological conditions, because subunit exchange [33–35], like 

aggregation [5–7, 34–36], is rate limited by TTR tetramer dissociation. This assay quantifies 

kinetic stabilization in the complex plasma environment wherein TTR likely aggregates [20], 

in the presence of all plasma factors that influence TTR kinetic stability, those that are 

known [37, 38] and unknown.
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Methods

A comprehensive Materials and methods section can be found in the on-line Supplemental 

Material for: Dual-FLAG-tagged WT TTR Expression and Purification, Plasma Preparation 

for Experiments 1 and 2, Processing the Peak Area Data, Global fits of Subunit Exchange 

Data, Kinetic Stabilizer Purity Assessments, Kinetic Stabilizer Concentration 

Determinations, Sample Blinding, and Study Approval.

Results

Measuring the rate of tetramer dissociation in human plasma by subunit exchange in the 

presence of a pharmacologic kinetic stabilizer allows one to assess the oral dose of a kinetic 

stabilizer required to slow TTR tetramer dissociation to a desired extent under physiological 

conditions [29, 30]. The desired extent is ultimately determined by placebo-controlled 

clinical trials (see Discussion).

In plasma, monomeric TTR subunits resulting from tetramer dissociation predominantly 

reassemble back to tetramers—a process that is not normally detectable [29]. However, if 

recombinant dual-FLAG-tagged wt TTR (FT2-WT TTR) homotetramers (comprising the red 

subunits in Figure 1A) are added to plasma, the concurrent dissociation of endogenous 

untagged tetrameric plasma TTR (3–5 μM; represented by green subunits) and FT2-WT 

TTR tetramers (final concentration of 1 μM) results in a solution of tagged and untagged 

monomeric TTR subunits [29] (Figure 1A). When these monomers come together during the 

process of tetramer reassembly, heterotetramers 2, 3 and 4 made up of the tagged TTR 

subunits and endogenous TTR subunits are afforded in ratios approximated by the binomial 

distribution (Figure 1A) [33]. The final concentration of homotetramers 1 and 5 are 

predicted analogously. Slight deviations from the expected binomial distribution are due to 

the homo- and heterotetramers depicted in Figure 1A not being perfectly isoenergetic [29, 

32, 33].

To facilitate TTR tetramer detection in plasma, in the context of thousands of additional 

proteins and biomolecules, we employed the fluorogenic TTR-modifying small molecule A2 

(Figure 1B) [39]. Small molecule A2 binds rapidly to natively folded tetrameric TTR, 

arresting any further subunit exchange, yielding the non-fluorescent TTR•(A2)2 complexes 

of tetramers 1–5 (Figure 1B; left panel). Once bound, A2 chemoselectively reacts with two 

of the four TTR subunits in the TTR tetramer, acylating the Lys-15 ε-amino groups in the 

thyroxine binding sites, rendering the TTR-(A2 fragment)2 covalent conjugates of tetramers 

1–5 fluorescent (Figure 1B; right panel). Because the N-terminal dual-FLAG tag does not 

affect the A2 binding site, using the FLAG-tagged TTR allows for equal fluorescence 

detection of tetramers 1–5. The additional negative charges contributed by each TTR subunit 

harboring a dual-FLAG tag (red subunits) in a tetramer allows for ultraperformance liquid 

chromatography (UPLC) quaternary ammonium anion exchange chromatography separation 

of tetramers 1–5 in plasma, enabling fluorescence detection-based quantification of TTR-

(A2 fragment)2 of tetramers 1–5 (Figure 1C) as a function of the subunit exchange period to 

generate subunit exchange kinetics [29].
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In “experiment 1” we performed blinded subunit exchange comparisons of the drug 

candidate AG10, and the drugs tolcapone, diflunisal, and tafamidis at 30, 20, 10, 5, and 1 

μM concentrations in 3 pooled human plasma samples, each derived from three distinct 

donors (Supplemental Figure S1; the TTR in these plasma samples is likely to be WT, given 

that the donors were healthy). In all cases, we calculated the fraction of exchange at each 

time point based on the extent to which tetramer 3 (Figure 1A) had approached its expected 

final value. Previous work has shown that, at least for exchange between WT TTR and FT2-

WT TTR, the rates of appearance / disappearance of the other four tetramers (tetramers 1, 2, 

4, and 5 in Figure 1A) are similar to that of tetramer 3 [29]. AG10 is slightly more potent as 

a kinetic stabilizer vs. tolcapone and tafamidis which exhibit similar potency (Table 1; 

Supplemental Figure S1). Notably, the differences between these kinetic stabilizers become 

very small at the pharmacologically relevant upper end of the concentration range tested. 

