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Abstract

A brain-computer interface (BCI) is a device that detects signals from the brain and transforms 

them into useful commands. Researchers have developed BCIs that utilize different kinds of brain 

signals. These different BCI systems have differing characteristics, such as the amount of training 

required and the degree to which they are or are not invasive. Much of the research on BCIs to date 

has involved healthy individuals and evaluation of classification algorithms. Some BCIs have been 

shown to have potential benefit for users with minimal muscular function as a result of 

amyotrophic lateral sclerosis. However, there are still several challenges that need to be 

successfully addressed before BCIs can be clinically useful.
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1 | VARIETIES OF BRAIN-COMPUTER INTERFACES

Vidal1 introduced the term “brain-computer interface” (BCI) to describe an apparatus he 

assembled that allowed users to make simple responses with their electroencephalogram 

(EEG). Vidal’s system used visual evoked potentials and was based on the focus of the 

user’s attention. To accomplish this, Vidal used an IBM 360 mainframe system at the UCLA 

computing center. This was a large system that supported computing for the entire 

university. As a result, experiments had to be conducted after work hours. Since Vidal’s 

experiments, computing power has increased exponentially. At the same time, EEG 

amplifiers have evolved from the use of vacuum tubes, through transistors and integrated 

circuits, and finally to the current use of microprocessors. These developments allowed for 

the creation of reasonably priced laboratory systems and, more recently, portable BCIs. 

Table 1 shows some of the characteristics of several different BCI systems.
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Farwell and Donchin2 developed the P300-based BCI. This system was based on a response 

in the EEG characterized by an enhanced positivity at around 300 milliseconds in the 

potential evoked by the attended target in an array of flashing letters. Subsequently, a 

considerable amount of research has been performed with factors such as optimizing 

stimulus presentation, signal processing, and user applications.3–5 Most of this work has 

been done with able-bodied users who do not benefit from the use of a BCI. In addition, by 

far the most effort has been devoted to the problem of signal processing and classifier 

learning using archival data.6

Wolpaw et al7 developed the sensorimotor rhythm–based BCI. Sensorimotor rhythms 

(SMRs) are oscillations in the alpha (9 to 13 Hz) and beta (18 to 25 Hz) bands of the EEG 

that are reactive to movement, preparation for movement, and imagining movement.8 Given 

SMR-based feedback, users can learn to manipulate these signals to control cursor 

movement in one or several dimensions or the movement of robotic devices.9,10

Chapin et al11 showed that rats could learn to control a robot arm to obtain water reward by 

modulating the firing rate of single units recorded from within their brains. Taylor et al12 

showed that monkeys could learn to control a virtual cursor in three dimensions using 

single-unit activity. Single-unit activity has subsequently been used to control devices in 

human patients.13

Birbaumer et al14 trained two individuals with amyotrophic lateral sclerosis (ALS) to control 

their slow cortical potentials (SCPs) in order to move a cursor toward one of two targets on a 

video screen. This EEG feature is a low-frequency potential that varies over a period of 

seconds. After a number of training sessions, these individuals then used this control to 

operate a binary spelling device. Their study is the only early BCI report that involved 

individuals with motor impairments rather than healthy volunteers.

Middendorf et al15 designed a BCI based on the steady-state visual evoked potential 

(SSVEP). The SSVEP is typically elicited by a visual stimulus flashing at a fixed rate. This 

initial SSVEP BCI was used to operate a two-state switch, but subsequent SSVEP-based 

systems have allowed for much higher information transmission rates by using arrays of 

visual stimuli flashing at different rates and advanced signal processing methods.16

2 | SOME CHARACTERISTICS OF BCIS

There has been much speculation about the neuronal origin of the signals that produce the 

EEG recorded at the surface.17 However, understanding the role of various neural elements 

within complex interacting networks remains a challenge.18 By and large, the neural circuits 

that generate the EEG remain unknown. Nevertheless, it is fairly safe to say that the current 

BCI communication and control systems just discussed are based on intentional use by users 

and are not based on “mind reading.”

It is important to note that the characteristics of these various BCIs vary considerably. For 

example, McFarland et al19 compared data recorded from individuals using SMR and P300 

BCIs in terms of whether adaptation to changing signal statistics was useful. Adaptive 

normalization of the features and classifier weights improved performance for the SMR data 
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but not for the P300 data. These results probably reflect the fact that learned control of SMR 

features occurs over an extended period of time, whereas the acquisition of the skills 

necessary for the use of the P300 is more rapid. BCIs also differ in terms of information 

transfer rates. For example, a series of studies showed that most healthy individuals could 

learn to use either a SMR, P300, or SSVEP BCI system.20–22 However, the speed and 

accuracy of performance with these three BCIs differed considerably. The SSVEP-based 

BCI had the highest information transfer rate followed closely by the P300-based BCI.

