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This paper aims to model the COVID-19 mortality rates in Italy, Mexico, and the Netherlands, by specifying an
optimal statistical model to analyze the mortality rate of COVID-19. A new lifetime distribution with three-
parameter is introduced by a combination of Rayleigh distribution and extended odd Weibull family to pro-

22;(;15]1;1:119 duce the extended odd Weibull Rayleigh (EOWR) distribution. This new distribution has many excellent prop-
. . erties as simple linear representation, hazard rate function, and moment generating function. Maximum

Maximum product spacing o X . . . . . K

2000 MSC:: likelihood, maximum product spacing and Bayesian estimation methods are applied to estimate the unknown

60E05 h parameters of EOWR distribution. MCMC method is used for the Bayesian estimation. A numerical result of the

62F10 Monte Carlo simulation is obtained to assess the use of estimation methods. Also, data analysis for the real data of

mortality rate is considered.
Introduction phenomena data. The extended probability distribution was originally

One of the main tasks of statistics is to find efficient statistical
modeling for natural life events in the form of known probability dis-
tributions. Probability distributions are used to model natural life phe-
nomena that are characterized by uncertainty and riskiness. Many
probability distributions have been derived because the natural life
phenomena are complex and very hard to model by traditional distri-
butions. However, known probability distributions remain unable to
represent data for some natural phenomena accurately. These lead to the
expansion and modification of generalized probability distributions. The
addition of some new parameters to the known probability distributions
improved the quality of suitability for the natural phenomena data and
higher accuracy of describing the shape of the distribution’s tail.

Most of the Rayleigh probability distribution extensions have been
derived because of their great importance in describing many natural
life phenomena. The Rayleigh probability density function, attributed to
Lord Rayleigh (1842-1919), is concerned with describing skewed data
see Rayleigh [1] Many researchers consider one scale parameter Ray-
leigh, like Robert C.P. Diebolt and Robert [2] discussed deviation and
distance measure in economic, which can be applied in another natural

introduced by Lehmann [3]. Kundu and Raqab [4] provided a general-
ization of the Rayleigh probability distribution and estimated its un-
known parameters using several different methods. Voda [5] used the
conservative technique to derive a new generalization of the Rayleigh
probability distribution. Dey [6] presented Bayesian estimates of the
Rayleigh probability distribution parameters using the linex loss func-
tions and square error loss function. Merovci [7] used the square ordinal
transformation method in developing the transmuted Rayleigh proba-
bility distribution. Merovci and Elbatal [8] presented a Weibull- Ray-
leigh probability distribution. Mahmoud and Ghazal [9] discussed the
estimation of the exponentiated Rayleigh parameters based on type II
censored data. Ateeq et al. [10] derived the Rayleigh-Rayleigh distri-
bution (RRD) using the Transformed Transformer technique. El-
Sherpieny and Almetwally [12] introduced Bivariate generalized Ray-
leigh distribution based on Clayton copula with various applications.
Almetwally et al. [11] used the maximum likelihood and maximum
product spacing estimates for generalized Rayleigh distribution based
on the adaptive type-II progressive censoring schemes. Al-Babtain [13]
proposed a new extension of the Rayleigh distribution with a two-
parameter called type I half logistic Rayleigh distribution.
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Fig. 1.

Here we study a new model with three parameters, it is called
extended odd Weibull Rayleigh (EOWR) distribution. The EOWR dis-
tribution is obtained based on the extended odd Weibull-G (EOW-G)
family, which was introduced by Alizadeh et al. [14]. Let G(x;5) =
1-G(x;6) and g(x;6) = %i’:‘” denote the survival function (SF) and
probability density function (PDF) of a baseline model with parameter
vector § respectively, so the CDF of the EOW-G family is given by:

Flxaps| = u{uﬂ{_c(x;é)r}%,xe R.
G(x;é)

The corresponding PDF of (1) is defined by

(€Y

ag(x;8)G(x; 8)""
= §)a+l

G(x;6)

ay -1
{1+/}{E(x;5)}} ek @

where aand fare positive shape parameters. The random variable with
PDF (2) is denoted by X ~ EOW-G(a, 3, 5). Afify and Mohamed [16]
introduced a new flexible three-parameter exponential distribution
called the extended odd Weibull exponential distribution. Alshenawy
et al. [17] used the maximum likelihood estimation and maximum
product spacing estimates to estimate the parameters of the extended
odd Weibull exponential distribution under the progressive type-II
censoring scheme with random removal.