The concentration of the TTR kinetic stabilizers being compared were quantified by three 

independent methods to be sure that accurate concentrations were employed in the subunit 

exchange experiments (see methods in the Supplemental Material for details). Strictly 

analogous results were obtained in “experiment 2” employing two technical replicates with a 

single pooled plasma sample generated from six healthy donors (Table 1; Supplemental 

Figure S2). In both experiments we used freshly prepared kinetic stabilizer solutions.

To further scrutinize the efficacies of tafamidis, AG10, tolcapone, and diflunisal for 

inhibiting TTR dissociation in blood plasma, we fitted the data from experiments 1 and 2 to 

a model for TTR subunit exchange in the presence of kinetic stabilizers and a competing 

kinetic stabilizer-binding protein; in this case, albumin (Figure 2). We have shown 

previously that subunit exchange is well approximated as a monoexponential process with an 

apparent rate constant kex = funbound × kdiss, where funbound is the fraction of TTR with no 

ligands bound and kdiss is the intrinsic TTR tetramer dissociation rate constant [31, 33]. The 

parameter funbound is a function of a compound’s affinity for TTR’s two binding sites (Kd1, 

Kd2) as well as its affinity for albumin (Kd,Alb), as discussed in the Supplemental Methods 

section. Values for Kd1 and Kd2 have been reported for each kinetic stabilizer compared in 

our study: tafamidis, Kd1 = 3.1 nM, Kd2 = 238 nM (average values from [40] and [31]); 

AG10, Kd1 = 4.8 nM, Kd2 = 314 nM [40]; tolcapone, Kd1 = 41 nM, Kd2 = 4.3 μM [41]; 

diflunisal, Kd1 = 75 nM, Kd2 = 1.1 μM [8]. Thus, Kd1 and Kd2 were used as fixed paramters 

in the global fit, while kdiss and Kd,Alb were allowed to vary to optimize the fits to the data.

The fits to the data from experiment 1 were uniformly good, with R2 > 0.98 for each kinetic 

stabilizer (Supplemental Figure S1). Similarly, the fits to the data from experiment 2 yielded 

R2 > 0.96 for each small molecule (Supplemental Figure S2). The fits to the combined data 

from experiments 1 and 2 yielded an R2 > 0.96 as well (Figure 2). The apparent subunit 

exchange rates, kex, resulting from the fits from each subunit exchange time course at each 

small molecule concentration are listed in Table 1. The data in the second column is for 

experiment 1 (biological triplicate data), the data in the third column is for experiment 2 

(technical duplicate data), and the data in the fourth column derives from fitting the 

combined data from experiments 1 and 2 (five replicates). For each concentration of each 

stabilizer, the rate constants in the three columns are very similar, with an average relative 

standard deviation of 6.6%, superior to kinetic stabilizer comparisons made under 

denaturing conditions discussed in the Introduction section, wherein the relative standard 
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deviation is substantially higher than 6.6%. Importantly, the best-fit subunit exchange rates, 

kex, from the global fit to the data for each kinetic stabilizer are very similar to the kex values 

derived from individually analyzing experiment 1 or experiment 2, demonstrating the 

reproducibility of the subunit exchange method in Table 1 (cf. the kex derived from the 

aforementioned global fits in columns 2, 3 and 4). Moreover, it is clear that the less labor-

intensive experiment 2 carried out in duplicate with one pooled plasma sample from 6 

donors is sufficient for comparing kinetic stabilizer potencies (Table 1) using WT TTR 

subunit exchange rates, cf. Supplemental Figure S1 to Supplemental Figure S2.

The global fit to the combined dataset from experiments 1 and 2 revealed that the 

fundamental TTR dissocation rate constant, kdiss, in the absence of any kinetic stabilizer is ≈ 
0.0149 h−1 (this quantity was determined separately using the data from each small molecule 

as follows: tafamidis, kdiss = 0.0140 ± 0.0007 h−1; AG10, kdiss = 0.0147 ± 0.009 h−1; 

tolcapone, kdiss = 0.0153 ± 0.0007 h−1; diflunisal, kdiss = 0.0155 ± 0.0009 h−1). The global 

fit of the data from experiments 1 and 2 to the aforementioned model also affords values for 

Kd,Alb that were all in the low- to mid-micromolar range (tafamidis, Kd,Alb = 1.8 ± 0.1 μM; 

AG10, Kd,Alb = 9.5 ± 0.8 μM; tolcapone, Kd,Alb = 32 ± 2 μM; diflunisal, Kd,Alb = 1.2 ± 0.1 

μM). Given these values, it appears that the primary determinant of a compound’s efficacy at 

a given concentration for inhibiting TTR tetramer dissociation in blood plasma is the spread 

between its Kd1 for binding to TTR and Kd,Alb. These decrease in the order AG10 (Kd,Alb / 