BCIs also differ in the nature of the artifacts that can appear to be correct EEG-based 

performance. The P300 has similar spectral characteristics to eye blinks. As a result, 

classifiers trained to identify the EEG response to targets may also be sensitive to eye blinks. 

However, true P300 responses differ in terms of the topology of the response, showing peak 

amplitudes over central (eg, Cz) and slightly more posterior (eg, Pz) electrodes. In contrast, 

eye blinks show peak amplitudes at the most anterior electrodes. Thus, careful inspection of 

the EEG features that control selection can allow the investigator to rule out the potential 

role of artifacts in determining performance. Although the spectral characteristics of SMRs 

do not overlap greatly with eye blinks, they do overlap with the wide-band activity of 

muscles (electromyography, or EMG). However, true SMRs differ from EMG in that they 

have relatively narrow spectral peaks located over central scalp regions in relatively narrow 

alpha and beta bands.23

It can be argued that individuals with limited voluntary motor capacities could benefit from 

whatever signal a system is sensitive to. However, failure to rule out the involvement of non-

EEG artifacts limits the applicability of results obtained with healthy volunteers to those 

individuals who could most benefit from BCI usage. This is particularly important as much 

of the BCI research to date involves offline evaluation of data collected from healthy 

volunteers. For example, Palaniappan24 reported that including gamma band activity (ie, 

EEG activity in the 24- to 37-Hz band) improved the accuracy of classifying archival data 

from healthy subjects. However, Pope et al25 found that scalp-recorded activity in this band 

was virtually eliminated in subjects who volunteered to be given a paralytic drug. This issue 

may also be a problem for studies investigating BCIs using other frequency bands in view of 

the broadband nature of EMG activity and difficulty in interpreting the meaning of the 

weights from multivariate classifiers.26,27

There has been extensive research with classification algorithms, many of which are 

evaluated offline.6 This may reflect a tendency of researchers in the machine-learning 

community to seek practical applications for those algorithms that are currently popular. To 

be useful for communication or control a device must by necessity operate online in real 

time. Most of the published classification algorithms have not actually been used in 

functioning BCI devices.

Development of sensor technology may be of greater importance than refinement of 

classification algorithms. Improved sensors could be made easier to apply by caregivers 

without the need for extensive training, be more comfortable for the user, and produce 

signals with a better signal-to-noise ratio.28 Methods for EEG recording were simplified 

considerably by the introduction of cloth caps that hold the electrodes in place. These caps 
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made application of electrodes easier and quicker, although the process still requires some 

time and expertise. In addition, the pressure of individual electrodes against the scalp may 

vary due to individual variations in head shape. Too much pressure may be uncomfortable 

for the user, whereas insufficient pressure affects the quality of the recording. Users have 

found that the jell used with typical wet electrodes is unpleasant, but dry electrodes may not 

yet produce comparable results.29,30 BCI performance would be improved by a better signal-

to-noise ratio than that produced by current sensor technology.

3 | REAL-TIME APPLICATIONS OF BCIS WITH DISABLED USERS

Although most BCI research has been done with data from healthy volunteers, a number of 

studies have examined performance in patients with ALS. For example, the study by 

Birbaumer et al14 with slow cortical potentials involved two individuals who were using 

mechanical ventilation. Likewise, Kubler et al31 showed that four individuals with ALS 

could learn to operate a BCI with EEG rhythms recorded over the sensorimotor cortex. 

However, most BCI studies in individuals with ALS have used the P300.5,32–34 Of interest is 

the fact that most of these studies used relatively standard signal-processing methods, in 

contrast to many of the studies examining archival data that tended to evaluate more novel 

and complex methods.

In a review of BCI studies with ALS patients, Kübler and Birbaumer35 concluded that 

communication was possible prior to individuals being completely locked-in (ie, having no 

means of communication). However, they found no evidence that patients with completely 

locked-in syndrome (CLIS) could use a BCI system. This conclusion was also supported by 

a more recent review of the literature.36 Kübler and Birbaumer35 suggested that CLIS 

individuals may have undergone extinction of goal-directed thinking due to a lack of normal 

sensorimotor feedback. Other explanations for the lack of evidence for successful BCI use in 

CLIS include “BCI illiteracy,” cognitive impairment, and problems with vision.36

Extinction of goal-directed thinking presumably relates to the lack of perceived relationships 

between intent and effects on the environment in CLIS patients. This view implies that 

maintaining the relationship between intent and effects on the external environment (eg, 

through BCI-based technologies) would prevent this extinction of goal-directed thinking. An 

alternative notion is that the progression of neuropathology in ALS results in BCI illiteracy 

or cognitive impairment, conditions that would not be preventable by maintaining 

contingencies between thought and the environment.