Our goal in this paper is to study point estimation of the unknown
parameters of EOWR by using two classical methods of estimation and
the Bayes estimation method. A statistical comparison between these
methods is conducted via simulation to assess these method’s perfor-
mance and to study how these estimators behave for several sample sizes

flxapo

G(x;

=04 p=05 5=0.9 =05 =02 5=3

Plots of the probability density function (PDF) of the EOWR distribution.

and parameter values.

The rest of this paper is organized as follows. In Section ‘EOWR
distribution’, we define EOWR distribution. Some EOWR statistical
properties as a linear representation of its PDF is obtained in Section
‘Statistical properties’. Three methods of point estimation are studied in
Section ‘Parameter estimation’. In Section ‘Simulation analysis’, a
simulation study is conducted to compare the performance of these
estimation methods. Three real data sets of COVID-19 from different life
applications are used in Section ‘Applications to COVID-19 data’ to
prove the efficiency of the EOWR distribution compared to other dis-
tributions. Finally, conclusions and major findings are given in Section
‘Conclusion’.

EOWR distribution

The three-parameter EOWR distribution is a special model of EOW-G
family with Rayleigh distribution as a baseline function. The Rayleigh
distribution under consideration has respectively PDF and CDF of the
form g(x;6) = 26xe ™ and G(x;6) = 1—e ™ x>0, §>0. By
substituting the CDF and PDF of the Rayleigh model in Eq. (1) and Eq.
(2) respectively, we obtain the CDF and PDF of the EOWR distribution
respectively as;

Flxaps| = 1—{1 +ﬂ{e"”2 - 1]" }717x> 0,a,4,5 > 0. 3)

a=4 B=25-05 a=2 =2 5-02
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Fig. 2. Plots of the hazard rate function (HR) of the EOWR distribution.
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5 a—1
flxaps :2a5xeﬁ"2(e"”—1> {1+/1<e5»*2—1)] 7 x>0,a,4,6>0.

4

Therefore, a random variable with PDF (4) is denoted by
X ~EOWR(a, g, ). The EOWR model reduces to the two parameter
Weibull Rayleigh model when —0*.

The hazard rate function (HR) of the EOWR distribution are given by

<2 5 a—1
2adxe™ (e‘”“ - 1)

hlxa,pé| = T A —1)°

Figs. 1 and 2 are different shapes of the PDF and HR of the EOWR
distribution. These figures show that the EOWR distribution PDF can be
right-skewed, symmetric, or decreasing curves. The HR of the EOWR
distribution has some important shapes, including constant, decreasing,
and upside down curve, which are attractive characteristics for any
lifetime model. It can be noticed from the application section that the
EOWR distribution has great flexibility and can be used to model skewed
data, hence being widely applied in different areas such as biomedical
studies, biology, reliability, physical engineering, and survival analysis.

Statistical properties

This section presents some statistical properties of the EOWR dis-
tribution, namely, the linear representation of PDF, which is useful in
finding the moments and moment generating function (MGF).

Linear representation

Linear representation for the EOWR density using series techniques
is useful for finding many statistical values and properties of the dis-
tribution Of interest. Alizadeh et al. [14] showed that EOW-G family has
the following mixture representation of its density

f<x> = z @jihaj ik <X>,
jk=0

—pT(aj+k) <;—}>

where aj; = )

j “1) _-1(=1 -1_
1, where (7)1‘ =7 (7— )...(7—]—&- 1),
and
hejk(x) = (af + k)g(x)G(x)¥™ ! is the exponential-G density with
positive power parameter aj + k. Now substituting the PDF and the CDF
of the Rayleigh distribution, the above equation can be written as

f (x) = i @, 26xe 7 (1 - e%)“f‘*k*‘, ()

k=0

Eq. (5) can be written as

f (}C) = i: Uj‘k]’l(x; aj + k7 6). (6)

k=0

where vj; = (O;J%k), and h(x;aj+ k,5) denotes generalized Rayleigh
density with (aj + k,5) as parameters of generalized Rayleigh distribu-
tion. Hence the PDF of EOWR can be expressed as a linear combination
of generalized Rayleigh distribution. Let X be a random variable having
generalized Rayleigh distribution with parameter (a", §). Then, the r"
ordinary moment, and MGF of X are
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o [a —1 r - @
_a*52< )(—1)’r(2+1)(5(1+1))

RS a—1 [ ra a2 ®
—a's) z (71)5F<§+1>(6(l+1))2.