Kd1 = 1980) > tolcapone (Kd,Alb / Kd1 = 780) > tafamidis (Kd,Alb / Kd1 = 580) > diflunisal 

(Kd,Alb / Kd1 = 16). Given the value of kdiss for TTR and the values of Kd1, Kd2, and Kd,Alb 

for the stabilizing compounds obtained from the fits, we calculate that dissociation of TTR 

can be limited to 10% of its normal rate at concentrations of 5.7 μM AG10, 10.3 μM 

tolcapone, 12.0 μM tafamidis, and 188 μM diflunisal. TTR dissociation could be further 

diminished to 3% of its normal rate at concentrations of 11.5 μM AG10, 25.9 μM tolcapone, 

30.1 μM tafamidis, and 328 μM diflunisal, all of which are pharmacologically achievable 

plasma concentrations with oral dosing.

Discussion

It remains unclear what the minimal reduction in the rate of TTR tetramer dissociation is to 

achieve maximal clinical benefit, although TTR amyloidosis clinical trials and large clinical 

studies have put some constraints on this. We have previously reported data showing that 

slowing (36% of patients; n=76) or cessation of progression (34 % of patients; n=72) has 

been observed in hereditary TTRV30M polyneuropathy (ATTRv-PN) with tafamidis 

treatment (20 mg QD) [42], a clinical result associated with a mean tafamidis plasma 

concentration in these patients after 12 months of dosing of ≈ 9 μM. This concentration of 

tafamidis, assuming it is the same in ATTRwt-CM patients at the 20 mg QD dose, would be 

expected to slow the rate of wt TTR tetramer dissociation to ~14% of normal based on the 

subunit exchange data presented herein. Increasing the dose of tafamidis to 80 mg once daily 

(which yields a mean peak plasma concentration of ≈ 28 μM), lowers the rate of wt TTR 

tetramer dissociation to ~3% of normal in our experiments (61 mg Vyndamax formulation 

affords the same plasma concentration) [43]. Slowing of progression of ATTRv-PN has been 

observed with diflunisal treatment (250 mg BID), but we lack good information on plasma 

concentrations. Chronic dosing with 20 vs 80 mg of tafamidis decreases the wt TTR 
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dissociation rate from ≈ 14 % of normal to 3% of normal, as noted above, and the higher 

dose appears to offer a survival benefit over the lower dose after 51 months of observation 

(European Socity Cardiology June 2020 presentation).

It is clear that any arbitrary level of TTR kinetic stabilization can be achieved by a given 

small molecule kinetic stabilizer through simply adjusting the plasma concentration, which 

in turn can be controlled via the oral dose, safety attributes permitting. If a reduction to ≤ 4 

% of the normal wt TTR tetramer dissociation rate is desired, this would require a daily oral 

dose of 1600 mg of AG10 to afford a mean peak plasma concentration of ≈ 11 μM, or a 

daily oral dose of 80 mg of tafamidis to achieve a mean peak plasma concentration of ≈ 28 

μM, as demonstrated by the data above. Even diflunisal is a very effective kinetic stabilizer 

at the ≈ 100 – 200 μM concentration achieved by a daily oral dose of 500 mg, demonstrating 

that even large potency differences can be overcome by very good oral bioavailability, a 

good half-life and the lack of substantial plasma metabolites, along with modest albumin 

binding.

Conclusion and Perspective.

Sixteen hundred mg of AG10 daily and 80 mg of tafamidis daily reduce the rate of WT TTR 

tetramer dissociation by ≥ 96% at mean peak plasma concentrations of ≈ 11 μM and ≈ 28 

μM, respectively. While AG10 is 4 times more potent than tafamidis at a fixed plasma 

concentration (e.g., 10 μM; Table 1), the combination of AG10’s half-life of 25 h vs 49 h for 

tafamidis, modest AG10 oral bioavailability, and the substantial metabolism of AG10 of ≈ 
33 % (acylglucuronidate) vs ≤ 10% for tafamidis, requires that 20 times more AG10 needs to 

be orally administered than tafamidis to afford the same wt TTR kinetic stabilization. 