The concept of BCI illiteracy clarifies the fact that not all users can successfully use this 

technology.37 This difficulty is present in a proportion of apparently healthy individuals and 

implies that it is a characteristic of the individual that prevents successful use. ALS-

associated neuropathology may compromise neural systems that are the basis for the signals 

used by a given BCI. For example, SMR-based BCIs use signals associated with the motor 

cortex, a neural system compromised in ALS. Likewise, the P300 response is typically 

attenuated in many forms of dementia.38 As discussed by Allison and Neuper,37 

improvements in BCI technology (eg, signal processing or task design) may be one possible 

solution to BCI illiteracy. They also suggested switching to a different BCI approach that 
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uses a different neural signal. The authors further implied that BCI illiteracy may actually be 

due to a shortcoming in BCI technology rather than a problem with the individual.37

The development of cognitive impairments in a proportion of ALS patients is well 

documented.39 In more severe cases, patients with ALS meet criteria for frontotemporal 

dementia. One of the characteristic symptoms of frontotemporal dementia is development of 

progressive aphasia.40 Clearly, difficulty with language would be problematic when using 

any assistive communication device. The possibility that poor BCI performance is due to 

cognitive or linguistic factors is difficult to assess given the problems in assessment of 

patients with CLIS, and even those who still have limited communication abilities.

Some researchers have attempted to develop BCI-based methods for cognitive assessment. 

For example, Poletti et al41 developed a P300-based system for assessment of executive 

functions and found reduced processing speed in ALS patients when compared with healthy 

controls. However, when using BCI technologies to assess cognitive status, there is inherent 

ambiguity as to whether performance deficits reflect cognitive status or proficiency in BCI 

use. This is particularly apparent when assessing constructs such as speed of information 

processing. Possible increased demands on cognitive resources associated with difficulty in 

BCI use could also compromise assessments. An alternative approach could involve 

screening for genetic risk factors. For example, Geronimo et al42 found an association 

between poor P300 BCI performance and abnormal repeat expansion, which has a high 

prevalence in ALS and frontotemporal dementia.

McCane et al43 examined the ability of 25 ALS patients to use a visual P300-based BCI. 

Seventeen patients had an average performance of over 70% correct, which is adequate for 

communication. The remaining patients averaged 12% correct, which would not support 

effective communication despite the fact that chance performance was 3%. This has been 

demonstrated with simulations showing that error-corrected performance is not produced in 

a reasonable amount of time unless performance is about 70% or better.44 Performance in 

the McCane et al43 study did not vary with extent of disability, as assessed using ALS 

Functional Rating Scale—Revised (ALSFRS-R) scores. However, all patients with poor 

performance had problems with vision (eg, nystagmus, diplopia, ptosis).

Pasqualotto et al45 compared performance of ALS patients using an eye-tracking system 

with that for a P300 BCI system. They found that information transfer rates and usability 

ratings were both higher for the eye-tracking system. In contrast to findings by McCane et 

al,43 they also reported that P300 BCI performance correlated positively with ALSFRS-R 

score. Whether an individual patient finds an eye-tracking device superior to a P300 BCI 

may depend on the characteristics of both the patient and the BCI. Vaughan et al46 described 

an ALS patient who found a visual P300 speller to be superior to his eye-gaze system. He 

used the BCI 4 to 6 h/day for several years for email and other tasks. I was involved in home 

visits with this patient and was told by caregivers that the eye-tracking system he had been 

using was no longer functioning satisfactorily. In contrast, the patient was quite pleased with 

the P300 system. Although eye-tracking systems depend solely on precise control of eye 

movements, the P300 system can also involve implicit attention.47 Thus, there may be a 
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subset of ALS patients who can benefit from visual BCIs at some point in the progression of 

their disease.

Researchers have sought to develop BCI systems that use alternative sensory modalities 

given potential vision problems in ALS patients. Kubler et al48 compared auditory and 

visual versions of P300-based BCIs in paralyzed ALS patients. They found reduced 

accuracy for the auditory system when compared with the visual system. Heilinger et al49 

found that ALS patients could use a P300 system based on vibrotactile stimuli.

Individuals with ALS have also used BCI systems based on intracortical recordings, which 

involve sharp electrodes that penetrate and reside in brain tissue. One problem with invasive 

recordings concerns the permanence of the implants. Over time, the quality of recordings 

declines due in part to the brain’s response to the presence of foreign objects.50 Jarosiewicz 

et al51 studied several methods that aimed to reduce such effects, including tracking the 

statistics of the signals and updating the classifier periodically. Milekovic et al52 described 

results from home use over a 138-day period that did not require calibration. This was due to 

the “decoder” being calibrated from data recorded over a long duration (ie, up to 42 days) 

and based on spectral analysis of local field potentials rather than neuronal spikes. This ALS 

patient could speak, was able to eat, and had an ALSFRS-R score of 16 out of 48.