La=0
Moments and moment generating functions

The r* moment of the EOWR distribution follows directly from Egs.
(6) and (7)

Be=D 0ty <aj+k, 5). ©)
jk=0

Referring to Eq. (6) and Eq. (8), the MGF of the EOWR distribution is
given by:

M <t> = i 0 My (t,0f + &, 8). (10)

jk=0
Quantile function and median

The quantile function of EOWR distribution is used in the theoretical
aspect of probability theory for this model, like statistical applications,
and simulations. Simulation algorithm used quantile function to pro-
duce simulated random samples. The quantile function (Q) of the EOWR
distribution is given by

1

gloed 14 (10 -7 - 11)’ an

Qlq| = 7

In particular, the median of EOWR distribution can be derived from
Eq. (11) by setting q = 0.5. Then, the median is given by median =

1
1logq 1+ (},[2” - 1])

Parameter estimation

In this section, we use different point estimation methods to estimate
the unknown parameters of the EOWR. We use maximum likelihood
estimator (MLE), the maximum product of spacing estimator (MPS) and
Bayesian estimation methods. In the last few years, parameter estima-
tion using different estimation methods got great attention from many
authors such as Almetwally and Almongy [19], Haj Ahmad and
Almetwally [20], Basheer et al. [21], and Afify and Mohamed [16].

Maximum likelihood method

Let x3, -+, X, be a random sample from the EOWR distribution with
parameters a, 8, and 6. The likelihood function can be written as:
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n
2 n

L\e —2"“”5;"’H{xf(eﬁ*f—l)“ [1+p(e —1)" }}

i=1
(12)

and © = (a,f,d)is a vector of the EOWR parameters, the log-likelihood
function is

f(@)ocn[log( + log(s +5Zx + (a—l) Zlog(e i
_1)_<1+ﬂ>210g{1+/1(e&1—1) | a3)

The MLE are obtained by solving the following normal equations,

. n (e‘sxzz—l)alog(e‘“rz—l)
<eﬁf—1)—<ﬁ+l>; VP a4

X2 U (6'5“'—1> x2e%i
e Can Z‘W as)

ox2

5 —+Zx Ziv

and

a n #71)"
ab;(ﬂ ﬁZZIOg[Hﬁ( -1) ]J% > 15/;(60_)1) 16)

These Egs. ((14)-(16)) cannot be solved explicitly. Hence a nonlinear
optimization the algorithm as Newton Raphson method is used by
equating them to zero.

Maximum product spacing

According to Cheng and Amin [22], the MPS method is an efficient
estimation method that have some advantages compared to other point
estimation methods. So we use MPS in this section to have point esti-
mation of the unknown parameters of EOWR distribution. This can be
obtained by solving the normal equations resulted from taking partial
derivatives of logarithm of product spacing function G(®) which is
written as:

{(1-tmsors?) (-t emry?)

{ gL [0+ P8 P+ (14900 | } .

G(O) =

2

where A(x;) = (e‘sxi

l0gG (@) aﬁ (log {1 —{l+ﬂA(x1)"}/fI:| +log {1 —{1+ﬂA(xn)“}/f1:| ) "

ilog {{HﬁA(xf1)“}/"'+{1+/m<x,-)“}/—"} ‘

n+l4

— 1) and the logarithmic function of G(©)

17

The MPS estimators of ® are obtained by differentiating the log-
product Eq. (17) with respect to each parameter, then we solve the
nonlinear system of equations found by using any iterative procedure
techniques such as Newton Raphson algorithms. This method was
developed in the last few years to estimate parameter of the model under
censoring scheme see Ng et al. [23], Basu et al. [24], Almetwally and
Almongy [25], Almetwally et al. [19,26], El-Sherpieny et al. [27], and
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Alshenawy et al. [18].
Bayesian estimation

Bayesian methods is a statistical inference that depends on the choice
of the prior distribution and the loss function. In this method all pa-
rameters are considered as random variables with certain distribution
called prior distribution. If prior information is not available, we need to
select one. Since the selection of prior distribution plays an important
role in estimation of the parameters, our choice for the priors are the
independent gamma distributions. On the other hand, the loss function
is important in Bayesian methods. Most of the Bayesian inference pro-
cedures are developed under the symmetric and asymmetric loss func-
tions. One of the most common symmetric loss function is the squared
error loss (SEL) function. The independent joint prior density function of
Ocan be written as follows:

(@) = hlll hzz h; asl—lﬂsz—l&\';—]e—(h|a+hz/1+hu$) (18)
I(s1) I(s2) T(ss) '

The joint posterior density function of © is obtained from (12) and

( ) f@L<»,c|@>n(@)d@

can be rewritten as follows

J(fo hx) n —1
T @lx xS ]ﬁsz 15n+\; Ie—(h|11+h2/1 = <€ ; _1)

i=1

[1 +ﬁ(e5-*? - 1)“]7, 20
The conditional distribution can obtained as follows
n _1+p

als, B, x «a””"‘e"""H (e‘i*'2 - 1){,71 [1 Jrﬂ(e‘”?2 - l)a] o@D

i=1

B

3

8 iﬁw;) n 1 _ip
5|C{,/})_C x5 e (,:1 H(e&'zfl)a |:1+/}<e(ix’271>a:| /1’ (22)

and

144

x| Bla,ox [opte I {1 +ﬂ(e‘5-‘? - 1)] 7 23
i=1
The Bayes estimators of ®, say (dz, 5, 95) based on SEL function is
given by

O suu(a.,8) = E (o) 24

where,

'07,;,55,‘ = /oo a/w /oc ﬂ(@'&) dﬂd&da. (25)
0 0 0

Bosr = / “p / ) / mn(@\z) dadsdp, 26)
0 0 0

and
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Table 1
Bias and RMSE of EOWR distribution for MLE, MPS, and Bayesian when a = 0.5.
a= 05 MLE MPS Bayesian
p S n Bias RMSE Bias RMSE Bias RMSE
0.5 0.5 50 a 0.0183 0.1240 —0.0059 0.0087 0.0062 0.0414
p 0.0105 0.8714 0.1152 0.3386 0.1075 0.2227
3 0.0269 0.3340 0.0587 0.0665 0.0907 0.1791
100 a 0.0025 0.0683 —0.0062 0.0040 0.0048 0.0371
p —0.0189 0.6002 0.0741 0.1938 0.1272 0.2294
3 0.0177 0.2677 0.0422 0.0348 0.0732 0.1392
200 a 0.0042 0.0460 —0.0030 0.0020 0.0043 0.0318
p 0.0413 0.3988 0.0685 0.1171 0.1079 0.2137
3 0.0289 0.1856 0.0342 0.0203 0.0608 0.1189
2 50 a 0.0095 0.1031 —0.0155 0.0078 0.0078 0.0418
p —0.0498 0.5912 —0.0046 0.1853 0.0772 0.1711
3 —0.0202 0.7408 0.0011 0.3149 0.1607 0.3494
100 a 0.0020 0.0632 —0.0057 0.0035 0.0078 0.0373
p —0.0483 0.5419 0.0356 0.1069 0.0751 0.1651
3 0.0008 0.9164 0.0654 0.2222 0.1581 0.3380
200 a 0.0017 0.0467 —0.0028 0.0019 0.0050 0.0325
p 0.0017 0.3634 0.0485 0.0559 0.0745 0.1608
3 0.0411 0.6169 0.0772 0.1242 0.1478 0.3097
2 0.5 50 a 0.0179 0.0883 —0.0225 0.0065 0.0034 0.0402
0.1007 0.6120 —0.0195 0.1984 0.0508 0.0853
3 0.0381 0.1775 0.0150 0.0288 0.0561 0.1332
100 a 0.0137 0.0667 —0.0102 0.0035 0.0045 0.0384
0.2856 1.3758 —0.0040 0.0876 0.0482 0.0834
3 0.0718 0.3392 0.0045 0.0112 0.0342 0.0912
200 a 0.0034 0.0425 —0.0093 0.0017 0.0013 0.0320
0.0785 0.5627 —0.0209 0.0384 0.0454 0.0819
3 0.0217 0.1403 —0.0016 0.0052 0.0251 0.0706
2 50 a 0.0176 0.1017 —0.0213 0.0073 0.0062 0.0382
p 0.1072 1.0997 —0.0480 0.1761 0.0400 0.0757
3 0.0687 0.7861 —0.0452 0.1742 0.0940 0.3061
100 a 0.0109 0.0658 —0.0111 0.0038 0.0053 0.0376
p 0.0967 0.8821 —0.0236 0.0966 0.0394 0.0748
3 0.1147 0.9710 —0.0105 0.0960 0.0968 0.2719
200 a 0.0025 0.0470 —0.0094 0.0018 0.0017 0.0307
p 0.0254 0.5610 —0.0232 0.0602 0.0365 0.0719
3 0.0346 0.4849 —0.0115 0.0543 0.0841 0.2240
~ o poo
Sp_ser = / 5 / / ;T(@g) dadpds. (27)
0 o Jo