Tolcapone’s black box warning aside, its 3 h half-life makes it very challenging to find a 

tolcapone dose and dosing regimen that can match the kinetic stabilization imparted by other 

stabilizers during the sleep cycle [26]. The potency similarities revealed by our study 

suggest that other pharmacologic considerations, such as safety, adsorption and metabolism, 

pharmacokinetics, and the stabilizers’ tissue distribution (tafamidis and tolcapone have 

meaningful exposure in the eyes and in the brain [44, 45]) are also very important 

considerations for clinical use decisions.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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CNS central nervous system

CSF cerebrospinal fluid

FT2-TTR dual-FLAG-tagged TTR

ATTRv-CM hereditary TTR amyloid cardiomyopathy

ATTRv-PN hereditary TTR amyloidosis with polyneuropathy

HPLC high performance liquid chromatography

PNS peripheral nervous system

QD once a day

TTR transthyretin

UPLC ultra-performance liquid chromatography

VB vitreous body

wt wild-type

ATTRwt-CM wild-type transthyretin amyloid cardiomyopathy
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Figure 1. Subunit Exchange to Quantify TTR Tetramer Kinetic Stability.
(A) Schematic of the steps involved in subunit exchange between endogenous TTR in 

human plasma represented by green subunits and added dual-FLAG tagged WT TTR (FT2-

WT TTR) depicted by red subunits. Rate-limiting tetramer dissociation depleting 

homotetramers 1 and 5, and subunit re-association to afford heterotetramers 2, 3 and 4 allow 

the apparent rate constants for subunit exchange (kex) to be determined. (B) Aliquots 

removed as a function of time are removed from the subunit exchange reaction and injected 

into an excess of A2, which binds to the two binding sites in TTR and then reacts with the 

Lys-15 residues, rendering the TTR conjugates detectable by fluorescence in the background 

of the 4000+ proteins comprising plasma. (C) Ion exchange chromatography of whole 

human plasma with fluorescence detection can be used to follow the abundances of 

tetramers 1-5 as a function of time, yielding the time courses in Figure 2 and Supplemental 
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Figures S1 and S2, which can be fit to determine kex as a function of the concentration of 

various kinetic stabilizers.
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Figure 2. TTR subunit exchange kinetics in the presence of kinetic stabilizers at varying 
concentrations, experiments 1 and 2 combined.
Time courses of subunit exchange between endogenous plasma TTR (~ 3 μM) and added 

dual-flag-tagged WT-TTR (1 μM) in the presence of kinetic stabilizers at the indicated 

concentrations. Data from experiments 1 and 2 were combined and fit globally. The x-axis 

shows time in hours; the y-axis shows the fraction of exchange as calculated from the area 

under peak 3 in ion exchange chromatograms (see Figure 1C for a sample chromatogram 

and the Materials and Methods for the procedure to calculate fraction exchange). (A) 

Subunit exchange time courses in the presence of kinetic stabilizers at a concentration of 30 

μM. (B) As in panel A, but at a stabilizer concentration = 20 μM. (C) As in panel A, but at a 

stabilizer concentration = 10 μM. (D) As in panel A, but at a stabilizer concentration = 5 

μM. (E) As in panel A, but at a stabilizer concentration = 1 μM. The same DMSO control 

time course is shown in each plot. Red diamonds = tafamidis; blue squares = AG10; inverted 

green triangle = tolcapone; purple circle = diflunisal; black triangle = DMSO control. Data 

points represent the mean and error bars the standard deviation of the combined data set 

from experiments 1 and 2. The curves in each plot represent the best fits to the combined 

data based on the model described in the text.

Nelson et al. Page 12

Amyloid. Author manuscript; available in PMC 2022 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Nelson et al. Page 13

Table 1.

Apparent kex at all ligand concentrations calculated based on the fits to the subunit exchange data from 

experiment 1, experiment 2, and the combined data.

Kinetic Stabilizer Concentration (μM) apparent kex, Experiment 1 
(h−1)

apparent kex, Experiment 2 
(h−1)

apparent kex, Combined 
Experiments (h−1)

Tafamidis 0 0.0142 0.0140 0.0140

1 0.0116 0.0115 0.0114

5 0.0046 0.005 0.0046

10 0.0020 0.0023 0.0020

20 0.0008 0.0009 0.0008

30 0.0004 0.0005 0.0004

AG10 0 0.0148 0.0164 0.0147

1 0.0114 0.0129 0.0114

5 0.0022 0.0037 0.0026

10 0.0005 0.0012 0.0007

20 0.0001 0.0004 0.0002

30 0.0001 0.0002 0.0001

Tolcapone 0 0.0153 0.0157 0.0152

1 0.0123 0.0127 0.0123

5 0.0044 0.005 0.0045

10 0.0017 0.0021 0.0018

20 0.0007 0.0008 0.0007

30 0.0004 0.0005 0.0004

Diflunisal 0 0.0156 0.0141 0.0155

1 0.0153 0.0139 0.0151

5 0.0142 0.0129 0.0139

10 0.0129 0.0118 0.0126

20 0.0109 0.0100 0.0104

30 0.0093 0.0086 0.0088
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