Pels et al53 reported consistent performance over a 3-year period in an ALS patient using an 

implanted electrocorticography (ECoG)-based BCI. ECoG systems use arrays of electrodes 

implanted subdurally that do not penetrate the brain tissue and thus may be less susceptible 

to deterioration by the brain’s response to foreign objects. The authors did not report on the 

level of physical and cognitive functioning of the subject other than describing her as late 

stage. However, an article they cited described that she was ventilated and could use an eye-

tracking system at the time of implantation.54 Pels et al53 noted that their patient used the 

ECoG system at home.

Wolpaw et al55 described a study involving five Veterans Administration medical centers, 

each managing several patients with ALS. After a screening of 37 patients to determine 

usability, P300-based spellers were placed in the homes of 27 patients for periods of 12 to 18 

months. Of these, 14 patients completed the study while the remaining patients left the study 

due to disease, death, or loss of interest. Patients completing the study used the BCI mainly 

for communication via a text program as well as other applications such as email and an 

internet news reader. Ratings by patients and caregivers indicated that BCI benefit exceeded 

burden. Seven patients continued to use the BCI after the end of the study. Maintenance of 

BCI home use with this system required training of the patient’s caregiver in the application 

of an electrode cap and operation of the system, in addition to responding to occasional 

technical support from researchers. The study demonstrated that a subset of ALS patients 

could use a noninvasive BCI system in their homes if given external support. Having been 

involved in the study, I would add that success depended on the particular study site as well 

as the motivation of both caregiver and patient.
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4 | PROSPECTS FOR WIDESPREAD USE OF BCIS

Current BCI technology can improve the lives of a limited number of individuals who are 

both severely physically weakened and retain sufficient mental abilities. In order to do so, 

however, it is also necessary to have trained and motivated caregivers and technical support 

personnel. This greatly limits the potential population of individuals who can actually 

benefit from BCI use. The number of potential BCI users could increase if there are further 

improvements in this technology. At present, however, BCI use remains in the domain of 

research and development.

The marketing of direct-to-consumer neurotechnologies is on the rise despite the fact that 

the efficacy and safety of these products has not been established.56 Many of these devices 

are marketed as tools to enhance mental states, but some also claim that they can help 

individuals with mobility restrictions (eg, ALS) regain independence.57 At this point, it is 

probably best to thoroughly investigate the basis of any such claims before considering their 

use.

There has been considerable media coverage of BCI research. Gilbert et al58 analyzed the 

content of this coverage and found that a substantial amount of it was overly positive and did 

not portray the state of the art realistically. They documented many instances of 

unsubstantiated claims. These include overly optimistic assessments of the utility of current 

BCI technologies for the disabled, suggestions that BCI technologies may enhance the 

abilities of able-bodied users, and the idea that BCI technologies are enabling us to “read the 

minds” of users. Rinaldi59 suggested that both scientists and journalists are responsible for 

the sensationalization of scientific research. For the scientist, overly optimistic portrayal of 

research can result in favorable institutional and financial support. For the journalist, there is 

the tendency to publish articles that will “grab the reader’s attention.” These tendencies can 

result in unrealistic expectations on the part of the public. BCI research is by no means 

unique in this sense.

Widespread clinical use of BCI systems will require development of accurate, portable, 

reliable, and user-friendly devices.60 One problem with the commercialization of these 

devices is that the number of people who need the limited capabilities of current BCIs is 

relatively small by marketing standards. Several tech firms have expressed interest in 

developing BCI technologies.61 Although these efforts draw considerable media attention, to 

date workable solutions have not appeared.

BCI technology promises to provide a new means of communication and control for 

individuals with severely limited motor function. To date, research has only established 

proof of principle. Further technological improvements are necessary if BCIs are to become 

practical for individuals who can actually benefit from their use.
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Abbreviations:

ALS amyotrophic lateral sclerosis

ALSFRS-R Amyotrophic Lateral Sclerosis Functional Rating Scale—Revised

BCI brain-computer interface

CLIS completely locked-in syndrome

ECoG electrocorticography

EEG electroencephalogram

EMG electromyography

SCP slow cortical potential

SMR sensorimotor rhythm
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TABLE 1

Some characteristics of several different BCI systems

BCI system Signal Invasiveness Training required

P300 Evoked potential Noninvasive Minimal

SMR “Spontaneous” rhythms Noninvasive Extensive

Single unit Neuronal spikes Invasive Extensive

SSVEP Evoked oscillations Noninvasive Minimal

Abbreviations: BCI, brain-computer interface; SMR, sensorimotor rhythm; SSVEP, steady-state visual evoked potential.
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