It is noticed that the integrals given by Egs. (24)—(27) can’t be ob-
tained explicitly. Because of that, we use the MCMC to find an approx-
imate value of integrals in (24)-(27). Many authors used the MCMC
technique, such as [19,26,37-39,41-43,15]. The MH algorithm pro-
duces a series of draws from EOWR distribution as follows:

Algorithm 1 The MCMC Algorithm

1: Initiate with a© = Qe = ﬁMLEﬁ(OJ = SmiE.
2:Seti =1.
3: Generate @ from proposal distribution N(a~) var(ai-1))).
4: Evaluate the acceptance probability
a(a’[pD 50D
"r(aD D sED Y |
5: Generate U ~ U(0,1).
6: If USA(a™V]a™ ), put ¥ = o, else put a® = a1,
7: Do the steps from ((2)-(6)) for $ and 6.
8:Puti =i+ 1.
9: Repeat steps ((3)-(8)), N times to obtain (a®,1 sW)),..., (a® N sM),

A((l(i’1)|af’ﬁ) =min|1

Then, the BEs of u(a, $, §) using MCMC under SE loss function

1 & I
. 772 (i) g 56
uSl:L*N ;1u<a B, 6 )

Simulation analysis

In this section, the Monte-Carlo simulation procedure is performed to
compare the classical estimation methods: MLE, MPS, with Bayesian
estimation method under square error loss function based on MCMC, for
estimating parameters of EOWR distribution by R programming lan-
guage. Monte-Carlo experiments are carried out based on data generated
from the distribution. Ten thousand random samples from EOWR dis-
tribution were generated, where X has EOWR lifetime for different
actual values of parameters and different sample sizes n=(50, 100, and
200). We could define the best estimator methods as which minimizes
the bias and root mean squared error (RMSE) of estimators.

Tables 1, 2 summarizes the simulation results of point estimation
methods proposed in this paper. We consider the bias and the RMSE
values in order to perform the needed comparison between different
point estimation methods. The following remarks can be noted from
these tables:
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Table 2
Bias and RMSE of EOWR distribution for MLE, MPS, and Bayesian when a = 2
a= 2 MLE MPS Bayesian
p S n Bias RMSE Bias RMSE Bias RMSE
0.5 0.5 50 a 0.0763 0.4108 —0.0188 0.1031 0.0037 0.0208
p —0.0087 0.4392 0.0655 0.1490 0.0605 0.1722
3 —0.0024 0.0589 0.0063 0.0034 0.0116 0.0454
100 a 0.0250 0.2283 —0.0174 0.0449 0.0036 0.0265
p —0.0189 0.2722 0.0337 0.0669 0.0336 0.1440
3 —0.0014 0.0390 0.0043 0.0015 0.0067 0.0312
200 a 0.0238 0.1901 —0.0031 0.0208 0.0048 0.0325
p 0.0055 0.1994 0.0347 0.0280 0.0299 0.1179
8 0.0005 0.0268 0.0040 0.0007 0.0047 0.0231
2 50 a 0.0848 0.4883 0.0110 0.1802 0.0040 0.0220
p —0.0053 0.5195 0.0884 0.2352 0.0557 0.1710
8 —0.0185 0.2605 0.0229 0.0624 0.0372 0.1659
100 a 0.0360 0.3164 0.0031 0.0869 0.0022 0.0273
p 0.0009 0.3449 0.0647 0.1137 0.0381 0.1486
8 —0.0052 0.1806 0.0222 0.0309 0.0235 0.1232
200 a 0.0119 0.2015 —0.0014 0.0383 0.0015 0.0326
p —0.0078 0.2116 0.0351 0.0445 0.0183 0.1150
3 —0.0067 0.1138 0.0116 0.0126 0.0094 0.0881
2 0.5 50 a 0.0933 0.4091 —0.0698 0.1299 0.0010 0.0210
0.0935 0.8778 0.0208 0.4735 0.0448 0.1068
3 0.0078 0.0917 0.0005 0.0060 0.0190 0.0621
100 a 0.0665 0.3711 —0.0348 0.0763 0.0024 0.0265
0.0732 0.7833 0.0243 0.3001 0.0392 0.1178
3 0.0027 0.0625 —0.0007 0.0033 0.0101 0.0416
200 a 0.0450 0.2147 —0.0192 0.0342 0.0032 0.0295
0.0751 0.4542 0.0291 0.1509 0.0410 0.1219
3 0.0045 0.0433 0.0006 0.0017 0.0066 0.0293
2 50 a 0.3318 0.9574 —0.0362 0.1857 0.0013 0.0214
p 0.7134 2.4516 0.1022 0.7926 0.0379 0.1031
3 0.1614 0.6438 0.0328 0.1295 0.0745 0.2226
100 a 0.1235 0.4749 —0.0302 0.0936 0.0025 0.0257
p 0.2302 1.1271 0.0382 0.4345 0.0353 0.1108
3 0.0471 0.3434 —0.0017 0.0659 0.0369 0.1543
200 a 0.0427 0.2836 —0.0292 0.0532 0.0020 0.0291
p 0.0653 0.6103 —0.0026 0.2270 0.0297 0.1154
3 0.0138 0.2215 —0.0075 0.0362 0.0270 0.1238
Table 3
MLE estimates, SE, KS test, P-values, W*, and A* for COVID-19 data of Italy.
Italy a B 8 A W A* KS P-value
EOWR 2.9019 15.8688 0.0551 0.0653 0.3685 0.0828 0.7819
1.0417 9.3609 0.0170
R 6.5829 0.1328 0.8044 0.1360 0.2056
0.4285
MOR 0.7578 7.0444 0.1343 0.7990 0.1137 0.4004
0.3509 0.9770
KER 0.0131 1.6751 1.8468 0.5114 0.1325 0.8022 0.1219 0.3184
0.0172 2.1649 3.1031 0.8593
EOWE 1.4103 0.0356 0.0710 0.1324 0.8023 0.1239 0.3004
0.2710 0.1753 0.0116
Concluding remarks on simulation 2. By increasing the sample size the RMSE of the parameters decreases.

3. Bayesian estimation method under squared error loss function has
the least RMSE among all estimation methods.
4. The MPS provides better estimation values compared with the MLE
1. By increasing the sample size the values of the parameters tend to the referring to the value of the RMSE.
true values of the parameters.
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Table 4
MLE estimates, SE, KS test, P-values, W*, and A* for COVID-19 data of Mexico.
Mexico a B 8 p) w* A* KS P-value
EOWR 1.9711 6.6509 0.0633 0.0293 0.1777 0.0449 0.9815
0.5438 3.8516 0.0227
R 4.6719 0.1185 0.7626 0.0934 0.3027
0.2248
MOR 0.6115 5.3157 0.0822 0.5155 0.0602 0.8283
0.2121 0.6052
KER 0.2670 0.1734 0.9477 1.3805 0.0955 0.6087 0.1227 0.0773
0.0021 0.0169 0.0663 0.0680
EOWE 2.1998 1.1979 0.1406 0.0908 0.5128 0.0736 0.6017
0.4146 0.6327 0.0180
Table 5
MLE estimates, SE, KS test, P-values, W*, and A* for COVID-19 data of Netherlands.
Netherlands a B S A W A* KS P-value
EOWR 1.3172 2.7624 0.0335 0.0262 0.1807 0.0734 0.9932
0.4285 2.2505 0.0170
R 4.9985 0.0520 0.3158 0.1167 0.7655
0.4563
MOR 0.6136 5.6754 0.0359 0.2301 0.0832 0.9746
0.3955 1.1974
KER 0.0115 3.2253 2.3294 0.4031 0.0506 0.3084 0.1046 0.8646
0.0203 5.5682 7.5032 1.2984
EOWE 2.0538 1.0192 0.1274 0.0272 0.1873 0.0827 0.9758
0.6509 0.9289 0.0267

Applications to COVID-19 data

In this section, three real data of COVID-19 mortality rates from Italy,
Mexico, and the Netherlands [see https://covid19.who.int/] are given
to test the EOWR distribution’s goodness of fit. The EOWR model is
compared with other related models such as Rayleigh (R), Marshall-
Olkin Rayleigh (MOR) [28], Kumaraswamy exponentiated Rayleigh
(KER) Rashwan [29] and extended odd Weibull exponential (EOWE)
distribution see Afify et.al. [16]. Tables 3-5 provide values of Crammer-
von Mises (W*), Anderson-Darling (A*), and Kolmogorov- Smirnov (KS)
statistic and its P-value for all models fitted based on three real data sets.
For more information about Covid-19 data see, Abdel-Rahman
[31-36,40,30].

The first data represents a COVID-19 mortality rates data belongs to
Italy of 59 days, that is recorded from 27 February to 27 April 2020. The

Q-Q plot for EOWR

data are as follows: 4.571 7.201 3.606 8.479 11.410 8.961 10.919
10.908 6.503 18.474 11.010 17.337 16.561 13.226 15.137 8.697
15.787 13.333 11.822 14.242 11.273 14.330 16.046 11.950 10.282
11.775 10.138 9.037 12.396 10.644 8.646 8.905 8.906 7.407 7.445
7.214 6.194 4.640 5.452 5.073 4.416 4.859 4.408 4.639 3.148 4.040
4.253 4.011 3.564 3.827 3.134 2.780 2.881 3.341 2.686 2.814 2.508
2.450 1.518.

The second data represents a COVID-19 mortality rate data belongs
to Mexico of 108 days, that is recorded from 4 March to 20 July 2020.
This data formed of rough mortality rate. The data are as follows: 8.826
6.105 10.383 7.267 13.220 6.015 10.855 6.122 10.685 10.035 5.242
7.630 14.604 7.903 6.327 9.391 14.962 4.730 3.215 16.498 11.665
9.284 12.878 6.656 3.440 5.854 8.813 10.043 7.260 5.985 4.424 4.344
5.143 9.935 7.840 9.550 6.968 6.370 3.537 3.286 10.158 8.108 6.697
7.151 6.560 2.988 3.336 6.814 8.325 7.854 8.551 3.228 3.499 3.751

P-P plot for EOWR
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Fig. 3. Estimated PDF, PP-plot and QQ-plot of EOWR for COVID-19 data of Italy.
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Fig. 4. Estimated PDF, PP-plot and QQ-plot of EOWR for COVID-19 data of Mexico.
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Fig. 5. Estimated PDF, PP-plot and QQ-plot of EOWR for COVID-19 data of the Netherlands.

7.486 6.625 6.140 4.909 4.661 1.867 2.838 5.392 12.042 8.696 6.412
3.395 1.815 3.327 5.406 6.182 4.949 4.089 3.359 2.070 3.298 5.317
5.442 4.557 4.292 2.500 6.535 4.648 4.697 5.459 4.120 3.922 3.219
1.402 2.438 3.257 3.632 3.233 3.027 2.352 1.205 2.077 3.778 3.218
2.926 2.601 2.065 1.041 1.800 3.029 2.058 2.326 2.506 1.923.

The third data represents a COVID-19 data belonging to the
Netherlands of 30 days, which recorded from 31 March to 30 April 2020.
This data formed of rough mortality rate. The data are as follows: 14.918
10.656 12.274 10.289 10.832 7.099 5.928 13.211 7.968 7.584 5.555
6.027 4.097 3.611 4.960 7.498 6.940 5.307 5.048 2.857 2.254 5.431
4.462 3.883 3.461 3.647 1.974 1.273 1.416 4.235.

Concluding remarks on real data

From Tables 3-5 it is obvious that EOWR distribution has minimum
values of all information criteria as W*, A*, and KS compared with other
competitive distributions. Also the P-value for KS has the highest value.
This leads us to conclude that EOWR is the best fit for the three real data
sets. Empirical, Q-Q and P-P plots are shown in Figs. 3-5, indicate that
our distribution is a superior model for modeling the above real data.

Conclusion

In this paper, we presented a new generalization of Rayleigh and
Weibull distributions called EOWR distribution. We studied its statistical
properties and obtained a linear representation for its pdf, which was
efficient in finding moments, generating function. Different classical and

Bayes estimation methods were considered to find point estimation of
EOWR unknown parameters @, # and 6. A comparison was conducted via
simulation analysis using the R package to distinguish the performance
of different estimation methods. MCMC method was used for that pur-
pose, and the Bayesian estimation method was better than classical
estimation methods referring to the value of RMSE. Also, three real data
sets of COVID-19 mortality rates were considered, and they showed that
EOWR provides the best fit for these kinds of data compared with other
competitive distributions.
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